JPH078322B2 - Control method for simulated moving bed - Google Patents

Control method for simulated moving bed

Info

Publication number
JPH078322B2
JPH078322B2 JP16281786A JP16281786A JPH078322B2 JP H078322 B2 JPH078322 B2 JP H078322B2 JP 16281786 A JP16281786 A JP 16281786A JP 16281786 A JP16281786 A JP 16281786A JP H078322 B2 JPH078322 B2 JP H078322B2
Authority
JP
Japan
Prior art keywords
flow rate
circulation
circulation pump
control signal
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16281786A
Other languages
Japanese (ja)
Other versions
JPS6320007A (en
Inventor
裕路 小川
とおる 園部
文彦 松田
隆之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP16281786A priority Critical patent/JPH078322B2/en
Publication of JPS6320007A publication Critical patent/JPS6320007A/en
Publication of JPH078322B2 publication Critical patent/JPH078322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、2種以上の成分を含む被処理液中の各成分を
個々に分離する擬似移動床の制御方法に係り、詳しくは
液体供給位置および液体取り出し位置を移動させる工程
が一順したときに、前工程における最良の制御状態を再
現して循環用のポンプを制御する方法に関するものであ
る。
Description: FIELD OF THE INVENTION The present invention relates to a method for controlling a simulated moving bed for individually separating each component in a liquid to be treated containing two or more components, and more particularly to a liquid supply position. The present invention also relates to a method of controlling the pump for circulation by reproducing the best control state in the previous step when the steps of moving the liquid take-out position are completed.

〔発明の背景) 従来2種以上の成分を含む被処理液中の各成分を連続的
に分離する装置として擬似移動床が知られている。
[Background of the Invention] Conventionally, a simulated moving bed is known as an apparatus for continuously separating each component in a liquid to be treated containing two or more components.

これは、2種以上の成分を含む被処理液中の一方の成分
と他の成分とに対して異なる収着能を有する固体収着材
を充填した単位充填床を多数個無端状に直列連結し、こ
の無端状になっている単位充填床内に液体を一方向に循
環させ、この循環している液体の流れ方向に従って2種
以上の成分を含む被処理液の供給、固体収着材に収着さ
れにくい成分を含む液体の取出し、溶離液の供給および
収着され易い成分を含む液体の取出しを該無端に連結さ
れた単位充填床について間隔をおいて行うとともに、被
処理液および溶離液の供給並びに収着されにくい成分を
含む液体および収着され易い成分を含む液体の取出しの
ための各位置を循環している液体の流れ方向に沿って間
欠的に移動させるようにしたものである。なお、以下の
説明において、供給および取り出し位置を次の位置に移
動させることを工程と称し、循環系の工程が1順するこ
とを1サイクルと称す。
This is an endless series connection of a number of unit-packed beds filled with a solid sorbent material having different sorption capacities for one component and another component in a liquid to be treated containing two or more components. Then, the liquid is circulated in one direction in the endless unit packed bed, and the liquid to be treated containing two or more kinds of components is supplied in accordance with the flow direction of the circulating liquid, to the solid sorbent. The liquid containing a component that is difficult to be sorbed, the supply of an eluent, and the liquid containing a component that is easily sorbed are taken out at intervals in the endlessly connected unit packed beds, and the liquid to be treated and the eluent are treated. Of the liquid containing the component which is difficult to be sorbed and the liquid containing the component which is easily sorbed are intermittently moved along the flow direction of the circulating liquid. . In the following description, moving the supply / removal position to the next position is referred to as a step, and one cycle of the circulation system is referred to as one cycle.

ところで、1工程が終了して次の工程に切換わると、循
環系内における液体の粘度等が変化しているので、循環
系の流量や圧力が一瞬に変化し、このため各循環ポンプ
の回転数を変えたり、循環ポンプの吐出側に圧力調節弁
を設けたりして循環ポンプの吐出圧力を調節する制御が
行なわれている。
By the way, when one process is completed and the process is switched to the next process, the viscosity and the like of the liquid in the circulation system are changed, so that the flow rate and pressure of the circulation system are instantaneously changed. Control is performed to change the number of discharge pumps or to install a pressure control valve on the discharge side of the circulation pump to adjust the discharge pressure of the circulation pump.

しかしながら、このような制御方法は各循環ポンプの制
御を各工程毎にその都度行なっているために、循環系内
の流量および圧力が安定するのに時間がかかり取り出す
液体の分取効率が悪いという問題点があった。
However, in such a control method, since the control of each circulation pump is performed for each process each time, it takes time for the flow rate and pressure in the circulation system to stabilize, and the liquid collection efficiency is low. There was a problem.

〔発明の目的〕[Object of the Invention]

本発明は、このような従来の問題点を解決するためにな
されたもので、前サイクルにおける各工程での最良の制
御状態を後サイクルの各同一工程に反映させて工程が切
換えらえた瞬間から短時間で循環系の流量および圧力を
最良の状態となるように循環ポンプを制御する擬似移動
床の制御方法を提供することを目的とするものである。
The present invention has been made in order to solve such a conventional problem, and from the moment when the process is switched by reflecting the best control state in each process in the previous cycle to each identical process in the subsequent cycle. It is an object of the present invention to provide a control method for a simulated moving bed, which controls a circulation pump so that the flow rate and pressure of the circulation system are optimized in a short time.

〔発明の概要〕[Outline of Invention]

本発明による擬似移動床の制御方法は、固体収着材が充
填された単位充填床を多数個用いて無端直列状に連結し
て循環流路を形成し、該循環流路に該単位充填床の1個
宛又は複数個宛に対して1台の循環ポンプを複数配置し
て該循環流路中に液体を一方向に循環させ、さらに該循
環流路中に2種以上の成分を含む被処理液および溶離液
を導入し、同時に該循環流路から該固体収着材に対して
収着質に富む液体および非収着質に富む液体を取り出す
ための導入口並びに取り出し口を循環液体の流れ方向に
沿って順次配置し、その位置を予め設定した工程に従っ
て間欠的に移動させる擬似移動床において、前記各循環
ポンプからの流量を目標流量値とするように該各循環ポ
ンプの流量を制御するための流量制御信号と、該各循環
ポンプの入口圧力を全入口圧力の平均値とするように該
各循環ポンプの入口圧力を制御するための圧力制御信号
とを含む制御信号によって該各循環ポンプの回転数又は
各循環ポンプの吐出側圧力を制御するとともに、該流量
制御信号に各循環ポンプに対応して各工程毎に夫々流量
係数を含ませ、安定流量状態時における各制御信号の平
均値と夫々の制御信号との比により修正流量係数を求
め、この各修正流量係数を次サイクルの同工程における
流量係数とすることを特徴とするものである。
A method for controlling a simulated moving bed according to the present invention is a unitized bed which is formed by connecting a plurality of unit-packed beds filled with a solid sorbent material in an endless series to form a circulation channel, and the unitized bed in the circulation channel. A plurality of one circulation pumps are arranged for each one or a plurality of them to circulate the liquid in the circulation flow path in one direction, and the circulation flow path further contains two or more components. An inlet and an outlet for introducing a treatment liquid and an eluent, and at the same time taking out a liquid rich in sorbate and a liquid rich in non-sorbate from the circulation flow path to the solid sorbent In a simulated moving bed which is sequentially arranged along the flow direction and whose position is intermittently moved according to a preset process, the flow rate of each circulation pump is controlled so that the flow rate from each circulation pump becomes a target flow rate value. Flow control signal for controlling and the inlet pressure of each circulation pump While controlling the rotation speed of each circulation pump or the discharge side pressure of each circulation pump by a control signal including a pressure control signal for controlling the inlet pressure of each circulation pump so as to be an average value of all inlet pressures. The flow rate control signal includes a flow rate coefficient for each process corresponding to each circulation pump, and a corrected flow rate coefficient is obtained from the ratio of the average value of each control signal and each control signal in a stable flow rate state, It is characterized in that each of the corrected flow rate coefficients is used as a flow rate coefficient in the same process in the next cycle.

〔発明の実施例〕Example of Invention

以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.

第1図は本発明による方法を有効に実施することができ
る擬似移動床の概略図を示している。
FIG. 1 shows a schematic diagram of a simulated moving bed in which the method according to the invention can be effectively implemented.

図中、LC1〜LC12は固体収着材が充填された単位充填床
で、図示の如く無端状に直列連結されている。PR1,PR3,
PR5,PR7,PR9,PR11は循環ポンプで、2つの連続する単位
充填床毎に夫々配置され、単位充填床内に供給される液
体を矢印方向に循環させる。RC1,RC3,RC5,RC7,RC9,RC11
は循環ポンプの回転数を制御する回転制御装置で、各循
環ポンプに夫々設けられている。
In the figure, LC1 to LC12 are unit packed beds filled with a solid sorbent material, which are connected endlessly in series as shown. PR1, PR3,
PR5, PR7, PR9, and PR11 are circulation pumps, which are arranged for every two continuous unit packed beds, and circulate the liquid supplied in the unit packed beds in the arrow direction. RC1, RC3, RC5, RC7, RC9, RC11
Is a rotation control device for controlling the number of revolutions of the circulation pump, and is provided for each circulation pump.

PDは被処理液Dを循環系に供給する供給ポンプ、PFは溶
離液Fを循環系に供給する供給ポンプで、夫々一定の流
量で被処理液Dおよび溶離液Fを循環系に供給するよう
になっており、図に示す供給位置を第1工程とし、その
際循環系から取り出される収着されにくい成分を含む液
体(以下非収着質液体と称す)Eは単位充填床LC3とLC4
との間から取り出され、また収着され易い成分を含む液
体(以下収着質液体と称す)Rは単位充填床LC9とLC10
との間から取り出される。FICは循環系の流量を検出す
る流量検出器を示している。
PD is a supply pump that supplies the liquid to be treated D to the circulation system, and PF is a supply pump that supplies the liquid to be eluted F to the circulation system, so that the liquid to be treated D and the eluent F are supplied to the circulation system at constant flow rates. The feed position shown in the figure is the first step, and the liquid (hereinafter referred to as non-sorbate liquid) E containing components that are difficult to sorb taken out from the circulation system is the unit packed beds LC3 and LC4.
The liquid (hereinafter referred to as sorbate liquid) R, which is taken out from between and is easily sorbed, is a unit packed bed LC9 and LC10.
It is taken out from between. FIC indicates a flow rate detector that detects the flow rate of the circulation system.

1は例えばマイクロコンピュータからなる制御装置で、
各循環ポンプの入口圧力を検出する圧力検出器PG1,PG3,
PG5,PG7,PG9,PG11からの圧力信号P1,P3,P5,P7,P9,P11が
入力されるとともに、流量検出器FICから流量信号F1が
入力され、各循環ポンプの回転数制御装置RC1,RC3,RC5,
RC7,RC9,RC11に夫々制御信号X1,X3,X5,X7,X9,X11を出力
する。
1 is a control device composed of, for example, a microcomputer,
Pressure detectors PG1, PG3, which detect the inlet pressure of each circulation pump
The pressure signals P1, P3, P5, P7, P9, P11 from PG5, PG7, PG9, PG11 are input, the flow rate signal F1 is input from the flow rate detector FIC, and the rotation speed control device RC1, RC3, RC5,
Control signals X1, X3, X5, X7, X9, and X11 are output to RC7, RC9, and RC11, respectively.

次いで、この制御装置1の動作を第2図に示すブロック
図に基づいて説明する。10は流量調節計で、予め設定さ
れた流量目標値と流量検出器FICで検出された流量値と
を比較し、その差を比例演算および積分演算して係数掛
算器20,21,22,23,24,25に入力する。11は第1圧力の調
節計で、全循環ポンプの入口圧力の圧力平均値と循環ポ
ンプPR1の入力圧力値とを比較し、その差を比例演算お
よび積分演算して加算器30に出力する。12は第2圧力調
節計,13は第3圧力調節計,14は第4圧力調節計,15は第
5圧力調節計,16は第6圧力調節計で、これらの第2〜
第6圧力調節計は第1圧力調節計11と同様にして全循環
ポンプの入口圧力の圧力平均値と循環ポンプPR3,PR5,PR
7,PR9,PR11の入口圧力値とを比較し、その差を加算器3
1,32,33,34,35に出力する。
Next, the operation of the control device 1 will be described based on the block diagram shown in FIG. Reference numeral 10 is a flow controller, which compares a preset target flow rate value with the flow rate value detected by the flow rate detector FIC, and calculates the difference proportionally and integralally to calculate a coefficient multiplier 20, 21, 22, 23. Enter in 24, 25. Reference numeral 11 denotes a first pressure controller, which compares the pressure average value of the inlet pressures of all the circulation pumps with the input pressure value of the circulation pump PR1, and calculates the difference between them by proportional calculation and integral calculation and outputs them to the adder 30. 12 is a second pressure controller, 13 is a third pressure controller, 14 is a fourth pressure controller, 15 is a fifth pressure controller, and 16 is a sixth pressure controller.
The 6th pressure controller is the same as the 1st pressure controller 11, and the pressure average value of the inlet pressure of all circulation pumps and the circulation pumps PR3, PR5, PR.
7, PR9, PR11 inlet pressure value is compared, and the difference is added by adder 3
Output to 1,32,33,34,35.

すなわち、加算器30からは循環ポンプPR1を制御するた
めの流量制御信号と圧力制御信号とを加算した制御信号
X1が極性反転器40を介して回転数制御装置RC1に出力さ
れ、また他の加算器31〜35からも同様にして他の循環ポ
ンプPR3,PR5,PR7,PR9,PR11を制御するための制御信号X
3,X5,X7,X9,X11が夫々極性反転器41〜45を介して回転数
制御装置RC3,RC5,RC7,RC9,RC11に出力されて各循環ポン
プの入口圧力を一定に制御するとともに循環系の流量を
流量目標値になるように制御する。
That is, a control signal obtained by adding the flow rate control signal and the pressure control signal for controlling the circulation pump PR1 from the adder 30.
X1 is output to the rotation speed control device RC1 via the polarity reversing device 40, and the control for controlling the other circulation pumps PR3, PR5, PR7, PR9, PR11 in the same manner from the other adders 31 to 35. Signal X
3, X5, X7, X9, and X11 are output to the rotation speed control devices RC3, RC5, RC7, RC9, and RC11 via the polarity reversing devices 41 to 45, respectively, to constantly control the inlet pressure of each circulation pump and circulate. The flow rate of the system is controlled to reach the flow rate target value.

ところで、既述したように工程を切換えた場合、循環系
の状態が変わるので、各係数掛算器20,21,22,23,24,25
における係数値は、下記の表に示す如く各工程毎に変え
られる。
By the way, when the process is switched as described above, the state of the circulation system changes, so that each coefficient multiplier 20, 21, 22, 23, 24, 25
The coefficient value in 1 can be changed for each step as shown in the table below.

a,b,c,dは係数を示している。 a, b, c, d are coefficients.

この係数値は、擬似移動床の起動時における第1回目の
サイクルに使用されるもので、2サイクル目以降の各工
程における係数値は前サイクルの同番目の工程において
安定した流量状態時における係数値に置換えられる。
This coefficient value is used in the first cycle when the simulated moving bed is started. The coefficient values in each step after the second cycle are related to the stable flow rate in the same step in the previous cycle. Replaced with a number.

係数値の置換えは、各工程に切換わってから一定の時間
を経過し循環系内の流量が予め決められた流量目標値に
略達した時点で制御信号X1,X3,X5,X7,X9,X11の平均値を
求め、その平均値と制御信号との比を夫々算出してこれ
を記憶し、工程が次に進んだ時点以降で前サイクルにお
ける同番目の工程に相当する各係数を記憶していた係数
に置換える。
The replacement of the coefficient value is such that the control signals X1, X3, X5, X7, X9, when the flow rate in the circulation system reaches the predetermined flow rate target value after a certain time has passed after switching to each process. Obtain the average value of X11, calculate the ratio of the average value and the control signal respectively, and store this, and store the coefficients corresponding to the same step in the previous cycle after the time when the step next progressed. Replace with the coefficient that was used.

なお、各工程が次の工程に切り替わった時点で、各循環
ポンプの圧力損失を補償するために使用している制御演
算の中の積分値をゼロにリセットする。
When each process is switched to the next process, the integral value in the control calculation used to compensate the pressure loss of each circulation pump is reset to zero.

つまり、擬似移動床の起動時における各工程の循環系の
流量は、第3図に示すように、工程切換え時からかなり
の時間経過して安定することになるが、この安定した状
態における制御信号の平均値と各制御信号との比を算出
し、これを次サイクルの同番目の工程における係数値と
することにより、第4図に示すように、工程切換後僅か
な時間で目標とする流量値に安定して液体を循環させる
ことができることとなる。
That is, the flow rate of the circulation system of each process at the time of starting the simulated moving bed becomes stable after a considerable time has elapsed from the time of switching the process, as shown in FIG. By calculating the ratio of the average value of each control signal to each control signal and setting this as the coefficient value in the same step of the next cycle, as shown in FIG. The liquid can be circulated stably at a value.

また、制御信号には圧力制御信号が含まれているため
に、新たに置換えられた係数値は圧力損失の増大をも見
込んだ補償係数となり、自動的に圧力損失の増大が抑制
される。
Further, since the control signal includes the pressure control signal, the newly replaced coefficient value becomes a compensation coefficient that allows for an increase in pressure loss, and the increase in pressure loss is automatically suppressed.

なお、上記実施例において循環系における流量の制御お
よび各循環ポンプの入口圧力の制御は各循環ポンプの回
転数を制御することで行なっているが、各循環ポンプの
吐出側に圧力調節弁を夫々配置し、この圧力調節弁の弁
開度を調節することによって行なってもよい。
In the above embodiment, the control of the flow rate in the circulation system and the control of the inlet pressure of each circulation pump are performed by controlling the rotation speed of each circulation pump, but a pressure control valve is provided on the discharge side of each circulation pump. Alternatively, it may be arranged and the valve opening of this pressure control valve may be adjusted.

さらに、循環ポンプは連続する2個の単位充填床毎に1
台配置しているが、各単位充填床毎に夫々配置するよう
にしてもよい。
In addition, the circulation pump is 1 for every 2 consecutive packed beds.
Although they are arranged on a table, they may be arranged for each unit packed bed.

〔発明の効果〕〔The invention's effect〕

以上説明してきたように、本発明によれば、各工程での
最良の制御状態を次サイクルの各同一工程に反映させる
ことができるので、工程が切換えられた瞬間から短時間
で循環流路中の流量を安定させることができるととも
に、自動的に圧力損失の増大が補償され、効率よく被処
理液から各種成分を分取することができ、その実用上の
利益は大なるものである。
As described above, according to the present invention, the best control state in each process can be reflected in each identical process in the next cycle, so that the circulation flow path can be changed in a short time from the moment the process is switched. The flow rate can be stabilized, the increase in pressure loss is automatically compensated, and various components can be efficiently separated from the liquid to be treated, and the practical benefit thereof is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を有効に実施することができる擬似移動
床の概略図、第2図はブロック図,第3図,第4図は各
工程における流量を示す図である。 LC1〜LC12:単位充填床 PR1,PR3,PR5,PR7,PR9,PR11:循環ポンプ RC1,RC3,RC5,RC7,RC9,RC11:回転数制御装置 PG1,PG3,PG5,PG7,PG9,PG11:圧力検出器 PD,PF:供給ポンプ、F1C:流量検出器 1:制御装置、10:流量調節計 11〜16:圧力調節計 20〜25:係数掛算器 30〜35:加算器 40〜45:極性反転器
FIG. 1 is a schematic diagram of a simulated moving bed in which the present invention can be effectively implemented, FIG. 2 is a block diagram, and FIGS. 3 and 4 are diagrams showing flow rates in respective steps. LC1 to LC12: Unit packed bed PR1, PR3, PR5, PR7, PR9, PR11: Circulation pump RC1, RC3, RC5, RC7, RC9, RC11: Rotation speed controller PG1, PG3, PG5, PG7, PG9, PG11: Pressure Detector PD, PF: Supply pump, F1C: Flow rate detector 1: Control device, 10: Flow controller 11 to 16: Pressure controller 20 to 25: Coefficient multiplier 30 to 35: Adder 40 to 45: Polarity inversion vessel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固体収着材が充填された単位充填床を多数
個用いて無端直列状に連結して循環流路を形成し、該循
環流路に該単位充填床の1個宛又は複数個宛に対して1
台の循環ポンプを複数配置して該循環流路中に液体を一
方向に循環させ、さらに該循環流路中に2種以上の成分
を含む被処理液および溶離液を導入し、同時に該循環流
路から該固体収着材に対して収着質に富む液体および非
収着質に富む液体を取り出すための導入口並びに取り出
し口を循環液体の流れ方向に沿って順次配置し、その位
置を予め設定した工程に従って間欠的に移動させる擬似
移動床において、前記各循環ポンプからの流量を目標流
量値とするように該各循環ポンプの流量を制御するため
の流量制御信号と、該各循環ポンプの入口圧力を全入口
圧力の平均値とするように該各循環ポンプの入口圧力を
制御するための圧力制御信号とを含む制御信号によって
該各循環ポンプの回転数又は各循環ポンプの吐出側圧力
を制御するとともに、該流量制御信号に各循環ポンプに
対応して各工程毎に夫々流量係数を含ませ、安定流量状
態時における各制御信号の平均値と夫々の制御信号との
比により修正流量係数を求め、この各修正流量係数を次
サイクルの同工程における流量係数とすることを特徴と
する制御方法。
1. A unitized bed filled with a solid sorbent is used in an endless series to form a circulation flow path, and one or a plurality of the unitized beds are provided in the circulation flow path. 1 for each
A plurality of pedestal circulation pumps are arranged to circulate the liquid in the circulation flow path in one direction, and a liquid to be treated and an eluent containing two or more components are introduced into the circulation flow path, and the circulation is performed at the same time. An inlet and an outlet for taking out a liquid rich in sorbate and a liquid rich in non-sorbate from the flow path to the solid sorbent are sequentially arranged along the flow direction of the circulating liquid, and their positions are set. In a simulated moving bed that is intermittently moved according to a preset process, a flow rate control signal for controlling the flow rate of each circulation pump so that the flow rate from each circulation pump becomes a target flow rate value, and each circulation pump. And a discharge side pressure of each circulation pump by a control signal including a pressure control signal for controlling the inlet pressure of each circulation pump so that the inlet pressure of each circulation pump becomes an average value of all inlet pressures. And control The flow rate control signal includes a flow rate coefficient for each process corresponding to each circulation pump, and a corrected flow rate coefficient is obtained by the ratio between the average value of each control signal and each control signal in a stable flow rate state, A control method characterized in that each of the corrected flow rate coefficients is used as a flow rate coefficient in the same process in the next cycle.
JP16281786A 1986-07-10 1986-07-10 Control method for simulated moving bed Expired - Fee Related JPH078322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16281786A JPH078322B2 (en) 1986-07-10 1986-07-10 Control method for simulated moving bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16281786A JPH078322B2 (en) 1986-07-10 1986-07-10 Control method for simulated moving bed

Publications (2)

Publication Number Publication Date
JPS6320007A JPS6320007A (en) 1988-01-27
JPH078322B2 true JPH078322B2 (en) 1995-02-01

Family

ID=15761792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16281786A Expired - Fee Related JPH078322B2 (en) 1986-07-10 1986-07-10 Control method for simulated moving bed

Country Status (1)

Country Link
JP (1) JPH078322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024266A1 (en) 2008-08-26 2010-03-04 ダイセル化学工業株式会社 Method for producing a target substance using a simulated moving bed chromatography separation system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770973B2 (en) * 1989-02-15 1998-07-02 富士通テン株式会社 Radio receiver auto-preset device
EP2271415B1 (en) * 2008-04-14 2012-11-21 Tongaat Hulett Limited Rotary distribution apparatus incorporating interstage pumps
US9085499B2 (en) * 2011-11-09 2015-07-21 Uop Llc Energy efficiency in adsorptive separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024266A1 (en) 2008-08-26 2010-03-04 ダイセル化学工業株式会社 Method for producing a target substance using a simulated moving bed chromatography separation system

Also Published As

Publication number Publication date
JPS6320007A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
US5102553A (en) Time variable simulated moving bed process
US20200378934A1 (en) Method in a Chromatography System
CA1233127A (en) Method for controlling simulated moving bed system
EP0342629A1 (en) Method of chromatographic separation
US6217774B1 (en) Simulated moving bed separation apparatus
JPH078322B2 (en) Control method for simulated moving bed
US20190336886A1 (en) Bioprocess Purification System and Method
US10948483B2 (en) Method for control, monitoring and/or optimization of a chromatographic process
US6551512B1 (en) Continuous method for separating substances according to molecular size
WO2018122191A1 (en) Monitoring performance in continuous chromatography
US3018229A (en) Internal reflux computer for fractionation control
JP4195121B2 (en) A method for precisely controlling the separation process of components of a mixture in a simulated moving bed separation system.
US5350520A (en) Method for collecting the components of a sample separated by chromatography
US20030010716A1 (en) Systems and processes for performing separations using a simulated moving bed apparatus
WO1991008815A1 (en) Time variable simulated moving bed process
JPH0720521B2 (en) Control method for simulated moving bed
JP7297379B2 (en) Apparatus, method and computer program product for adapting a predefined liquid chromatography process
JPH078321B2 (en) Control device for simulated moving floor
Sridhar Design of affinity membrane bioseparations
JP3590088B2 (en) Simulated moving bed type chromatographic separation method and simulated moving bed type chromatographic separation apparatus
JP2005536344A (en) A method for optimizing the operation of a xylene separator using simulated countercurrent.
SU401380A1 (en) B
JPH0695090B2 (en) Pseudo moving bed liquid chromatographic separation device
JPS6214059A (en) Separation refining system appatatus for substance by liquid chromatography
EP0359503B1 (en) A method of adsorption

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees