JPH0782320A - Polymer and production thereof - Google Patents

Polymer and production thereof

Info

Publication number
JPH0782320A
JPH0782320A JP22907193A JP22907193A JPH0782320A JP H0782320 A JPH0782320 A JP H0782320A JP 22907193 A JP22907193 A JP 22907193A JP 22907193 A JP22907193 A JP 22907193A JP H0782320 A JPH0782320 A JP H0782320A
Authority
JP
Japan
Prior art keywords
polymer compound
group
reaction
carboxylic acid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22907193A
Other languages
Japanese (ja)
Other versions
JP3413898B2 (en
Inventor
Mitsuru Akashi
満 明石
Masaya Saihata
真哉 才畑
Hitoshi Nakamura
仁至 中村
Toshiyuki Aizawa
利行 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP22907193A priority Critical patent/JP3413898B2/en
Publication of JPH0782320A publication Critical patent/JPH0782320A/en
Application granted granted Critical
Publication of JP3413898B2 publication Critical patent/JP3413898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polymer which has thermally reversible solubility in water, that is, which is soluble in a low-temp. region and insoluble in a high- temp. region, and which is excellent in safety and temp. sensitivity by constituting it of specific repeating units. CONSTITUTION:This polymer is made up of 100-90mol% repeating units represented by formula I (wherein R is a 2-4C alkyl) and 0-10mol% repeating units represented by formula II. This polymer is obtained preferably by reacting polyvinylamine and/or a salt thereof (e.g. polyvinylamine hydrochloride) with a carboxylic acid (halide) (e.g. isobutyryl chloride).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な水溶液が熱可逆
的溶解性を示す高分子化合物、及びその製造方法に関す
るものである。さらに詳しく言えば、メカノケミカル材
料、温度センサ−、遮光体、分離膜、玩具、吸着剤、デ
ィスプレイに利用されうる熱可逆性高分子化合物、およ
びそれを効率よく製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer compound in which a novel aqueous solution exhibits thermoreversible solubility, and a method for producing the same. More specifically, the present invention relates to a mechanochemical material, a temperature sensor, a light shield, a separation film, a toy, an adsorbent, a thermoreversible polymer compound that can be used in a display, and a method for efficiently producing the same.

【0002】[0002]

【従来の技術】水溶液高分子化合物の中には、水溶液状
態においてある温度(転移温度、あるいは低臨界溶液温
度)以下では溶解透明化し、その温度以上では不溶白濁
化するという現象(相転移現象)を可逆的に繰り返すよ
うなものがある。この様な高分子は、一次構造の観点か
らは親水性部と疎水性部から成っている一種の両親媒性
物質であり、一般に熱可逆性高分子と呼ばれている。
2. Description of the Related Art In an aqueous polymer compound, a phenomenon in which an aqueous solution becomes transparent at a temperature below a certain temperature (transition temperature or low critical solution temperature) and becomes insoluble and opaque above the temperature (phase transition phenomenon) There is something that reversibly repeats. From the viewpoint of the primary structure, such a polymer is a kind of amphipathic substance composed of a hydrophilic part and a hydrophobic part, and is generally called a thermoreversible polymer.

【0003】このような溶解挙動を有する高分子化合物
としてはこれまで、ポリビニルメチルエ−テル、メチル
セルロ−ス、ポリエチレンオキシド、ポリビニルメチル
オキサゾリディノンやポリ(N−エチルアクリルアミ
ド)、ポリ(N−n−プロピルアクリルアミド)、ポリ
(N−イソプロピルアクリルアミド)、ポリ(N−シク
ロプロピルアクリルアミド)、ポリ(N,N−ジエチル
アクリルアミド)、ポリ(N−イソプロポキシプロピル
アクリルアミド)などのポリアクリルアミド誘導体等が
知られている。これらの中でもポリアクリルアミド誘導
体は、水中で安定であり、製造コストも比較的低く、こ
の熱可逆性高分子の分野では有用な物質である。しか
し、これらは必ずしも毒性が低いとは言えず、原料であ
る各モノマーは神経性被毒剤等としてさらに毒性が高い
ことは公知のことである。また、工業的に大量生産可能
なものは非常に少なく、用途に応じた転移温度の高分子
が得られていない。
As polymer compounds having such a dissolution behavior, polyvinyl methyl ether, methyl cellulose, polyethylene oxide, polyvinyl methyl oxazolidinone, poly (N-ethyl acrylamide), poly (N-) have hitherto been used. Polyacrylamide derivatives such as n-propylacrylamide), poly (N-isopropylacrylamide), poly (N-cyclopropylacrylamide), poly (N, N-diethylacrylamide), and poly (N-isopropoxypropylacrylamide) are known. Has been. Among these, polyacrylamide derivatives are stable substances in water, their production costs are relatively low, and they are useful substances in the field of this thermoreversible polymer. However, these are not necessarily low in toxicity, and it is well known that each monomer as a raw material has higher toxicity as a neurotoxic agent and the like. In addition, very few can be industrially mass-produced, and a polymer having a transition temperature suitable for the application has not been obtained.

【0004】[0004]

【発明が解決しようとする課題】今回発明した高分子
は、高分子反応によって合成され、その前駆体であるポ
リ(N−ビニルアセトアミド)は非常に安全性に優れて
おり、大量生産可能な高分子である。本発明は感温性に
優れ、安全で、大量生産可能な水溶液が熱可逆的溶解性
を示す高分子化合物を開発し、さらにその製造方法を確
立することが目的である。
The polymer invented this time is synthesized by a polymer reaction, and its precursor, poly (N-vinylacetamide), is very safe and can be mass-produced. It is a molecule. An object of the present invention is to develop a polymer compound which is excellent in temperature sensitivity, is safe, and can be mass-produced in water, and has thermoreversible solubility in an aqueous solution, and to establish a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは、新規な熱
可逆性高分子化合物を得るため研究を重ねた結果、高分
子反応によりポリマー鎖内にR−CO−NH−基を導入
する方法によって、既存しない全く新しい構造を持った
熱可逆性高分子化合物の合成に成功した。即ち、本発明
は、水溶液が熱可逆的溶解性を示す高分子化合物であっ
て、繰り返し単位(1)
Means for Solving the Problems As a result of repeated studies for obtaining a novel thermoreversible polymer compound, the present inventors have introduced an R—CO—NH— group into a polymer chain by a polymer reaction. By the method, we succeeded in synthesizing a thermoreversible polymer compound with a completely new structure that does not exist. That is, the present invention relates to a polymer compound having an aqueous solution that exhibits thermoreversible solubility, wherein the repeating unit (1)

【化7】 (式中、RはC2 〜C4 のアルキル基を示す。)が10
0〜90モル%、繰り返し単位(2)
[Chemical 7] (In the formula, R represents a C 2 -C 4 alkyl group.)
0-90 mol%, repeating unit (2)

【化8】 が0〜10モル%からなる高分子化合物に関する。[Chemical 8] Relates to a polymer compound consisting of 0 to 10 mol%.

【0006】また、本発明は、ポリビニルアミンおよび
/またはその塩とカルボン酸またはカルボン酸ハライド
とを反応させることを特徴とする、水溶液が熱可逆的溶
解性を示す高分子化合物であって、繰り返し単位(1)
Further, the present invention is a polymer compound having a thermoreversible solubility in an aqueous solution, characterized by reacting polyvinylamine and / or its salt with a carboxylic acid or a carboxylic acid halide. Unit (1)

【化9】 (式中、RはC2 〜C4 のアルキル基を示す。)が10
0〜90モル%、繰り返し単位(2)
[Chemical 9] (In the formula, R represents a C 2 -C 4 alkyl group.)
0-90 mol%, repeating unit (2)

【化10】 が0〜10モル%からなる高分子化合物の製造方法に関
する。
[Chemical 10] Relates to a method for producing a polymer compound comprising 0 to 10 mol%.

【0007】さらに本発明は、ポリビニルアミンおよび
/またはその塩とカルボン酸とを反応させ、次いで得ら
れた高分子化合物をカルボン酸ハライドと反応させ、ア
シル基の導入率を上げることを特徴とする、水溶液が熱
可逆的溶解性を示す高分子化合物であって、繰り返し単
位(1)
Further, the present invention is characterized by reacting polyvinylamine and / or its salt with a carboxylic acid, and then reacting the obtained polymer compound with a carboxylic acid halide to increase the introduction rate of an acyl group. , An aqueous solution is a polymer compound showing thermoreversible solubility, and has a repeating unit (1)

【化11】 (式中、RはC2 〜C4 のアルキル基を示す。)が10
0〜90モル%、繰り返し単位(2)
[Chemical 11] (In the formula, R represents a C 2 -C 4 alkyl group.)
0-90 mol%, repeating unit (2)

【化12】 が0〜10モル%からなる高分子化合物の製造方法に関
する。
[Chemical 12] Relates to a method for producing a polymer compound comprising 0 to 10 mol%.

【0008】以下、詳細に本発明を説明する。繰り返し
単位(1)のRは炭素数2〜4のアルキル基であるが、
具体的に例示すれば、エチル、n−プロピル、iso−
プロピル、n−ブチル、iso−ブチル、tert−ブ
チル基が挙げられる。特にRがiso−プロピル基の場
合が優れた感温性を示す。繰り返し単位(1)と繰り返
し単位(2)の構成は、100〜90:0〜10モル%
である。繰り返し単位(1)が減少し、繰り返し単位
(2)が増加すると、感温性を示さなくなり、転移温度
も有しなくなり、好ましくない。繰り返し単位(1)が
100モル%またはそれに近似の場合ほど感温性が優れ
てくる。また、両繰り返し単位の構成比を変えることに
よって、転移温度を調節することが可能である。繰り返
し単位(1)が減少してくると転移温度は高くなり、増
加すると低くなる傾向がある。
The present invention will be described in detail below. R of the repeating unit (1) is an alkyl group having 2 to 4 carbon atoms,
Specific examples include ethyl, n-propyl, iso-
Examples include propyl, n-butyl, iso-butyl, and tert-butyl groups. Particularly when R is an iso-propyl group, excellent temperature sensitivity is exhibited. The constitution of the repeating unit (1) and the repeating unit (2) is 100 to 90: 0 mol%
Is. When the repeating unit (1) is decreased and the repeating unit (2) is increased, the thermosensitivity is not exhibited and the transition temperature is lost, which is not preferable. When the repeating unit (1) is 100 mol% or closer, the temperature sensitivity is better. Further, the transition temperature can be adjusted by changing the constitutional ratio of both repeating units. The transition temperature tends to increase as the repeating unit (1) decreases and decrease as the repeating unit (1) increases.

【0009】本発明の高分子化合物の分子量は特に限定
されないが、5,000〜2,000,000が適当で
ある。
The molecular weight of the polymer compound of the present invention is not particularly limited, but 5,000 to 2,000,000 is suitable.

【0010】本発明の高分子化合物の製造方法として
は、1段階法と2段階法の2方法がある。1段階法は、
ポリビニルアミンおよび/またはその塩とカルボン酸R
CO2 H(Rは前記と同じ。)またはその酸ハライドと
を反応させる方法であり、2段階法は、ポリビニルアミ
ンおよび/またはその塩とカルボン酸RCO2 Hと反応
させ、次いで得られた高分子化合物をカルボン酸ハライ
ドと反応させ、アシル基R−CO−の導入率を上げる方
法である。1段階法では、原料として用いるポリビニル
アミンおよび/またはその塩の溶解性、カルボン酸また
はその塩との反応性等から使用可能な溶媒が非常に限定
されているのに対し、2段階法では、1段階目の反応溶
媒に水も使用可能であり、1段階目の反応で高分子化合
物内にR−CO−基が導入されたことによって非プロト
ン性極性溶媒への溶解性が上がり、反応を有利な条件で
行うことができる利点があり、この2段階法は非常に高
いR−CO−基導入率の高分子化合物を合成するには極
めて有用である。各々の製造方法について以下に説明す
る。
There are two methods, a one-step method and a two-step method, for producing the polymer compound of the present invention. The one-step method is
Polyvinylamine and / or its salt and carboxylic acid R
CO 2 H (R is the same as above) or its acid halide is reacted, and the two-step method is to react polyvinylamine and / or its salt with carboxylic acid RCO 2 H In this method, a molecular compound is reacted with a carboxylic acid halide to increase the introduction rate of an acyl group R—CO—. In the one-step method, the usable solvent is very limited due to the solubility of polyvinylamine and / or its salt used as a raw material, the reactivity with carboxylic acid or its salt, and the like, whereas in the two-step method, Water can also be used as the reaction solvent in the first step, and the introduction of the R-CO- group into the polymer compound in the reaction in the first step increases the solubility in an aprotic polar solvent and Since it can be carried out under advantageous conditions, this two-step method is extremely useful for synthesizing a polymer compound having a very high R-CO- group introduction rate. Each manufacturing method will be described below.

【0011】1段階法について説明する。アシル化剤と
してカルボン酸ハライドを用いる場合について、反応温
度は−50〜100℃で行い、0.5〜52時間で反応
はほぼ終了する。更にその反応を完結させる場合には、
その反応溶液を室温下で6〜30時間撹拌する。好まし
くは−30〜10℃で1時間、その後室温に戻して約1
2時間反応させるのが良い。この反応では、塩基の添加
による反応成績の向上が確認され、用いる高分子化合物
中のアミノ基に対して1〜20倍モル量塩基を添加して
反応を行うのが望ましい。添加量が1倍モル量以下、2
0倍モル量以上と上記範囲以外の量を添加しても導入率
の向上は見られない。用いる塩基はトリエチルアミンの
ように、一般的に塩基として合成に用いられるものであ
れば特に制限はない。R−CO−基の導入率は、カルボ
ン酸ハライドの添加量によって調整することが可能であ
り、高分子化合物中のアミノ基に対して1〜10倍モル
量と、所望のR−CO−基導入率によってその添加量を
変化させる。カルボン酸ハライドを多く加え過ぎても得
られる高分子化合物のR−CO−基導入率は向上せず、
少な過ぎてもR−CO−基導入率が上がらず、水溶液に
対して熱可逆的溶解性を有する高分子化合物は得られな
い。また、カルボン酸ハライドと反応性が高い水やアル
コール類等の混入はできるだけ避け、それらが含まれた
場合、それらの含有率に伴いカルボン酸ハライドの添加
量も増加させる必要がある。反応溶媒としては、反応時
において不活性であり、用いる高分子化合物を溶解する
溶媒であれば特に制限はない。用いる高分子化合物への
溶解性やアミン、カルボン酸ハライドと溶媒との間の反
応性から考察すると、反応溶媒としてジメチルホルムア
ミドが最も好ましい。
The one-step method will be described. When a carboxylic acid halide is used as the acylating agent, the reaction temperature is −50 to 100 ° C., and the reaction is almost completed in 0.5 to 52 hours. To further complete the reaction,
The reaction solution is stirred at room temperature for 6-30 hours. Preferably, the temperature is from -30 to 10 ° C for 1 hour, and then the temperature is returned to room temperature to about 1
It is good to react for 2 hours. In this reaction, it has been confirmed that the reaction results are improved by the addition of a base, and it is desirable to carry out the reaction by adding a 1- to 20-fold molar amount of a base to the amino group in the polymer compound used. Addition amount is less than 1 time molar amount, 2
The addition rate is not improved even if the amount is 0 times the molar amount or more and is outside the above range. The base used is not particularly limited as long as it is generally used as a base for synthesis, such as triethylamine. The introduction rate of the R-CO- group can be adjusted by the addition amount of the carboxylic acid halide, and is a 1- to 10-fold molar amount relative to the amino group in the polymer compound, and the desired R-CO- group. The addition amount is changed depending on the introduction rate. Even if too much carboxylic acid halide is added, the R—CO— group introduction ratio of the polymer compound obtained does not improve,
If the amount is too small, the R-CO- group introduction rate does not increase, and a polymer compound having thermoreversible solubility in an aqueous solution cannot be obtained. In addition, it is necessary to avoid mixing of water, alcohols, etc., which have high reactivity with carboxylic acid halides as much as possible, and when they are contained, the amount of carboxylic acid halide added should be increased according to their content. The reaction solvent is not particularly limited as long as it is a solvent which is inert during the reaction and dissolves the polymer compound used. Considering the solubility in the polymer compound used and the reactivity between amine and carboxylic acid halide and the solvent, dimethylformamide is most preferable as the reaction solvent.

【0012】精製は、一般的な再沈澱法によって行わ
れ、例えば反応溶媒を留去させて濃縮した反応溶液を、
再沈澱溶媒に滴下して再沈澱させ、未反応のカルボン酸
ハライド、塩基等の不純物を除去する。再沈澱溶媒とし
ては、目的とする高分子化合物と不活性な溶媒で、さら
に非溶解性溶媒、または溶解性に乏しい溶媒であれば特
に制限はない。透析操作により不純物を取り除いた後、
溶媒を凍結乾燥により取り除く透析+凍結乾燥法等によ
っても精製は行える。得られた高分子化合物は白色固体
であり、室温下では水、低級アルコール、ジメチルホル
ムアミドに可溶であり、アセトン、ジエチルエーテル、
ベンゼン、n−ヘキサン等には不溶である。この反応に
よるR−CO−基の導入は、核磁気共鳴スペクトル分
析、赤外線吸収スペクトル分析等によって確認され、特
に核磁気共鳴スペクトル分析によるR−CO−基導入率
の算出は容易である。アシル化剤として用いられるカル
ボン酸ハライドは通常使用されるものであれば、特に限
定されない。一方、アシル化剤としてカルボン酸RCO
2 Hを用いる場合については後述する2段階法の1段階
目と同様に行うことができるが、R−CO−基の導入率
等から、カルボン酸ハライドを用いる場合のほうが良好
である。
Purification is carried out by a general reprecipitation method. For example, the reaction solution concentrated by distilling off the reaction solvent is concentrated.
The unreacted carboxylic acid halide, base and other impurities are removed by dropping into the reprecipitation solvent for reprecipitation. The reprecipitation solvent is not particularly limited as long as it is an inert solvent with respect to the target polymer compound and is a non-soluble solvent or a solvent having poor solubility. After removing impurities by dialysis,
Purification can also be performed by a dialysis + freeze-drying method, etc., in which the solvent is removed by freeze-drying. The obtained polymer compound is a white solid, which is soluble in water, a lower alcohol, and dimethylformamide at room temperature, and acetone, diethyl ether,
It is insoluble in benzene and n-hexane. The introduction of the R—CO— group by this reaction is confirmed by nuclear magnetic resonance spectrum analysis, infrared absorption spectrum analysis, etc., and the calculation of the R—CO— group introduction rate by nuclear magnetic resonance spectrum analysis is particularly easy. The carboxylic acid halide used as an acylating agent is not particularly limited as long as it is a commonly used one. On the other hand, carboxylic acid RCO as an acylating agent
When 2 H is used, it can be carried out in the same manner as in the first step of the two-step method described later, but it is more preferable to use a carboxylic acid halide in view of the introduction rate of the R—CO— group.

【0013】次に、2段階法について説明する。第1段
階目では、ポリビニルアミンおよび/またはその塩とカ
ルボン酸RCO 2 Hとを脱水縮合剤を用いて高分子内に
R−CO−基の導入を行う。RCO2 Hは、用いる高分
子化合物中のアミノ基に対して2〜12倍モル量加えて
反応を行うのが望ましい。添加量が少ない場合、反応は
十分進まず転化率は低い値を示し、多量に加えても更な
る転化率の向上は見られず、それに伴い脱水縮合剤も過
剰に加えなければならなく非経済的である。脱水縮合剤
は、RCO2Hに対して1〜20倍モル量加えて反応を
行う。添加量が少ないとRCO2 Hの活性化が十分行わ
れず反応は余り進行せず、多く加えても反応の有意差は
見られず非経済的である。
Next, the two-step method will be described. First stage
On the second floor, polyvinylamine and / or its salt and
Rubonic acid RCO 2 H and H into the polymer using a dehydration condensation agent
An R-CO- group is introduced. RCO2 H is the high value used
Add 2 to 12 times the molar amount of the amino group in the child compound
It is desirable to carry out the reaction. If the amount added is small, the reaction
The conversion does not proceed sufficiently and shows a low conversion rate.
The conversion rate was not improved, and the dehydration condensation agent
It is uneconomical because it must be added to the surplus. Dehydrating condensation agent
Is the RCO2Add 1 to 20 times the molar amount of H to react
To do. If the addition amount is small, RCO2 Sufficient activation of H
The reaction did not progress so much, and there was no significant difference in the reaction even if many were added.
It is uneconomical not to be seen.

【0014】また、この2段階法でも塩基添加によるR
−CO−基導入率の向上は見られ、用いる高分子化合物
中のアミノ基に対して1〜20倍モル量塩基を添加して
反応を行うのが望ましい。添加量が1倍モル量以下、1
0倍モル量以上と上記範囲以外の量を添加しても導入率
の向上は見られない。用いる塩基もトリエチルアミンの
ように、一般的に塩基として合成に用いられるものであ
れば特に制限はない。反応液のpHは、水酸化ナトリウ
ム等を用いてpH6〜8附近に調整して行うのが望まし
く、酸性、アルカリ性により過ぎて反応を行うと転化率
の低下につながる。反応温度については、−3〜10℃
が最適であり、高温では反応が進行せず、低温では反応
溶媒の凍結等が生じる。
In this two-step method, R by addition of a base is also used.
The introduction rate of —CO— group is improved, and it is desirable to add a 1 to 20-fold molar amount of a base to the amino group in the polymer compound to be used for the reaction. Addition amount is less than 1 time molar amount, 1
The addition rate is not improved even if the amount is 0 times the molar amount or more and is outside the above range. The base used is not particularly limited as long as it is generally used as a base for synthesis, such as triethylamine. The pH of the reaction solution is preferably adjusted to around pH 6 to 8 using sodium hydroxide or the like, and if the reaction is carried out after it is too acidic or alkaline, the conversion rate will decrease. Regarding the reaction temperature, -3 to 10 ° C
Is optimal, the reaction does not proceed at high temperature, and the reaction solvent freezes at low temperature.

【0015】反応溶媒には、縮合反応時に不活性な溶媒
で、さらに用いる高分子化合物に対して溶解性を示す溶
媒であれば特に制限はない。用いる高分子化合物が水や
低級アルコール等の極性溶媒以外は溶解性に乏しいこ
と、アミンとアルコール類とでは縮合反応が起こる可能
性があること等から考えると、反応溶媒としては水が最
も好ましい。脱水縮合剤は、一般的に用いられる脱水縮
合剤、ペプチド合成試薬であれば特に制限はなく、1−
エチル−3−(3−ジメチルアミノプロピル)カルボジ
イミド塩酸塩、N,N’−ジシクロヘキシルカルボジイ
ミド、ジ−t−ブチルジカーボネート等が使用可能であ
る。しかし、使用する溶媒に適した脱水縮合剤を選択す
る必要があり、溶媒に水を用いる場合は1−エチル−3
−(3−ジメチルアミノプロピル)カルボジイミド塩酸
塩が最も望ましい。
The reaction solvent is not particularly limited as long as it is an inert solvent during the condensation reaction and is soluble in the polymer compound used. Considering the fact that the polymer compound used has poor solubility except for polar solvents such as water and lower alcohols, and that condensation reaction may occur between amines and alcohols, water is most preferable as the reaction solvent. The dehydration condensing agent is not particularly limited as long as it is a commonly used dehydration condensing agent or peptide synthesis reagent, and 1-
Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N'-dicyclohexylcarbodiimide, di-t-butyldicarbonate and the like can be used. However, it is necessary to select a dehydration condensation agent suitable for the solvent used, and when water is used as the solvent, 1-ethyl-3
Most preferred is-(3-dimethylaminopropyl) carbodiimide hydrochloride.

【0016】精製は、一般的に行われる再沈澱法、また
は透析+凍結乾燥法等により未反応RCO2 H、脱水縮
合剤、塩基等を除去する。得られた高分子化合物の物性
は、R−CO−基導入率によって僅かに異なるが、例え
ば導入率80モル%の高分子化合物は白色固体であり、
室温下では水、低級アルコール、ジメチルホルムアミド
等に可溶であり、アセトン、ジエチルエーテル、ベンゼ
ン、n−ヘキサン等には不溶である。R−CO−基の導
入は、核磁気共鳴スペクトル分析、赤外線吸収スペクト
ル分析等によって確認され、特に核磁気共鳴スペクトル
分析によるR−CO−基導入率の算出は容易である。
For purification, unreacted RCO 2 H, a dehydration condensation agent, a base and the like are removed by a commonly used reprecipitation method or a dialysis + freeze-drying method. The physical properties of the obtained polymer compound are slightly different depending on the R-CO- group introduction ratio, but for example, a polymer compound having an introduction ratio of 80 mol% is a white solid,
It is soluble in water, lower alcohols, dimethylformamide and the like at room temperature, but insoluble in acetone, diethyl ether, benzene, n-hexane and the like. The introduction of the R—CO— group is confirmed by nuclear magnetic resonance spectrum analysis, infrared absorption spectrum analysis, etc., and the calculation of the R—CO— group introduction rate by nuclear magnetic resonance spectrum analysis is particularly easy.

【0017】次に、第2段階目の反応として、得られた
高分子化合物とカルボン酸ハライドとの反応を行う。こ
の操作により、R−CO−基導入率の更なる向上が行わ
れ、水溶液が熱可逆的溶解性を示す高分子化合物を合成
するに至った。反応温度は−50〜100℃で行い、
0.5〜52時間で反応はほぼ終了する。更にその反応
を完結させる場合には、その反応溶液を室温下で6〜3
0時間撹拌する。好ましくは−30〜10℃で1時間、
その後室温に戻して約12時間反応させるのが良い。R
−CO−基の導入率は、カルボン酸ハライドの添加量に
よって調整することが可能であり、高分子化合物中のア
ミノ基に対して1〜10倍モル量と、所望のR−CO−
基導入率によってその添加量を変化させる。多く加え過
ぎても得られる高分子化合物のR−CO−基導入率は向
上せず、少な過ぎてもR−CO−基導入率が上がらず、
水溶液が熱可逆的溶解性を示す高分子化合物は得られな
い。また、カルボン酸ハライドと反応性が高い水やアル
コール類等の混入はできるだけ避け、それらが含まれた
場合、それらの含有率に伴いカルボン酸ハライドの添加
量も増加させる必要がある。
Next, as the second step reaction, the obtained polymer compound and the carboxylic acid halide are reacted. By this operation, the introduction rate of R-CO- group was further improved, and a polymer compound showing an aqueous solution having thermoreversible solubility was synthesized. The reaction temperature is -50 to 100 ° C,
The reaction is almost completed in 0.5 to 52 hours. When the reaction is further completed, the reaction solution is allowed to stand at room temperature for 6 to 3 times.
Stir for 0 hours. Preferably at -30 to 10 ° C for 1 hour,
After that, it is better to return to room temperature and react for about 12 hours. R
The introduction rate of the —CO— group can be adjusted by the amount of the carboxylic acid halide added, and is 1 to 10 times the molar amount of the desired R—CO— with respect to the amino group in the polymer compound.
The addition amount is changed depending on the group introduction rate. If too much is added, the R-CO- group introduction rate of the polymer compound obtained will not improve, and if too little, the R-CO- group introduction rate will not increase,
A polymer compound showing thermoreversible solubility in an aqueous solution cannot be obtained. In addition, it is necessary to avoid mixing of water, alcohols, etc., which have high reactivity with carboxylic acid halides as much as possible, and when they are contained, the amount of carboxylic acid halide added should be increased according to their content.

【0018】塩基は、第1段階目のときと同じように、
用いる高分子化合物中のアミノ基に対して1〜20倍モ
ル量加えて反応を行い、その範囲以外の量を添加しても
導入率の向上は見られない。用いる塩基もトリエチルア
ミンのように、反応を促進させるものであれば特に制限
はない。反応溶媒としては、反応時において不活性であ
り、用いる高分子化合物を溶解する溶媒であれば特に制
限はないが、反応溶媒としてはジメチルホルムアミドが
最も好ましい。
The base is the same as in the first step,
The reaction is carried out by adding a 1- to 20-fold molar amount with respect to the amino groups in the polymer compound to be used, and the reaction is not improved even if the amount is outside the range. The base used is not particularly limited as long as it accelerates the reaction such as triethylamine. The reaction solvent is not particularly limited as long as it is a solvent which is inert during the reaction and dissolves the polymer compound used, but dimethylformamide is most preferable as the reaction solvent.

【0019】精製は、一般的な再沈澱法によって行わ
れ、例えば反応溶媒を留去させて濃縮した反応溶液を、
再沈澱溶媒に滴下して再沈澱させ、未反応のカルボン酸
ハライド、塩基等の不純物を除去する。再沈澱溶媒とし
ては、得られる高分子化合物と不活性な溶媒で、さらに
非溶解性溶媒、または溶解性に乏しい溶媒であれば特に
制限はない。透析+凍結乾燥法等によっても精製可能で
ある。得られた高分子化合物は白色固体であり、室温下
では水、低級アルコール、ジメチルホルムアミドに可溶
であり、アセトン、ジエチルエーテル、ベンゼン、n−
ヘキサン等には不溶である。この反応によるR−CO−
基の導入率は、核磁気共鳴スペクトル分析等により求め
られ、主鎖中のCH基の、またはR−CO−基のピーク
増加度により計算可能である。また、赤外線吸収スペク
トル分析などによってもR−CO−基の導入は確認され
る。
Purification is carried out by a general reprecipitation method. For example, the reaction solution concentrated by distilling off the reaction solvent is concentrated,
The unreacted carboxylic acid halide, base and other impurities are removed by dropping into the reprecipitation solvent for reprecipitation. The reprecipitation solvent is not particularly limited as long as it is a solvent which is inactive with the obtained polymer compound and is a non-soluble solvent or a solvent having poor solubility. It can also be purified by a dialysis + freeze-drying method. The obtained polymer compound is a white solid, which is soluble in water, lower alcohols, and dimethylformamide at room temperature, and is acetone, diethyl ether, benzene, n-
It is insoluble in hexane. R-CO-
The introduction rate of the group is determined by nuclear magnetic resonance spectrum analysis or the like, and can be calculated by the degree of peak increase of the CH group in the main chain or the R—CO— group. Further, the introduction of the R-CO- group is confirmed by infrared absorption spectrum analysis and the like.

【0020】本発明で用いるポリビニルアミンおよび/
またはその塩は、米国特許4018826号、特開昭6
1−74700号、特開昭62−62802号等によっ
て公知となっているように、N−ビニルホルムアミド、
N−ビニルアセトアミド等から合成される。例として
は、N−ビニルアセトアミドを重合させて得られるポリ
(N−ビニルアセトアミド)を、式
Polyvinylamine and / or used in the present invention
Alternatively, its salt is described in US Pat.
1-74700, JP-A-62-62802, and the like, N-vinylformamide,
It is synthesized from N-vinylacetamide or the like. As an example, poly (N-vinylacetamide) obtained by polymerizing N-vinylacetamide is represented by the formula:

【化13】 で示されるように、酸性条件下で加水分解反応を行うこ
とによって合成される。加水分解はアミド基に対して塩
酸を5倍モル量加えて、15時間、100℃で行う。精
製は、再沈澱溶媒にアセトンを用いて2〜3回再沈澱操
作を行い、酢酸、塩酸などを除去する。加水分解率は、
核磁気共鳴スペクトル分析によるアセチル基のピーク面
積の減少度から計算され、赤外線吸収スペクトル分析の
カルボニルピークの減少、質量スペクトル分析等からも
加水分解は確認される。
[Chemical 13] As shown in, it is synthesized by carrying out a hydrolysis reaction under acidic conditions. Hydrolysis is carried out by adding 5 times the molar amount of hydrochloric acid to the amide group and for 15 hours at 100 ° C. For purification, acetic acid, hydrochloric acid, etc. are removed by performing reprecipitation operation 2-3 times using acetone as a reprecipitation solvent. The hydrolysis rate is
It is calculated from the degree of decrease of the peak area of the acetyl group by nuclear magnetic resonance spectrum analysis, and the hydrolysis is also confirmed by the decrease of carbonyl peak in infrared absorption spectrum analysis and mass spectrum analysis.

【0021】本発明の高分子化合物は、水に対して低温
域では溶解性、高温域では非溶解性を示す高温疎水基型
熱可逆性高分子化合物である。この高分子化合物は、置
換基Rの種類、残存アミノ基の量によって転移温度、ポ
リマーの強度、熱安定性、紫外線安定性、酸、塩基に対
する安定性、イオン性(カチオン、アニオン)を容易に
コントロ−ルすることが可能であり、メカノケミカル材
料、温度センサー、遮光体、分離膜、玩具、吸着剤、デ
ィスプレイ等、幅広い分野への応用が期待される。本発
明の高分子化合物は−C=O基、−NH2 基、−C−N
−基、−CH3 基、−CH2 −基、−CH<基を有する
ので、核磁気共鳴スペクトル分析、赤外線吸収スペクト
ル分析等によって同定することができる。
The polymer compound of the present invention is a high temperature hydrophobic group type thermoreversible polymer compound which is soluble in water in a low temperature region and insoluble in water in a high temperature region. This polymer compound easily exhibits transition temperature, polymer strength, thermal stability, ultraviolet stability, acid / base stability, and ionicity (cation, anion) depending on the type of substituent R and the amount of residual amino groups. It can be controlled and is expected to be applied to a wide range of fields such as mechanochemical materials, temperature sensors, light shields, separation membranes, toys, adsorbents and displays. The polymer compound of the present invention is -C = O group, -NH 2 group, -C-N
- group, -CH 3 group, -CH 2 - group, because it has a -CH <group can be identified nuclear magnetic resonance spectroscopy, by the infrared absorption spectrum analysis.

【0022】[0022]

【実施例】以下、本発明の実施例を詳しく説明するが、
本発明は下記の例によって限定されるものではない。 実施例1 分子量約1万のポリビニルアミン塩酸塩5.0g、トリ
エチルアミン25.5gをジメチルホルムアミド500
gに溶解させる。それに、塩化イソブチリル26.8g
を加え、−30℃で1時間、その後室温で24時間反応
させた。反応液はジメチルホルムアミドを減圧留去させ
て濃縮し、その液をジエチルエーテルに滴下し再沈殿さ
せた。さらに、その沈澱物の水溶液を凍結乾燥させるこ
とによって目的の高分子化合物を得た。
EXAMPLES Examples of the present invention will be described in detail below.
The invention is not limited by the examples below. Example 1 5.0 g of polyvinylamine hydrochloride having a molecular weight of about 10,000 and 25.5 g of triethylamine were added to dimethylformamide 500.
g. And 26.8 g of isobutyryl chloride
Was added and reacted at -30 ° C for 1 hour and then at room temperature for 24 hours. The reaction solution was concentrated by distilling off dimethylformamide under reduced pressure, and the solution was added dropwise to diethyl ether for reprecipitation. Furthermore, the aqueous solution of the precipitate was freeze-dried to obtain the target polymer compound.

【0023】この物質の核磁気共鳴スペクトルを図1
に、赤外線吸収スペクトルを図2に示す。これらのスペ
クトル分析の結果は次の通りである。 核磁気共鳴スペクトル:
The nuclear magnetic resonance spectrum of this substance is shown in FIG.
The infrared absorption spectrum is shown in FIG. The results of these spectral analyzes are as follows. Nuclear magnetic resonance spectrum:

【化14】 1 =1.6〜1.9ppm H2 =3.8〜4.2ppm H3 =2.8〜3.9ppm H4 =1.1〜1.3ppm H5 =2.4〜2.6ppm[Chemical 14] H 1 = 1.6 to 1.9 ppm H 2 = 3.8 to 4.2 ppm H 3 = 2.8 to 3.9 ppm H 4 = 1.1 to 1.3 ppm H 5 = 2.4 to 2.6 ppm

【0024】赤外線吸収スペクトル: −N< = 3350cm-1 >C=O = 1640cm-1 −N−C− = 1450cm-1 >CH−、−CH2 −、−CH3 = 2900〜31
00cm-1
Infrared absorption spectrum: -N <= 3350 cm -1 > C = O = 1640 cm -1 -N-C- = 1450 cm -1 > CH-, -CH 2- , -CH 3 = 2900 to 31.
00 cm -1

【0025】以上の結果より、高分子内へのイソブチリ
ル基の導入が確認され、核磁気共鳴スペクトル分析結果
よりイソブチリル基の導入率を求めた。その結果、イソ
ブチリル基導入率は94.5モル%であった。また、こ
の高分子の水溶液中での温度変化に伴う光透過性を調べ
た。その結果、図3に示すように、温度上昇に伴う透過
率の低下が確認され、これは得られた高分子が高温疎水
型熱可逆性高分子であることを証明している。
From the above results, the introduction of the isobutyryl group into the polymer was confirmed, and the introduction rate of the isobutyryl group was determined from the nuclear magnetic resonance spectrum analysis results. As a result, the introduction rate of isobutyryl group was 94.5 mol%. In addition, the light transmittance of this polymer with temperature change in aqueous solution was investigated. As a result, as shown in FIG. 3, a decrease in transmittance with temperature increase was confirmed, which proves that the obtained polymer is a high temperature hydrophobic thermoreversible polymer.

【0026】実施例2 分子量約1万のポリビニルアミン塩酸塩5.0g、トリ
エチルアミン25.5gを水500gに溶解させる。そ
れに、予めイソ酪酸22.2gと1−エチル−3−(3
−ジメチルアミノプロピル)カルボジイミド塩酸塩4
8.3gとを水1000gに溶解させておいた水溶液を
加え、0℃で6時間反応させた。得られた反応液は透析
操作、凍結乾燥を行い精製した。
Example 2 5.0 g of polyvinylamine hydrochloride having a molecular weight of about 10,000 and 25.5 g of triethylamine are dissolved in 500 g of water. In addition, 22.2 g of isobutyric acid and 1-ethyl-3- (3
-Dimethylaminopropyl) carbodiimide hydrochloride 4
An aqueous solution prepared by dissolving 8.3 g and 1000 g of water was added, and the mixture was reacted at 0 ° C. for 6 hours. The obtained reaction solution was dialyzed and freeze-dried for purification.

【0027】これを実施例1と同じように核磁気共鳴ス
ペクトル、赤外線吸収スペクトル分析を行い、導入率を
求めた。その結果、イソブチリル基導入率は80.0モ
ル%であった。次に、得られた高分子化合物2.0g、
トリエチルアミン1.6g、塩化イソブチリル1.7g
をジメチルホルムアミド400gに溶かし、−30℃で
1時間、その後室温で24時間反応させた。反応液はジ
メチルホルムアミドを減圧留去させて濃縮し、その液を
ジエチルエーテルに滴下し再沈殿させた。さらに、その
沈澱物の水溶液を凍結乾燥させることによって熱可逆性
高分子化合物を得た。これを実施例1と同じように核磁
気共鳴スペクトル、赤外線吸収スペクトル分析を行い、
導入率を求めた。その結果、イソブチリル基導入率は9
6.1モル%であった。
Nuclear magnetic resonance spectrum and infrared absorption spectrum analysis were carried out in the same manner as in Example 1 to determine the introduction rate. As a result, the isobutyryl group introduction rate was 80.0 mol%. Next, 2.0 g of the obtained polymer compound,
1.6 g of triethylamine, 1.7 g of isobutyryl chloride
Was dissolved in 400 g of dimethylformamide and reacted at -30 ° C for 1 hour and then at room temperature for 24 hours. The reaction solution was concentrated by distilling off dimethylformamide under reduced pressure, and the solution was added dropwise to diethyl ether for reprecipitation. Further, an aqueous solution of the precipitate was freeze-dried to obtain a thermoreversible polymer compound. The nuclear magnetic resonance spectrum and the infrared absorption spectrum analysis are carried out in the same manner as in Example 1,
The introduction rate was calculated. As a result, the isobutyryl group introduction rate was 9
It was 6.1 mol%.

【0028】実施例3 分子量約1万のポリビニルアミン塩酸塩5.0gを水5
00gに溶解させ、その溶液が中性を示すまで水酸化ナ
トリウム水溶液を加える。それに、予めイソ酪酸66g
と1−エチル−3−(3−ジメチルアミノプロピル)カ
ルボジイミド塩酸塩145gとを水1000gに溶解さ
せておいた水溶液を加え、0℃で6時間反応させた。得
られた反応液は透析操作、凍結乾燥を行い精製する。実
施例1と同じ方法でイソブチリル基の導入率を求めた結
果、その値は75.0モル%であった。次に、そのポリ
マー2.0g、トリエチルアミン2.1g、塩化イソブ
チリル2.2gをジメチルホルムアミド400gに溶か
し溶液を作製し、それを実施例1と同じ方法で反応さ
せ、熱熱可逆性高分子化合物を得た。これを実施例1と
同じように核磁気共鳴スペクトル、赤外線吸収スペクト
ル分析を行い、導入率を求めた。その結果、イソブチリ
ル基導入率は94.3モル%であった。
Example 3 5.0 g of polyvinylamine hydrochloride having a molecular weight of about 10,000 was added to 5 parts of water.
Dissolve in 00 g and add aqueous sodium hydroxide solution until the solution shows neutrality. In addition, 66 g of isobutyric acid
And 145 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride were dissolved in 1000 g of water, and an aqueous solution was added, and the mixture was reacted at 0 ° C. for 6 hours. The obtained reaction solution is dialyzed and lyophilized for purification. As a result of obtaining the introduction rate of the isobutyryl group by the same method as in Example 1, the value was 75.0 mol%. Next, 2.0 g of the polymer, 2.1 g of triethylamine, and 2.2 g of isobutyryl chloride were dissolved in 400 g of dimethylformamide to prepare a solution, which was reacted in the same manner as in Example 1 to obtain a thermo-thermoreversible polymer compound. Obtained. This was subjected to nuclear magnetic resonance spectrum and infrared absorption spectrum analysis in the same manner as in Example 1 to determine the introduction rate. As a result, the isobutyryl group introduction rate was 94.3 mol%.

【0029】[0029]

【発明の効果】本発明の高分子化合物は、文献未載の、
可逆的に低温域で溶解性、高温域で非溶解性を示す熱可
逆性高分子化合物であり、従来知られている熱可逆性ア
クリルアミド系高分子化合物より安全性に優れており、
大量生産も可能である。また、この高分子化合物は、置
換基Rの種類、アミノ基の量によって転移温度、ポリマ
ーの強度、熱安定性、紫外線安定性、酸、塩基に対する
安定性、イオン性(カチオン、アニオン)を容易にコン
トロ−ルすることが可能であり、メカノケミカル材料、
温度センサ−、遮光体、分離膜、玩具、吸着剤、ディス
プレイ等、幅広い分野への応用が期待される。
Industrial Applicability The polymer compound of the present invention is not described in the literature,
It is a thermoreversible polymer compound that reversibly exhibits solubility in the low temperature range and insolubility in the high temperature range, and is superior to the conventionally known thermoreversible acrylamide polymer compound in safety,
Mass production is also possible. In addition, this polymer compound easily has transition temperature, polymer strength, thermal stability, ultraviolet stability, acid / base stability, and ionicity (cation, anion) depending on the kind of substituent R and the amount of amino group. It is possible to control the mechanochemical material,
It is expected to be applied to a wide range of fields such as temperature sensors, light shields, separation membranes, toys, adsorbents, and displays.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高分子化合物(実施例1)の核磁気共
鳴スペクトルを示す。
FIG. 1 shows a nuclear magnetic resonance spectrum of a polymer compound of the present invention (Example 1).

【図2】本発明の高分子化合物(実施例1)の赤外線吸
収スペクトルを示す。
FIG. 2 shows an infrared absorption spectrum of the polymer compound of the present invention (Example 1).

【図3】本発明の高分子化合物(実施例1)の水溶液中
での温度と光透過性の関係を示す。
FIG. 3 shows the relationship between temperature and light transmittance of a polymer compound of the present invention (Example 1) in an aqueous solution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相沢 利行 大分県大分市大字中の洲2番地 昭和電工 株式会社大分研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Aizawa No. 2 Nakasu, Oita City, Oita Prefecture Showa Denko Oita Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水溶液が熱可逆的溶解性を示す高分子化
合物であって、繰り返し単位(1) 【化1】 (式中、RはC2 〜C4 のアルキル基を示す。)が10
0〜90モル%、繰り返し単位(2) 【化2】 が0〜10モル%からなる高分子化合物。
1. A repeating unit (1) embedded image wherein the aqueous solution is a polymer compound showing thermoreversible solubility. (In the formula, R represents a C 2 -C 4 alkyl group.)
0-90 mol%, repeating unit (2) Of 0 to 10 mol%.
【請求項2】 ポリビニルアミンおよび/またはその塩
とカルボン酸またはカルボン酸ハライドとを反応させる
ことを特徴とする、水溶液が熱可逆的溶解性を示す高分
子化合物であって、繰り返し単位(1) 【化3】 (式中、RはC2 〜C4 のアルキル基を示す。)が10
0〜90モル%、繰り返し単位(2) 【化4】 が0〜10モル%からなる高分子化合物の製造方法。
2. A repeating unit (1), which is a polymer compound having a thermoreversible solubility in an aqueous solution, which comprises reacting polyvinylamine and / or a salt thereof with a carboxylic acid or a carboxylic acid halide. [Chemical 3] (In the formula, R represents a C 2 -C 4 alkyl group.)
0 to 90 mol%, repeating unit (2) The manufacturing method of the high molecular compound which consists of 0-10 mol%.
【請求項3】 ポリビニルアミンおよび/またはその塩
とカルボン酸とを反応させ、次いで得られた高分子化合
物をカルボン酸ハライドと反応させ、アシル基の導入率
を上げることを特徴とする、水溶液が熱可逆的溶解性を
示す高分子化合物であって、繰り返し単位(1) 【化5】 (式中、RはC2 〜C4 のアルキル基を示す。)が10
0〜90モル%、繰り返し単位(2) 【化6】 が0〜10モル%からなる高分子化合物の製造方法。
3. An aqueous solution characterized in that polyvinylamine and / or a salt thereof is reacted with a carboxylic acid, and then the obtained polymer compound is reacted with a carboxylic acid halide to increase the introduction rate of an acyl group. A polymer compound having thermoreversible solubility, comprising a repeating unit (1) (In the formula, R represents a C 2 -C 4 alkyl group.)
0-90 mol%, repeating unit (2) The manufacturing method of the high molecular compound which consists of 0-10 mol%.
JP22907193A 1993-09-14 1993-09-14 Polymer compound and method for producing the same Expired - Lifetime JP3413898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22907193A JP3413898B2 (en) 1993-09-14 1993-09-14 Polymer compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22907193A JP3413898B2 (en) 1993-09-14 1993-09-14 Polymer compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0782320A true JPH0782320A (en) 1995-03-28
JP3413898B2 JP3413898B2 (en) 2003-06-09

Family

ID=16886288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22907193A Expired - Lifetime JP3413898B2 (en) 1993-09-14 1993-09-14 Polymer compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP3413898B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004596A1 (en) * 1996-07-31 1998-02-05 Basf Aktiengesellschaft Water soluble polymers and their use in cosmetic formulations
WO1998011145A1 (en) * 1996-09-11 1998-03-19 Basf Aktiengesellschaft Insoluble polymers which can swell only slightly with modified amino groups, processes for their preparation, and their use
US6028233A (en) * 1995-06-08 2000-02-22 Exxon Production Research Company Method for inhibiting hydrate formation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028233A (en) * 1995-06-08 2000-02-22 Exxon Production Research Company Method for inhibiting hydrate formation
WO1998004596A1 (en) * 1996-07-31 1998-02-05 Basf Aktiengesellschaft Water soluble polymers and their use in cosmetic formulations
US6271327B1 (en) 1996-07-31 2001-08-07 Basf Aktiengesellschaft Water-soluble polymers and their use in cosmetic formulations
WO1998011145A1 (en) * 1996-09-11 1998-03-19 Basf Aktiengesellschaft Insoluble polymers which can swell only slightly with modified amino groups, processes for their preparation, and their use

Also Published As

Publication number Publication date
JP3413898B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
US8329853B2 (en) Process for the preparation of poly-α-glutamic acid and derivatives thereof
WO2016029307A1 (en) Stimuli-switchable moieties, monomers and polymers incorporating stimuli-switchable moieties, and methods of making and using same
JP2011530523A (en) Synthesis of glatiramer acetate
JP5871223B2 (en) Rotaxane, crosslinking agent, crosslinking method, crosslinked polymer, and degradation method of crosslinked polymer
JP3413898B2 (en) Polymer compound and method for producing the same
JP4225014B2 (en) Polythiourethane and process for producing the same
KR940011903B1 (en) Method of preparing n-acryloyl-alpha-amino acids
JP3926662B2 (en) Polyarylacetylene derivative and chiral sensor using the same
JPH0762088A (en) Amino acid polymer having crown compound in main chain and production thereof
JP2808489B2 (en) Water-soluble thiourea dioxide derivative and method for producing the same
JP4190879B2 (en) A novel intermediate for the production of theanine
JP3749947B2 (en) Dicholesteryl diacetylene derivative
JP5200011B2 (en) Process for producing poly-α-glutamic acid and derivatives thereof
JPH0699473B2 (en) Glycyl-Glutamine production method
CN114989337B (en) Polymer with valine and mannose in side chains and preparation method thereof
JP2002145847A (en) Acrylic acid derivative bearing amino acid residue
CN115725011B (en) Azobenzene polymer supermolecule assembly with controllable chirality and chiral regulation method thereof
JP4381726B2 (en) Reactive multibranched polysaccharide derivatives
JP2979138B2 (en) Acrylamide compounds with amino acid residues
JP3472800B2 (en) Alkadiin carboxylate
JP4770245B2 (en) Method for synthesizing dihydroxy compound and method for synthesizing hyperbranched compound
JP2835478B2 (en) New acrylate compound
JP4743474B2 (en) Modified diallylamine-sulfur dioxide copolymer and process for producing the same
KR100749162B1 (en) Process for preparing aceclofenac aminoacid salt
RU2101310C1 (en) Polyazomethine based on 5,5&#39;-methylene-bis-salicylic aldehyde and diamine-fluorophore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11