JPH0782093A - Vapor phase growth method - Google Patents

Vapor phase growth method

Info

Publication number
JPH0782093A
JPH0782093A JP17765993A JP17765993A JPH0782093A JP H0782093 A JPH0782093 A JP H0782093A JP 17765993 A JP17765993 A JP 17765993A JP 17765993 A JP17765993 A JP 17765993A JP H0782093 A JPH0782093 A JP H0782093A
Authority
JP
Japan
Prior art keywords
layer
growth
temperature
growing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17765993A
Other languages
Japanese (ja)
Other versions
JP3221981B2 (en
Inventor
Misao Takakusaki
操 高草木
Susumu Murakami
進 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP17765993A priority Critical patent/JP3221981B2/en
Publication of JPH0782093A publication Critical patent/JPH0782093A/en
Application granted granted Critical
Publication of JP3221981B2 publication Critical patent/JP3221981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain an interface having high electron moving degree in good reproducibility by growing a compound semiconductor crystal layer containing In and As on a semiconductor substrate, retaining the layer at a specific temperature, then growing a semiconductor crystal layer different from the crystal layer. CONSTITUTION:A compound semiconductor crystal layer containing In and As is grown on a semiconductor substrate subjected to cleaning treatment, and then, the growth is temporally stopped and the substrate is heated to a temperature higher than a starting temperature of re-evaporation of In and the temperature is retained. Then, a semiconductor crystal layer different from the compound semiconductor containing In and As is subjected to molecular epitaxial growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板上に複数の
半導体結晶層の成長を行う気相成長方法に関し、特にI
xGa1-xAs層を含む多層結晶膜の成長時の界面の改
善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for growing a plurality of semiconductor crystal layers on a semiconductor substrate.
It relates improvements in the interface during the growth of the multi-layered crystal film including n x Ga 1-x As layer.

【0002】[0002]

【従来の技術】半導体基板上に超薄膜を形成する結晶成
長方法として、分子線エピタキシャル成長方法が最近注
目され研究されている。分子線エピタキシャル成長は、
超高真空下で原料となる物質を蒸発させ、加熱した基板
上に目的の結晶を成長する方法であり、分子線エピタキ
シャル成長方法を用いたデバイスとして、高電子移動度
トランジスタ(HEMT)等が実用化されている。HE
MTではチャンネル層と電子供給層とのヘテロ界面近傍
に形成される二次元電子ガスを用いるもので、界面の平
坦性や急峻性が特性に大きな影響を及ぼすことが知られ
ている。通常のHEMT構造ではチャンネル層としてG
aAs、電子供給層としてはAlGaAsを用いてい
る。最近では通常の格子整合系のHEMTの高性能化の
ために、チャンネル層に格子不整合のInGaAsを用
いたシュードモルフィックHEMT(以後、PMーHE
MTと略す)が開発されて実用化されている。GaAs
/AlGaAsの界面の平坦性の向上には、成長の一時
停止が有効とされている。(M. Tanaka, Jpn. J. Appl.
Phys., 25 (1986) L155-L158)。
2. Description of the Related Art As a crystal growth method for forming an ultrathin film on a semiconductor substrate, a molecular beam epitaxial growth method has recently been noted and studied. Molecular beam epitaxial growth is
This is a method of evaporating a raw material under ultra-high vacuum and growing a target crystal on a heated substrate. As a device using the molecular beam epitaxial growth method, a high electron mobility transistor (HEMT) etc. is put to practical use. Has been done. HE
The MT uses a two-dimensional electron gas formed in the vicinity of the hetero interface between the channel layer and the electron supply layer, and it is known that the flatness and steepness of the interface greatly affect the characteristics. In a normal HEMT structure, G is used as a channel layer.
aAs and AlGaAs are used for the electron supply layer. Recently, in order to improve the performance of an ordinary lattice-matched HEMT, a pseudomorphic HEMT using lattice-mismatched InGaAs in a channel layer (hereinafter referred to as PM-HE
(Abbreviated as MT) has been developed and put into practical use. GaAs
In order to improve the flatness of the / AlGaAs interface, it is effective to suspend the growth. (M. Tanaka, Jpn. J. Appl.
Phys., 25 (1986) L155-L158).

【0003】[0003]

【発明が解決しようとする課題】しかし、PMーHEM
T構造等の成長の場合には成長の一時停止を行っても、
成長したPMーHEMT構造の電子移動度が低く、分子
線エピタキシャル成長の再現性が通常の格子整合系のH
EMT構造よりも悪いという問題があった。
[Problems to be Solved by the Invention] However, PM-HEM
In the case of growth of T structure, etc., even if the growth is temporarily stopped,
The electron mobility of the grown PM-HEMT structure is low, and the reproducibility of the molecular beam epitaxial growth is H of the ordinary lattice matching system.
There was a problem that it was worse than the EMT structure.

【0004】[0004]

【課題を解決するための手段及び作用】本発明は上記の
問題点を解決したもので、本発明の目的は、再現性良
く、電子移動度の高い界面を得ることのできる気相成長
方法を提供することにある。すなわち、本発明は、半導
体基板上に複数の半導体結晶層の成長を行う気相成長方
法において、InとAsとを含む化合物半導体結晶層を
成長した後、成長を一時停止して、基板温度をInの再
蒸発開始温度以上に昇温して保持してから、該InとA
sとを含む化合物半導体と異なる半導体結晶層を成長す
ることを特徴とする気相成長方法を提供するものであ
る。
The present invention has solved the above problems, and an object of the present invention is to provide a vapor phase growth method capable of obtaining an interface having high electron mobility with good reproducibility. To provide. That is, in the present invention, in a vapor phase growth method for growing a plurality of semiconductor crystal layers on a semiconductor substrate, after growing a compound semiconductor crystal layer containing In and As, the growth is temporarily stopped and the substrate temperature is controlled. After the temperature is raised to a temperature equal to or higher than the re-evaporation start temperature of In and maintained, the In and A
and a semiconductor crystal layer different from a compound semiconductor containing s.

【0005】さらに、上記気相成長方法が分子線エピタ
キシャル成長方法であり、また、上記InとAsとを含
む化合物半導体結晶がInxGa1-xAsまたはInx
1-xAsであることを特徴とするものである。本発明
者らは上記の問題点を解決するために鋭意検討した結
果、InxGa1-xAs層を成長する際に成長表面に偏析
するInが原因でないかと考えた。ちなみに、Inx
1-xAs層について、成長中に成長最表面にInが1
〜2原子層の偏析を起こしていることが知られている。
(第40回応用物理学会関係連合講演会講演予稿集 No.
1、 P253)。
Further, the vapor phase growth method is a molecular beam epitaxial growth method, and the compound semiconductor crystal containing In and As is In x Ga 1-x As or In x A.
l 1-x As. As a result of intensive studies for solving the above-mentioned problems, the present inventors have thought that In segregated on the growth surface when growing an In x Ga 1-x As layer might be the cause. By the way, In x G
Regarding the a 1-x As layer, In is 1 on the outermost growth surface during growth.
It is known that segregation of ~ 2 atomic layers occurs.
(Proceedings of the 40th JSAP Joint Lecture Meeting No.
1, P253).

【0006】そこで、本発明者らは成長中の偏析により
表面に浮き出てきたIn原子を除去できれば、高品質の
ヘテロ界面を形成することができると考えた。分子線エ
ピタキシャル成長方法(MBE法)を用いたInAs層
の成長では、580〜600℃の基板温度でInの再蒸
発が起こることが知られているが、Inを含む混晶の成
長は正確な組成制御の必要性からこのIn再蒸発温度以
下で行われている。
Therefore, the inventors of the present invention thought that a high quality hetero interface could be formed if the In atoms raised on the surface due to the segregation during growth could be removed. In InAs layer growth using the molecular beam epitaxial growth method (MBE method), it is known that In re-evaporation occurs at a substrate temperature of 580 to 600 ° C. However, the growth of mixed crystals containing In has a precise composition. Due to the necessity of control, the temperature is lower than this In re-evaporation temperature.

【0007】一方、GaAsでのGaが再蒸発する基板
温度は650℃以上である。従って、InxGa1-xAs
層の成長を580℃〜650℃の間で行うとInの再蒸
発により表面に浮いてきたInをある程度除去できるこ
とが期待できるが、成長したInxGa1-xAs層の正確
な組成制御が難しくなる。そこで、本発明者はInx
1-xAs層の成長中は基板温度をInの再蒸発開始温
度以下に設定し正確な組成制御を行い、InxGa1-x
s層の成長終了後にIII族原料の供給を停止し(成長の
一時停止)、基板温度をInの再蒸発開始温度以上(5
80℃以上)まで上昇させ、表面に偏析により浮き出た
過剰のInを蒸発させ、過剰なInが表面に無くなった
時点で、次の層のIII族原子の供給を開始することによ
り界面でInとそれに続いて成長する半導体結晶層とで
混晶が形成することを防止した。
On the other hand, the substrate temperature at which Ga in GaAs is re-evaporated is 650 ° C. or higher. Therefore, In x Ga 1-x As
If the layer growth is performed between 580 ° C. and 650 ° C., it can be expected that In floating on the surface can be removed to some extent by the re-evaporation of In, but accurate composition control of the grown In x Ga 1-x As layer is possible. It gets harder. Therefore, the present inventor has an In x G
a 1-x-growing As layer the substrate temperature is set below re-evaporation initiation temperature of the In perform precise composition control, In x Ga 1-x A
After the growth of the s layer is completed, the supply of the group III source material is stopped (temporary growth is stopped), and the substrate temperature is set to the re-evaporation start temperature of In or higher (5
(80 ° C. or higher) to evaporate the excess In that has emerged due to segregation on the surface, and when the excess In disappears on the surface, the supply of Group III atoms in the next layer is started to form In at the interface. The formation of a mixed crystal with the semiconductor crystal layer grown subsequently was prevented.

【0008】[0008]

【実施例】ここでは実施例として、GaAs基板上にP
MーHEMT構造を成長した例を示す。面方位(10
0)ジャストのGaAs基板上に図1に示す層構造を成
長した。なお、図1において、1はSiドープGaAs
キャップ層(膜厚10nm、キャリア濃度2×1018
-3)、2はSiドープAlGaAs電子供給層(膜厚
10nm、キャリア濃度2×1018cm-3、Al組成
0.24)、3はアンドープAlGaAsスペーサー層
(膜厚2nm、Al組成0.24)、4はアンドープI
nGaAsチャンネル層(膜厚10nm、In組成0.
15)、5はアンドープGaAsバッファ層(膜厚50
0nm)、6はアンドープGaAs基板((100)ジ
ャスト)を示す。気相成長装置は通常の固体ソースのM
BE装置を用いた。先ず、成長開始前にGaAs基板の
清浄化処理として640℃、15分間のクリーニングを
行った。
EXAMPLE Here, as an example, P is formed on a GaAs substrate.
An example of growing an M-HEMT structure is shown. Surface orientation (10
0) The layer structure shown in FIG. 1 was grown on a just GaAs substrate. In FIG. 1, 1 is Si-doped GaAs
Cap layer (film thickness 10 nm, carrier concentration 2 × 10 18 c
m -3 ), 2 is an Si-doped AlGaAs electron supply layer (film thickness 10 nm, carrier concentration 2 × 10 18 cm -3 , Al composition 0.24), 3 is an undoped AlGaAs spacer layer (film thickness 2 nm, Al composition 0. 24) and 4 are undoped I
nGaAs channel layer (film thickness 10 nm, In composition 0.
15) and 5 are undoped GaAs buffer layers (film thickness 50
0 nm) and 6 represent an undoped GaAs substrate ((100) just). The vapor phase growth apparatus is an ordinary solid source M
A BE device was used. First, cleaning was performed at 640 ° C. for 15 minutes as a cleaning treatment of the GaAs substrate before the start of growth.

【0009】次に、GaAs基板上にバッファ層として
アンドープGaAsを基板温度600℃で0.5μm成
長した後、基板温度を530℃に下げてIn015Ga085
As層を180nm成長した。In015Ga085As層の
成長後、InとGaの供給を停止し(成長の一時停
止)、同時に基板温度を600℃まで昇温し1分間保持
した後、次のAl024Ga076As層を成長した。In
015Ga085As層の成長後、次のAl024Ga076As層
成長までの原料供給切り替えのタイミングと基板温度の
変化を図2に示す。
Next, after growing undoped GaAs as a buffer layer on the GaAs substrate by 0.5 μm at a substrate temperature of 600 ° C., the substrate temperature is lowered to 530 ° C. and In 015 Ga 085 is obtained.
The As layer was grown to 180 nm. After the growth of the In 015 Ga 085 As layer, the supply of In and Ga was stopped (temporary stop of growth), and at the same time, the substrate temperature was raised to 600 ° C. and held for 1 minute, and then the next Al 024 Ga 076 As layer was formed. grown. In
After the growth of 015 Ga 085 As layer, shows a change in timing and the substrate temperature of the raw material supply switching to the next Al 024 Ga 076 As layer grown FIG.

【0010】成長したエピタキシャル層は室温及び77
Kにおけるホール測定により二次元電子ガスの濃度と移
動度を評価した。また、AlGaAs/InGaAs/
GaAsの単一量子井戸の界面の評価として77Kにお
けるフォトルミネッセンス(PL)測定を行いその半値
幅を求めた。それらの結果を表1に示す。なお、比較の
ために比較例1として成長の一時停止を1分間だけ行い
基板温度を変更しなかった場合と、比較例2として成長
の一時停止も行わず、InGaAs層の成長に続いてA
lGaAs層の成長を行った場合について、同様の評価
を行った結果を表1に併せて示す。
The grown epitaxial layer is at room temperature and 77
The Hall measurement at K was used to evaluate the concentration and mobility of the two-dimensional electron gas. In addition, AlGaAs / InGaAs /
As the evaluation of the interface of the single quantum well of GaAs, the photoluminescence (PL) measurement at 77K was performed and the half width thereof was obtained. The results are shown in Table 1. For comparison, in Comparative Example 1, the growth was temporarily stopped for 1 minute and the substrate temperature was not changed, and in Comparative Example 2, the growth was not temporarily stopped, and the growth of the InGaAs layer was followed by A.
Table 1 also shows the results of similar evaluations for the case where the 1GaAs layer was grown.

【0011】[0011]

【表1】 比較例1、2間では二次元電子ガス濃度や移動度には差
は見られていないが、77KでのPL測定では比較例1
の成長の一時停止の効果により半値幅が小さくなってい
る。本発明の実施例では室温、77Kの移動度は比較例
よりも大きくかつ77KのPL半値幅も25.9meV
と最も小さくなっており、成長の一時停止と基板温度を
Inの再蒸発開始温度以上まで昇温・保持した効果によ
り、高品質なAlGaAs/InGaAs界面が形成で
きていることわかる。なお、実施例ではInGaAs層
に続いて成長する層がAlGaAsであるので基板温度
は成長の一時停止後基板温度を変えていないが、成長す
る結晶により基板温度を再び変更してもよい。
[Table 1] Although there is no difference in the two-dimensional electron gas concentration and the mobility between Comparative Examples 1 and 2, Comparative Example 1 is obtained by the PL measurement at 77K.
The half-width has become smaller due to the effect of the suspension of growth. In the example of the present invention, the mobility at room temperature and 77K is higher than that in the comparative example, and the PL half-value width at 77K is also 25.9 meV.
It can be seen that a high quality AlGaAs / InGaAs interface can be formed by the effect of temporarily stopping the growth and raising / holding the substrate temperature to the re-evaporation start temperature of In or higher. In the embodiment, since the layer grown after the InGaAs layer is AlGaAs, the substrate temperature is not changed after the growth is temporarily stopped, but the substrate temperature may be changed again depending on the growing crystal.

【0012】また、実施例では基板温度をInの再蒸発
開始温度以上に保持する時間を1分間としたが、これに
限定されるものでなく適宜選択でき、通常1〜3分間程
度とされる。さらに、実施例ではInGaAs層の例を
示したが、InAlAs層にも適用できることは勿論で
ある。
Further, in the embodiment, the time for keeping the substrate temperature at the re-evaporation start temperature of In or higher is set to 1 minute, but it is not limited to this and can be appropriately selected, and is usually about 1 to 3 minutes. . Further, in the embodiment, the example of the InGaAs layer is shown, but it is needless to say that it can be applied to the InAlAs layer.

【0013】[0013]

【発明の効果】以上説明したように、本発明では成長の
一時停止を行い、かつ成長の一時停止中に基板温度をI
nの再蒸発開始温度以上まで昇温して過剰なInを再蒸
発させることにより急峻性に優れた良好な界面を形成す
ることが可能となった。
As described above, according to the present invention, the growth is temporarily stopped and the substrate temperature is set to I during the temporary stop of the growth.
By elevating the temperature above the re-evaporation start temperature of n to re-evaporate excess In, it became possible to form a good interface with excellent steepness.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のエピタキシャル層の層構造を示す図
である。
FIG. 1 is a diagram showing a layer structure of an epitaxial layer of an example.

【図2】 本発明の原料供給のタイミングと基板温度の
変化を示す図である。
FIG. 2 is a diagram showing a timing of supply of raw material and changes in substrate temperature according to the present invention.

【符号の説明】[Explanation of symbols]

1.SiドープGaAsキャップ層 2.SiドープAlGaAs電子供給層 3.アンドープAlGaAsスペーサー層 4.アンドープInGaAsチャンネル層 5.アンドープGaAsバッファ層 6.アンドープGaAs基板 1. Si-doped GaAs cap layer 1. Si-doped AlGaAs electron supply layer 3. Undoped AlGaAs spacer layer 4. Undoped InGaAs channel layer 5. Undoped GaAs buffer layer 6. Undoped GaAs substrate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月12日[Submission date] August 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】次に、GaAs基板上にバッファ層として
アンドープGaAsを基板温度600℃で0.5μm成
長した後、基板温度を530℃に下げてIn0.15
0.85As層を180nm成長した。In0.15
Ga0.85As層の成長後、InとGaの供給を停止
し(成長の一時停止)、同時に基板温度を600℃まで
昇温し1分間保持した後、次のAl0.24Ga
0.76As層を成長した。In0.15Ga0.85
As層の成長後、次のAl0.24Ga0.76As層
成長までの原料供給切り替えのタイミングと基板温度の
変化を図2に示す。
Next, after growing undoped GaAs as a buffer layer on the GaAs substrate by 0.5 μm at a substrate temperature of 600 ° C., the substrate temperature is lowered to 530 ° C. and In 0.15 G
An a 0.85 As layer was grown to 180 nm. In 0.15
After the growth of the Ga 0.85 As layer, the supply of In and Ga was stopped (temporarily stopped the growth), and at the same time, the substrate temperature was raised to 600 ° C. and kept for 1 minute, and then the next Al 0.24 Ga was added.
A 0.76 As layer was grown. In 0.15 Ga 0.85
FIG. 2 shows the timing of switching the raw material supply and the change in the substrate temperature after the growth of the As layer until the next growth of the Al 0.24 Ga 0.76 As layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に複数の半導体結晶層の成
長を行う気相成長方法において、InとAsとを含む化
合物半導体結晶層を成長した後、成長を一時停止して、
基板温度をInの再蒸発開始温度以上に昇温して保持し
てから、該InとAsとを含む化合物半導体と異なる半
導体結晶層を成長することを特徴とする気相成長方法。
1. A vapor phase growth method for growing a plurality of semiconductor crystal layers on a semiconductor substrate, wherein after growing a compound semiconductor crystal layer containing In and As, the growth is temporarily stopped,
A vapor-phase growth method, comprising: raising a substrate temperature to a temperature equal to or higher than a re-evaporation start temperature of In and holding the substrate temperature; and then growing a semiconductor crystal layer different from a compound semiconductor containing the In and As.
【請求項2】 上記気相成長方法が分子線エピタキシャ
ル成長方法であることを特徴とする請求項1に記載の気
相成長方法。
2. The vapor phase growth method according to claim 1, wherein the vapor phase growth method is a molecular beam epitaxial growth method.
【請求項3】 上記InとAsとを含む化合物半導体結
晶がInxGa1-xAsまたはInxAl1-xAsであるこ
とを特徴とする請求項1または請求項2に記載の気相成
長方法。
3. The gas phase according to claim 1, wherein the compound semiconductor crystal containing In and As is In x Ga 1-x As or In x Al 1-x As. How to grow.
JP17765993A 1993-06-25 1993-06-25 Vapor growth method Expired - Lifetime JP3221981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17765993A JP3221981B2 (en) 1993-06-25 1993-06-25 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17765993A JP3221981B2 (en) 1993-06-25 1993-06-25 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH0782093A true JPH0782093A (en) 1995-03-28
JP3221981B2 JP3221981B2 (en) 2001-10-22

Family

ID=16034862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17765993A Expired - Lifetime JP3221981B2 (en) 1993-06-25 1993-06-25 Vapor growth method

Country Status (1)

Country Link
JP (1) JP3221981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099640A (en) * 1997-09-03 2000-08-08 Nec Corporation Molecular beam epitaxial growth method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337103B1 (en) * 2020-03-11 2021-12-07 최비공 Cooling vest with ventilation kit and rescue system using of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099640A (en) * 1997-09-03 2000-08-08 Nec Corporation Molecular beam epitaxial growth method
KR100309051B1 (en) * 1997-09-03 2001-11-15 가네꼬 히사시 Method of forming a semiconductor device
CN1296969C (en) * 1997-09-03 2007-01-24 恩益禧电子股份有限公司 Method of forming semiconductor device

Also Published As

Publication number Publication date
JP3221981B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
US4859627A (en) Group VI doping of III-V semiconductors during ALE
Sakaki et al. In1− xGaxAs‐GaSb1− yAsy heterojunctions by molecular beam epitaxy
JPH0812844B2 (en) (III) -Group V compound semiconductor and method for forming the same
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
JP4382748B2 (en) Semiconductor crystal growth method
Meggitt et al. Thin InAs epitaxial layers grown on (100) GaAs substrates by molecular beam deposition
US7687379B2 (en) Method of manufacturing In(As)Sb semiconductor on lattice-mismatched substrate and semiconductor device using the same
JPH0782093A (en) Vapor phase growth method
JP3438116B2 (en) Compound semiconductor device and method of manufacturing the same
JPS59116192A (en) Crystal growth method by molecular beam
Oyama et al. Enhanced impurity incorporation by alternate Te and S doping in GaAs prepared by intermittent injection of triethylgallium and arsine in ultra high vacuum
JPH1074700A (en) Semiconductor crystal growing method
JPH0620042B2 (en) Method for doping group III compound semiconductor crystal
Kingetsu et al. Seeded epitaxial growth of close-packed metal films and their superlattices on silicon substrates
JPH01211912A (en) Semiconductor substrate
JP3106526B2 (en) Compound semiconductor growth method
JPH01128516A (en) Semiconductor crystal growth
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPS6369792A (en) Semiconductor epitaxy
JPH0786162A (en) Method and equipment for growing hetero structure thin film
JPH0620044B2 (en) Method for doping group III compound semiconductor crystal
JPH076957A (en) Semiconductor epitaxial substrate
JPH0360173B2 (en)
JPH0526760B2 (en)
JPH01200613A (en) Heteroepitaxial film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

EXPY Cancellation because of completion of term