JPH0781964B2 - Relative humidity controller and control method thereof - Google Patents

Relative humidity controller and control method thereof

Info

Publication number
JPH0781964B2
JPH0781964B2 JP2092673A JP9267390A JPH0781964B2 JP H0781964 B2 JPH0781964 B2 JP H0781964B2 JP 2092673 A JP2092673 A JP 2092673A JP 9267390 A JP9267390 A JP 9267390A JP H0781964 B2 JPH0781964 B2 JP H0781964B2
Authority
JP
Japan
Prior art keywords
relative humidity
temperature
sample
arbitrary
constant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2092673A
Other languages
Japanese (ja)
Other versions
JPH03289549A (en
Inventor
孝志 岩▲崎▼
一雄 鳥居
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2092673A priority Critical patent/JPH0781964B2/en
Publication of JPH03289549A publication Critical patent/JPH03289549A/en
Publication of JPH0781964B2 publication Critical patent/JPH0781964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はX線回折装置に用いる相対湿度制御装置および
その制御方法に関する。
The present invention relates to a relative humidity controller used in an X-ray diffractometer and a control method therefor.

近年新材料の開発が飛躍的に進む中でその材料のX線構
造解析の需要がますます高まっている。特に吸着剤・分
離剤等に用いられる含水酸化物は、周囲の雰囲気により
構造が変化することから、X線回折測定時の相対湿度を
正確に把握することが必要不可欠である。
The demand for X-ray structural analysis of new materials has increased more and more in recent years as the development of new materials has progressed dramatically. In particular, since the structure of a hydrous oxide used as an adsorbent / separating agent changes depending on the surrounding atmosphere, it is essential to accurately grasp the relative humidity during X-ray diffraction measurement.

本発明は、X線回折装置において試料部の相対湿度を任
意の温度下で任意に調整し、その雰囲気下で含水あるい
は水分子を吸着しうる化合物のX線回折パターン測定を
可能となしうる相対湿度制御装置およびその制御方法に
関するものである。
The present invention is an X-ray diffractometer capable of adjusting the relative humidity of a sample portion at an arbitrary temperature, and making it possible to measure the X-ray diffraction pattern of a compound capable of adsorbing water or water molecules under the atmosphere. The present invention relates to a humidity control device and a control method thereof.

任意の湿度の気体を得る方法として(1)温度と圧力を
変える方法、(2)分流法および(3)湿度の定点を利
用する方法が知られている(JIS Z 8806−1981)。従
来、X線回折測定の際の相対湿度調整には、(3)の方
法が用いられてきた。しかし、この方法は試薬の飽和水
溶液と平衡にある気体を用いるため、試薬の種類により
達せられる相対湿度範囲が限定され、連続的な湿度が得
られず、あるいは多種の溶液を準備する必要があるため
煩雑であるという欠点を有する、一方、近年飽和水蒸気
と乾燥気体を必要な比で混合する(2)の方式を用いた
装置が開発された(渡辺・佐藤(1989)理学電機ジャー
ナル,20,(2)42)が、飽和気体と乾燥気体の混合状
態が不明であり、分流比も正しく設定しがたいという原
理的な欠点を有する(JIS Z 8806−1981)。また、この
装置では試料温度は25℃と一定にしか設定しえず、精度
も±0.5℃とされているため、温度精度のみを考慮して
も高湿度では±3%の相対湿度の誤差となり、流量制御
の誤差も考え合せるとその誤差はさらに大きく、X線回
折データの精密測定には耐えない。さらに、マニュアル
制御であるため条件ごとに設定をやり直さなければなら
ない煩雑さがある。
As a method for obtaining a gas having an arbitrary humidity, (1) a method of changing temperature and pressure, (2) a diversion method and (3) a method of using a fixed point of humidity are known (JIS Z 8806-1981). Conventionally, the method (3) has been used for the relative humidity adjustment in the X-ray diffraction measurement. However, since this method uses a gas in equilibrium with a saturated aqueous solution of the reagent, the relative humidity range that can be reached is limited depending on the type of reagent, continuous humidity cannot be obtained, or it is necessary to prepare various solutions. Therefore, it has a drawback that it is complicated. On the other hand, in recent years, an apparatus using the method (2) of mixing saturated steam and dry gas at a required ratio has been developed (Watanabe and Sato (1989) Rigaku Denki Journal, 20 , (2) 42) has a theoretical defect that the mixed state of saturated gas and dry gas is unknown and it is difficult to set the diversion ratio correctly (JIS Z 8806-1981). Also, with this device, the sample temperature can only be set to a constant value of 25 ° C, and the accuracy is also ± 0.5 ° C, so even if only temperature accuracy is taken into consideration, there will be an error of ± 3% relative humidity at high humidity. Considering the error in flow rate control, the error is even larger, and it cannot withstand precise measurement of X-ray diffraction data. Furthermore, since it is manual control, there is the complexity of having to redo the settings for each condition.

本発明は上記の分流法と湿度の定点を利用する方法の欠
点を除き、連続的に任意の温度で任意の相対湿度に試料
の雰囲気を調整し、X線回折測定を可能ならしめる新規
の相対湿度制御装置およびその制御方法に関する。
The present invention eliminates the drawbacks of the above-mentioned diversion method and the method of using a fixed point of humidity, and continuously adjusts the atmosphere of a sample to an arbitrary relative humidity at an arbitrary temperature, thereby making it possible to perform a new relative measurement which enables X-ray diffraction measurement. The present invention relates to a humidity control device and a control method thereof.

本発明者らは、含水珪酸塩化合物の構造解析を行なう目
的で、X線回折装置における試料周辺の相対湿度を正確
に制御する装置を開発するために長年鋭意研究を重ねた
結果、任意の温度で発生させた飽和水蒸気をX線回折装
置の試料部へ導入し、試料部の温度を変えることにより
任意の相対湿度を得ることができ、試料の雰囲気を精度
良く制御しうることを見出した。
The present inventors have conducted extensive studies for many years to develop a device for accurately controlling the relative humidity around a sample in an X-ray diffractometer for the purpose of conducting a structural analysis of a hydrous silicate compound. It was found that by introducing the saturated water vapor generated in step 2 into the sample part of the X-ray diffractometer and changing the temperature of the sample part, an arbitrary relative humidity can be obtained and the atmosphere of the sample can be controlled accurately.

本発明の相対湿度制御装置では次式により任意の相対湿
度を得ることができる。
The relative humidity controller of the present invention can obtain an arbitrary relative humidity by the following equation.

RH=(Pt/es)・(Ps/et) (1) ここで、 RH:相対湿度, Pt:試料部内の気体の全圧, Ps:飽和蒸気発生槽内の気体の全圧, es:飽和蒸気発生槽内の気体の温度における飽和水蒸気
圧, et:試料部内の気体の温度における飽和水蒸気圧, である。
RH = (P t / e s ) ・ (P s / e t ) (1) where, RH: relative humidity, P t : total pressure of gas in sample part, P s : of gas in saturated vapor generation tank Total pressure, e s : Saturated water vapor pressure at the temperature of the gas in the saturated steam generation tank, e t : Saturated water vapor pressure at the temperature of the gas in the sample part.

本装置は(a)飽和蒸気発生部、(b)X線回折装置用
試料測定室および(c)コンピュータから構成され、
(c)のコンピュータは飽和水蒸気発生部とX線回折装
置試料部の温度を熱電対およびヒーターで制御し、更に
飽和水蒸気発生部からX線回折装置試料室への気体の流
れを電磁弁で制御でき、且つX線回折装置との交信を行
なうことができる。(1)式においてPtとPsは装置によ
り値は異なるが実験的に求めることができ、温度と流量
の関数として表わすことができる。そのため、飽和蒸気
発生部及び試料部の温度を高い精度で制御することによ
り正確な相対湿度を得ることができる。
This device is composed of (a) a saturated vapor generating part, (b) a sample measuring chamber for an X-ray diffraction device, and (c) a computer,
The computer in (c) controls the temperature of the saturated steam generator and the sample part of the X-ray diffractometer by a thermocouple and a heater, and further controls the flow of gas from the saturated steam generator to the sample chamber of the X-ray diffractometer by a solenoid valve. In addition, the communication with the X-ray diffractometer can be performed. In equation (1), P t and P s can be experimentally determined although they differ depending on the device, and can be expressed as a function of temperature and flow rate. Therefore, an accurate relative humidity can be obtained by controlling the temperatures of the saturated vapor generating section and the sample section with high accuracy.

本発明の装置を用いることにより、工業上、粘性調整剤
として多方面に使用されているベントナイトの特性解
析、例えば、含有するスメクタイトの格子定数の精密測
定や層間陽イオン種の推定が可能となる。また、一定の
含水量とすることができるため、X線回折によりゼオラ
イト等の含水鉱物の含有量の定量にも有用である。
By using the device of the present invention, industrially, it is possible to analyze the characteristics of bentonite which is used in various fields as a viscosity modifier, for example, to precisely measure the lattice constant of smectite contained and to estimate the interlayer cation species. . Further, since the water content can be kept constant, it is useful for quantifying the content of hydrous minerals such as zeolite by X-ray diffraction.

さらに、高温高湿度条件にも設定できるため、未解明で
あったそのような苛酷な雰囲気下での材料の特性評価に
も用いることができ有用である。
Furthermore, since it can be set under high temperature and high humidity conditions, it can be used for evaluating the characteristics of materials under such a severe atmosphere, which has not been clarified yet, and is useful.

次に実施例によって、本発明をさらに詳細に説明する。Next, the present invention will be described in more detail with reference to examples.

実施例1 図面によって本発明装置の一具体例を説明する。図面に
おいて飽和水蒸気発生部は恒温水槽に囲まれた飽和水蒸
気発生槽に空気を吹き込み、一定温度の飽和水蒸気を発
生させる。その温度は付属の温度調節計で制御される
が、温度調節計は相対湿度制御系コンピュータにより制
御されうる。この相対湿度制御系コンピュータは試料温
度制御部にもつながれており、試料容器内の温度を任意
に設定できる。また、試料を乾燥状態にする真空ポンプ
の排気および飽和水蒸気発生部からの蒸気の経路を制御
するための電磁弁にもインターフェイスを介して、ま
た、自動的にX線回折測定を行なうため設定条件に達し
たとき信号を送り、測定終了とともに次の設定条件に移
行する信号を受けるようゴニオ制御系コンピュータとも
接続されている。相対湿度制御系コンピュータは設定試
料温度と必要とする相対湿度値から、飽和水蒸気発生槽
の設定温度を計算し、その温度にあらかじめ測定した圧
力補正曲線で圧力補正を施し、飽和水蒸気発生部の運転
条件を設定する。また、飽和水蒸気発生槽と試料の温度
及びそれから計算される相対湿度値を常時測定、CRTに
表示する。試料容器は恒温水槽から供給される試料設定
温度にちかい温度の水が循環して試料容器内の温度分布
を均一にしている。実際に測定した結果では、飽和水蒸
気発生槽と試料の0から90℃の範囲で設定温度に対する
実測温度の誤差はいずれも±0.1℃であった。この値は
相対湿度の誤差を換算すると、例えば25℃で相対湿度20
%では±0.1%、100%で±0.6%、また、75℃では相対
湿度20%で±0.1%、100%で±0.4%に相当する。
Embodiment 1 A specific example of the device of the present invention will be described with reference to the drawings. In the drawing, a saturated steam generating unit blows air into a saturated steam generating tank surrounded by a constant temperature water tank to generate saturated steam at a constant temperature. The temperature is controlled by an attached temperature controller, but the temperature controller can be controlled by a relative humidity control system computer. This relative humidity control system computer is also connected to the sample temperature control section, and the temperature inside the sample container can be set arbitrarily. In addition, set conditions for automatically performing X-ray diffraction measurement through the interface to the solenoid valve for controlling the exhaust of the vacuum pump for drying the sample and the steam path from the saturated steam generation unit. Is also connected to the gonio control system computer so as to send a signal when the measurement is reached and to receive a signal that shifts to the next setting condition when the measurement is completed. The relative humidity control system computer calculates the set temperature of the saturated steam generation tank from the set sample temperature and the required relative humidity value, corrects the pressure with the pressure correction curve measured in advance, and operates the saturated steam generation part. Set the conditions. In addition, the temperature of the saturated steam generation tank and the sample and the relative humidity value calculated from them are constantly measured and displayed on the CRT. In the sample container, water having a temperature close to the sample set temperature supplied from the constant temperature water tank circulates to make the temperature distribution in the sample container uniform. As a result of actual measurement, the error of the measured temperature with respect to the set temperature was ± 0.1 ° C in the range of 0 to 90 ° C between the saturated steam generating tank and the sample. Converting the error of relative humidity into this value, for example, at 25 ° C, relative humidity of 20
% Corresponds to ± 0.1%, 100% to ± 0.6%, and 75 ° C corresponds to ± 0.1% at 20% relative humidity and ± 0.4% at 100%.

実施例2 実施例1の本発明製品である、相対湿度制御装置を用い
て、含水層状化合物の層面間隔(底面間隔)の相対湿度
に対する変化を調べた。試料は群馬県安中産のスメクタ
イトを用いた。構造式は(Na0.36Ca0.05Mg0.01・nH2O)
(Al1.55Fe3+ 0.22Fe2+ 0.02Mg0.21)(Si3.93Al0.07)O
10(OH)であり、2八面体型スメクタイトのうちモン
モリロナイトに近いものと考えられる。この物質は層間
に存在するアルカリ金属イオンあるいはアルカリ土類金
属イオンが水分子を配位し、その水分子数が周囲の雰囲
気により変化するため、底面間隔の正確な測定には試料
周辺の相対湿度雰囲気を制御することが必要である。実
験にはまず、層間陽イオンをイオン交換によりナトリウ
ムイオンのみとし、その水溶液をスライドグラス上に滴
下し、風乾して、層状化合物の層面がスライドグラスの
面と並行となるよう試料を調製した。それを本発明装置
試料容器に取り付け、試料温度を30゜および60℃とし、
1時間の真空排気後、30℃では相対湿度20−100%、60
℃では10−100%の範囲で10%間隔で雰囲気を設定し、
それぞれ平衡のため30分その状態に保持した後、X線粉
末回折測定を自動で行なった。結果を表に示す。
Example 2 Using the relative humidity controller, which is the product of the present invention of Example 1, changes in the inter-layer spacing (bottom spacing) of the water-containing layered compound with respect to relative humidity were investigated. The sample used smectite from Annaka, Gunma Prefecture. Structural formula is (Na 0.36 Ca 0.05 Mg 0.01・ nH 2 O)
(Al 1.55 Fe 3+ 0.22 Fe 2+ 0.02 Mg 0.21 ) (Si 3.93 Al 0.07 ) O
It is 10 (OH) 2 and is considered to be closer to montmorillonite among dioctahedral smectites. In this substance, alkali metal ions or alkaline earth metal ions existing between layers coordinate water molecules, and the number of water molecules changes depending on the surrounding atmosphere. It is necessary to control the atmosphere. In the experiment, first, interlayer cations were converted to sodium ions only by ion exchange, and an aqueous solution thereof was dropped on a slide glass and air-dried to prepare a sample so that the layer surface of the layered compound was parallel to the surface of the slide glass. Attach it to the sample container of the device of the present invention, and set the sample temperature to 30 ° and 60 ° C.,
After evacuation for 1 hour, at 30 ℃, relative humidity 20-100%, 60
At ℃, set the atmosphere at 10% intervals in the range of 10-100%,
After keeping the state for 30 minutes for each equilibrium, X-ray powder diffraction measurement was automatically performed. The results are shown in the table.

相対湿度の上昇とともに試料が周囲の相対湿度と平衡と
なるよう水分子を吸着するため、底面間隔は徐々に増加
し、30℃、相対湿度80%以上、あるいは60℃、60%にみ
られるように異なった 相が共存する条件を経て相変化する様子がわかる。ま
た、温度による差としては高温ほど脱水相(約10Åの底
面間隔)が、より高い相対湿度まで存在するが、相対湿
度が高くなると高温ほど底面間隔の大きい、より膨潤し
た相が出現することが判明した。これらの相対湿度制御
下での底面間隔変化の高温による挙動の違いはこれまで
得られていない性質であり、本物質の特性解明に有用で
ある。これらの測定時の設定値に対する実測の相対湿度
の誤差は、30℃で相対湿度80%以上、60℃の60%以上で
±0.9%であり、それより低湿度側ではさらに小さな誤
差しか認められず、本発明装置により精度良く相対湿度
が制御された条件下でのX線粉末回折測定が可能である
ことが明かとなった。
As the relative humidity increases, the water molecules are adsorbed so that the sample becomes in equilibrium with the surrounding relative humidity, so the bottom surface interval gradually increases, and it can be seen at 30 ° C, relative humidity 80% or more, or 60 ° C, 60%. Different to You can see how the phase changes under the condition that the phases coexist. In addition, the higher the relative humidity, the higher the relative humidity that the dehydrated phase (bottom spacing of about 10Å) exists at higher temperatures, but the higher the relative humidity, the larger the swollen phase that the bottom spacing becomes larger. found. These differences in the behavior of the change in the bottom surface spacing under high temperature under controlled relative humidity have not been obtained so far, and are useful for elucidating the properties of this substance. The error of the measured relative humidity with respect to the set values at the time of these measurements is ± 0.9% at relative humidity of 80% or more at 30 ° C and 60% or more of 60 ° C, and even smaller errors are recognized on the lower humidity side. Instead, it became clear that the X-ray powder diffraction measurement under the condition that the relative humidity was controlled accurately by the device of the present invention was possible.

【図面の簡単な説明】[Brief description of drawings]

図面はこの発明の装置の1例を示し、X線回折装置と結
合させてX線回折測定を可能ならしめた場合の構成図で
ある。
The drawing shows an example of the apparatus of the present invention, and is a configuration diagram in the case where the apparatus is combined with an X-ray diffraction apparatus to enable X-ray diffraction measurement.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】X線回折装置における測定試料周辺の相対
湿度雰囲気を0〜100℃の間の任意の温度下で0から100
%まで任意に設定できる相対湿度制御装置。
1. A relative humidity atmosphere around a measurement sample in an X-ray diffractometer at 0 to 100 at an arbitrary temperature between 0 and 100 ° C.
Relative humidity control device that can be set up to% arbitrarily.
【請求項2】0〜100℃の間の任意の一定温度下で発生
する飽和水蒸気を0〜100℃の間の所定の温度の試料容
器に送ることにより、任意の相対湿度雰囲気とすること
を特徴とする請求項1記載の相対湿度制御装置の相対湿
度制御方法。
2. A relative humidity atmosphere can be established by sending saturated steam generated at an arbitrary constant temperature between 0 and 100 ° C. to a sample container having a predetermined temperature between 0 and 100 ° C. The relative humidity control method of the relative humidity control device according to claim 1, which is characterized in that.
【請求項3】X線回折装置における測定試料周辺を外気
から遮蔽し、一定温度とするためヒーターおよび水冷方
式を装置し、且つ測定X線が通過できる恒温試料を容器
内に熱電対を経由して得られた温度信号と目的温度から
ヒーター電圧あるいは電流を制御することによってコン
ピュータ制御を可能とすることを特徴とする0〜100℃
の任意の温度を得る請求項2記載の相対湿度制御方法。
3. An X-ray diffractometer is equipped with a heater and a water cooling system for shielding the surroundings of the sample to be measured from the outside air and maintaining a constant temperature, and a constant temperature sample through which the X-rays to be measured can be passed through a thermocouple in a container. Computer control is possible by controlling the heater voltage or current from the temperature signal obtained by the above and the target temperature.
3. The relative humidity control method according to claim 2, wherein any temperature is obtained.
【請求項4】0〜100℃の間の任意の一定温度下で発生
する飽和水蒸気を電磁弁で調節することによって送付量
のコンピュータ制御を可能とすることを特徴とする0〜
100℃の一定温度下で0〜100%の任意の相対湿度を得る
請求項2および3記載の相対湿度制御方法。
4. A computer control of a delivery amount is made possible by controlling a saturated water vapor generated at an arbitrary constant temperature between 0 and 100 ° C. by a solenoid valve.
The relative humidity control method according to claim 2 or 3, wherein an arbitrary relative humidity of 0 to 100% is obtained under a constant temperature of 100 ° C.
【請求項5】請求項1の相対湿度制御装置にコンピュー
タを接続し、X線回折装置におけるゴニオ制御系コンピ
ュータと連動させて任意の温度および相対湿度雰囲下で
X線回折測定を可能ならしめることを特徴とする請求項
2,3および4記載の相対湿度制御方法。
5. A computer is connected to the relative humidity control apparatus according to claim 1, and X-ray diffraction measurement can be performed in an atmosphere of arbitrary temperature and relative humidity by interlocking with a goniometer control system computer in the X-ray diffraction apparatus. Claims characterized in that
The method for controlling relative humidity according to 2, 3, and 4.
JP2092673A 1990-04-06 1990-04-06 Relative humidity controller and control method thereof Expired - Lifetime JPH0781964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2092673A JPH0781964B2 (en) 1990-04-06 1990-04-06 Relative humidity controller and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2092673A JPH0781964B2 (en) 1990-04-06 1990-04-06 Relative humidity controller and control method thereof

Publications (2)

Publication Number Publication Date
JPH03289549A JPH03289549A (en) 1991-12-19
JPH0781964B2 true JPH0781964B2 (en) 1995-09-06

Family

ID=14061004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2092673A Expired - Lifetime JPH0781964B2 (en) 1990-04-06 1990-04-06 Relative humidity controller and control method thereof

Country Status (1)

Country Link
JP (1) JPH0781964B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164916B2 (en) * 2009-04-28 2013-03-21 エスペック株式会社 Test method and test apparatus
JP5164917B2 (en) * 2009-04-28 2013-03-21 エスペック株式会社 Test method, organic gas supply device and test device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2859910B2 (en) * 1990-01-24 1999-02-24 理学電機株式会社 Humidity control device for X-ray equipment

Also Published As

Publication number Publication date
JPH03289549A (en) 1991-12-19

Similar Documents

Publication Publication Date Title
Provis et al. Geopolymerisation kinetics. 3. Effects of Cs and Sr salts
Mulongo-Masamba et al. Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO 4
BRPI1013114B1 (en) process for preparing a surface-reacted calcium carbonate, aqueous suspension of surface-reacted calcium carbonate, calcium carbonate, and use of surface-reacted calcium carbonate
Ward et al. Effect of Al and organic acids on the surface chemistry of kaolinite
Coulon et al. Immobilization of iodine into a hydroxyapatite structure prepared by cementation
Van Campen et al. An approach to the evaluation of hygroscopicity for pharmaceutical solids
Kersten et al. Surface complexation modeling of arsenate adsorption by akagenéite (β-FeOOH)-dominant granular ferric hydroxide
Jońca et al. SnO2 “Russian Doll” Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub‐ppm CO Detection
Pliekhov et al. Study of water adsorption on EDTA dealuminated zeolite Y
Barshad Thermal analysis techniques for mineral identification and mineralogical composition
JPH0781964B2 (en) Relative humidity controller and control method thereof
Dardenne et al. Identification and characterization of sorbed lutetium species on 2-line ferrihydrite by sorption data modeling, TRLFS and EXAFS
Birken et al. Quantification of impurities, including carbonates speciation for phosphates beneficiation by flotation
Wilke et al. The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates
Suetsugu et al. Crystal growth and structure analysis of twin-free monoclinic hydroxyapatite
Hartmann et al. Electron spin resonance and electron spin echo modulation study of Ni (i) in silicoaluminophosphate type 5: adsorbate interactions and evidence for the framework incorporation of Ni (i)
Beyer et al. Incorporation of cations into zeolites by a new reaction between Brönsted acid zeolites and metals. I. Zinc into faujasites and mordenites
Derkowski et al. Thermal analysis and thermal reactions of smectites: a review of methodology, mechanisms, and kinetics
US3255122A (en) Control of surface area in a catalyst manufacturing process
Kallay et al. Enthalpy of interfacial charging of metal oxide/water systems
Conley et al. Surface acidity in kaolinites
CN115728469A (en) Method for determining distribution concentration of arsenate in soil solid-liquid phase and application
Auroux et al. Acidic properties of titanium-silicalites-1
Valter et al. Characteristics of variably saturated granular bentonite after long-term storage at near-field relevant temperatures
Weir et al. An interstratified illite-smectite from Denchworth series soil in weathered Oxford clay

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term