JPH0781915A - Plate-shaped molecular sieve carbon and production thereof - Google Patents

Plate-shaped molecular sieve carbon and production thereof

Info

Publication number
JPH0781915A
JPH0781915A JP5190631A JP19063193A JPH0781915A JP H0781915 A JPH0781915 A JP H0781915A JP 5190631 A JP5190631 A JP 5190631A JP 19063193 A JP19063193 A JP 19063193A JP H0781915 A JPH0781915 A JP H0781915A
Authority
JP
Japan
Prior art keywords
carbon
plate
molecular sieving
fiber
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5190631A
Other languages
Japanese (ja)
Inventor
Fumihiro Miyoshi
好 史 洋 三
Masayuki Sumi
誠 之 角
Yukihiro Osugi
杉 幸 広 大
Masami Ueda
田 雅 美 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5190631A priority Critical patent/JPH0781915A/en
Publication of JPH0781915A publication Critical patent/JPH0781915A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Inorganic Fibers (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce a molecular sieve carbon formed body having high performance as a molecular sieve with inexpensive starting materials through simple processes. CONSTITUTION:Pitch fibers made infusible are preformed into a plate shape and the resulting plate-shaped preform is carbonized at 760-900 deg.C in an inert gaseous atmosphere to produce the objective plate-shaped molecular sieve carbon made of fibrous molecular sieve carbon whose micropore diameter distribution is ranged within 0.28nm to <0.43nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力スイング吸着法
(PSA法)による空気分離、オフガス等からの水素精
製、有効成分の回収分離、発酵ガス中からのメタン分離
等、ガス分離技術に用いられる板状分子ふるい炭素およ
びその製造方法に関するものである。
FIELD OF THE INVENTION The present invention is used for gas separation technology such as air separation by pressure swing adsorption method (PSA method), hydrogen purification from off gas, recovery separation of active ingredient, methane separation from fermentation gas, etc. And a method for producing the same.

【0002】[0002]

【従来の技術】近年、各種混合ガス中から特定の成分を
分離、精製する技術開発が盛んである。中でもPSAと
称される手法は、装置がコンパクトでランニングコスト
が低いため、多くの用途への展開が期待されている。特
に、疎水性の分子ふるい炭素を用いて、空気から窒素を
分離、回収する空気分離は、窒素の需要の増大に伴っ
て、急激な市場拡大が見込まれる。
2. Description of the Related Art In recent years, technological development for separating and refining specific components from various mixed gases has been active. Among them, the method called PSA is expected to be applied to many applications because the device is compact and the running cost is low. In particular, air separation for separating and recovering nitrogen from air using hydrophobic molecular sieving carbon is expected to rapidly expand the market as the demand for nitrogen increases.

【0003】分子ふるい炭素の特徴は、通常の活性炭が
1〜3nmのミクロ孔を持つのに対し、0.3〜0.5
nmという小さく、かつ狭い分布のミクロ孔を持ってい
ることにある。分子ふるい炭素の製造方法に関しては、
種々の方法が提案されているが、大別すると、1)含浸
法、2)熱分解法、3)賦活法、4)熱分解炭素蒸着
法、5)熱収縮法、の5つに分類することができる。
The characteristics of molecular sieving carbon are 0.3 to 0.5, whereas ordinary activated carbon has micropores of 1 to 3 nm.
The micropores are as small as nm and have a narrow distribution. Regarding the method of producing molecular sieving carbon,
Although various methods have been proposed, they are roughly classified into 5 categories, 1) impregnation method, 2) thermal decomposition method, 3) activation method, 4) thermal decomposition carbon vapor deposition method, and 5) thermal contraction method. be able to.

【0004】含浸法とは、特開昭59−45914号公
報、特開昭61−191510号公報、特開昭62−1
76908号公報等に開示されているように、室温から
300℃程度までの温度範囲で液状を示す炭化水素(ピ
ッチ、樹脂等)を活性炭等の基材内部に浸透させ、次に
炭化処理を施して、炭化水素から熱分解炭素を放出さ
せ、その熱分解炭素により基材のミクロ孔を狭める方法
である。ただし、基材内部への炭化水素の浸透量の制御
が非常に難しいため、発生する熱分解炭素のコントロー
ルができず、製品分子ふるい炭素の品質が安定せず(再
現性が悪い)、製品収率が低いという欠点がある。
The impregnation method refers to JP-A-59-45914, JP-A-61-191510, and JP-A-62-1.
As disclosed in Japanese Patent No. 76908, hydrocarbons (pitch, resin, etc.) that are liquid in the temperature range from room temperature to about 300 ° C. are permeated into the base material such as activated carbon, and then carbonized. Then, pyrolytic carbon is released from the hydrocarbon and the pyrolytic carbon narrows the micropores of the substrate. However, it is very difficult to control the amount of hydrocarbon permeation into the base material, and the generated pyrolytic carbon cannot be controlled, resulting in unstable product molecular sieving carbon quality (poor reproducibility), resulting in poor product yield. It has the disadvantage of low rate.

【0005】熱分解法とは、特開昭62−59510号
公報や特開昭63−139009号公報等に開示されて
いるように、炭素質基材を不活性ガス雰囲気中で熱処理
(炭化)するだけで分子ふるい炭素を製造する方法であ
る。この方法では、含浸法に比べて品質の安定化は容易
である。しかしながら、炭素質基材の品質の安定が必要
とされ、そのため炭素質基材として高価な塩化ビニリデ
ン樹脂やフェノール樹脂の使用を余儀なくされている。
また、これら樹脂の調製法も非常に複雑である。
The thermal decomposition method is a heat treatment (carbonization) of a carbonaceous substrate in an inert gas atmosphere, as disclosed in JP-A-62-59510 and JP-A-63-139909. It is a method of producing molecular sieving carbon simply by performing. This method is easier to stabilize the quality than the impregnation method. However, it is necessary to stabilize the quality of the carbonaceous base material, and thus it is inevitable to use an expensive vinylidene chloride resin or phenol resin as the carbonaceous base material.
Further, the method for preparing these resins is also very complicated.

【0006】高価な材料を使用せざる得ない欠点を解消
するため、特開昭60−227832号公報や特公平2
−58975号公報には石炭やピッチを炭素質基材とし
た、分子ふるい炭素の製造方法が開示されている。しか
し、この方法で得られる分子ふるい炭素は、0.5nm
以上の大きさの分子にしか分子ふるい性を示さず、空気
分離用途や発酵ガス中からのメタンの分離用途等に使用
するには、性能が不充分である。
In order to solve the drawback that an expensive material has to be used, JP-A-60-227832 and Japanese Patent Publication No.
Japanese Patent Laid-Open No. 58975 discloses a method for producing molecular sieving carbon using coal or pitch as a carbonaceous base material. However, the molecular sieving carbon obtained by this method is 0.5 nm.
It has molecular sieving properties only for molecules of the above size, and its performance is insufficient for use in air separation applications, separation of methane from fermentation gas, and the like.

【0007】熱分解炭素蒸着法とは、炭素質基材と炭化
水素ガスを高温で接触させ、炭化水素から放出される熱
分解炭素を炭素質基材のミクロ孔の入口付近に蒸着させ
ることで、炭素質基材のミクロ孔を調整する方法であ
る。この方法によれば、熱分解炭素の発生量を炭化水素
ガスの濃度や温度で制御することができるため、品質の
安定した分子ふるい炭素の製造が可能と考えられる。
The pyrolytic carbon deposition method is a method in which a carbonaceous substrate and a hydrocarbon gas are brought into contact with each other at a high temperature, and pyrolytic carbon released from the hydrocarbon is deposited near the entrance of the micropores of the carbonaceous substrate. A method for adjusting micropores in a carbonaceous substrate. According to this method, since the amount of pyrolytic carbon generated can be controlled by the concentration and temperature of the hydrocarbon gas, it is considered possible to produce stable molecular sieving carbon.

【0008】特公昭52−18675号公報には、炭素
質基材として揮発分5%以下のコークスを使用し、熱分
解炭素蒸着法で分子ふるい炭素を製造する方法が開示さ
れている。しかし、石炭等から出発して熱処理によりコ
ークスを製造するにあたっては、得られたコークスのミ
クロ孔径分布が広い、等の理由から、熱分解炭素蒸着法
に適した炭素質基材を再現性良く、かつ効率的に得るこ
とは困難である。特開平1−502743号公報には、
炭素質基材としてのコークスを、水蒸気を含む不活性ガ
スで賦活化して強制的にミクロ孔を発生させ、その後発
生させたミクロ孔に熱分解炭素を蒸着する方法が開示し
てある。しかし、本方法も熱分解炭素蒸着法に用いる賦
活化コークスの細孔分布の点から、ミクロ孔径の制御が
困難である。
Japanese Patent Publication No. 52-18675 discloses a method for producing molecular sieving carbon by a pyrolytic carbon deposition method using coke having a volatile content of 5% or less as a carbonaceous substrate. However, when producing coke by heat treatment starting from coal or the like, the obtained coke has a wide micropore size distribution, and therefore the carbonaceous substrate suitable for the pyrolytic carbon vapor deposition method has good reproducibility, And it is difficult to obtain efficiently. Japanese Patent Laid-Open No. 1-502743 discloses that
A method is disclosed in which coke as a carbonaceous substrate is activated with an inert gas containing water vapor to forcibly generate micropores, and then pyrolytic carbon is deposited on the generated micropores. However, this method is also difficult to control the micropore diameter in terms of the pore distribution of the activated coke used in the pyrolytic carbon deposition method.

【0009】これに対し、特開昭60−171212号
公報には、0.50〜0.55nmという非常にミクロ
な孔分布を持つ炭素質基材を熱分解炭素を放出する炭化
水素を500℃以下で化学吸着させ、その後、高温処理
(熱収縮法)を施して、熱分解炭素をミクロ孔に蒸着さ
せる方法が開示されている。この方法は、熱分解炭素蒸
着法の制御しやすさを利用し、炭素質基材をより厳密に
選定することで、品質の安定した分子ふるい炭素を製造
する方法である。ただし、製造工程は複雑かつ煩雑であ
るという欠点は免れない。また、ミクロ孔径が0.5〜
0.55nmに調整させた炭素質基材は、もう既にそれ
自体が分子ふるい炭素であり、原料としてはかなり高価
なものである。
On the other hand, in JP-A-60-171212, a hydrocarbon which releases pyrolytic carbon from a carbonaceous substrate having a very fine pore distribution of 0.50 to 0.55 nm at 500.degree. A method of chemically adsorbing and then performing high temperature treatment (heat shrinkage method) to deposit pyrolytic carbon on the micropores is disclosed below. This method is a method of producing molecular sieving carbon of stable quality by utilizing the controllability of the pyrolytic carbon deposition method and selecting the carbonaceous substrate more strictly. However, the disadvantage that the manufacturing process is complicated and complicated is inevitable. In addition, the micropore diameter is 0.5 to
The carbonaceous base material adjusted to 0.55 nm is already itself a molecular sieving carbon, and is considerably expensive as a raw material.

【0010】一方、粒状分子ふるい炭素に対して、繊維
状の分子ふるい炭素の製造方法が特開昭57−1010
24号公報に開示されている。これは、特殊な製法によ
る石炭解重合物を溶融紡糸し、不融化後に軽度に賦活化
することにより製造されるものである。しかしながら、
水蒸気等を用いた繊維外部からの賦活化では本発明の目
的の空気分離等に優れた性能を発揮できない。上記公報
の実施例においてもベンゼン・シクロヘキサンの分離の
みが記載されている。また、特公平3−80055号公
報に、繊維状の分子ふるい炭素の製造方法が言及されて
いる。ピッチ繊維を不融化処理し、さらに不活性ガス雰
囲気中、500〜750℃程度まで昇温、熱処理する。
この熱処理(炭化処理)によって、含酸素化合物、例え
ば、CO,CO2 等が繊維外へ放出され、繊維に細孔を
形成するとともに、強度を持たせるものである。しかし
ながら、記載の条件では、吸着容量が粒状の分子ふるい
炭素よりも劣るという問題がある。
On the other hand, a method for producing fibrous molecular sieving carbon as opposed to granular molecular sieving carbon is disclosed in JP-A-57-1010.
No. 24 publication. This is produced by melt-spinning a coal depolymerized product by a special production method, inactivating it and then mildly activating it. However,
Activation from the outside of the fiber using water vapor or the like cannot exhibit excellent performance such as air separation for the purpose of the present invention. Also in the examples of the above publications, only the separation of benzene / cyclohexane is described. In addition, Japanese Patent Publication No. 3-80055 discloses a method for producing fibrous molecular sieving carbon. The pitch fiber is infusibilized, and further heated in an inert gas atmosphere to about 500 to 750 ° C. and heat treated.
By this heat treatment (carbonization treatment), oxygen-containing compounds such as CO and CO 2 are released to the outside of the fiber to form pores in the fiber and to impart strength. However, under the described conditions, there is a problem that the adsorption capacity is inferior to that of the granular molecular sieving carbon.

【0011】繊維状の分子ふるい炭素は、繊維表面にミ
クロ孔が直接開孔されているので、粒状の分子ふるい炭
素に比較して、有効幾何学的表面積が大きくなるという
特徴があり、PSAにおいて、効率的である。一方、繊
維状の形態の場合、充填などにおいて、粒状の分子ふる
い炭素に比較して、ハンドリング性が悪く、また、製造
時にも嵩密度の低い状態で処理するため生産性が悪かっ
た。
The fibrous molecular sieving carbon has micropores directly formed on the surface of the fiber, and therefore has a characteristic that the effective geometric surface area is larger than that of the granular molecular sieving carbon. , Efficient. On the other hand, in the case of the fibrous form, the handling property was poor in filling and the like as compared with the granular molecular sieving carbon, and the productivity was poor because the product was processed in a low bulk density state during the production.

【0012】このようにして製造された繊維状の分子ふ
るい炭素は繊維であるため、繊維集合体としては強度が
弱く、作業性が悪く、取り扱い難く、飛散しやすく、形
状維持特性が悪く、空隙率が高く、充填密度が低いとい
う欠点のために、空隙率、充填密度の再現性が悪いとい
う問題がある。
Since the fibrous molecular sieving carbon produced in this manner is a fiber, it has weak strength as a fiber aggregate, poor workability, is difficult to handle, is easily scattered, has poor shape-maintaining properties, and has a void. Due to the drawbacks of high porosity and low packing density, there is a problem of poor reproducibility of porosity and packing density.

【0013】一方、従来から、吸着材としては、炭素原
料が粒状のものから構成されるもの、活性炭素繊維シー
トから構成されるものが用いられているが、分子ふるい
炭素繊維から構成されている板状分子ふるい炭素は知ら
れていない。
On the other hand, conventionally, as the adsorbent, one having a granular carbon raw material or one having an activated carbon fiber sheet has been used, but it has a molecular sieve carbon fiber. Plate-like molecular sieving carbon is not known.

【0014】特開昭61−12918号公報には、炭素
繊維製造用有機繊維とパルプを抄紙して得られたシート
に有機高分子物質の溶液を含浸し、乾燥、加熱炭化させ
ることにより、多孔質炭素板を製造する方法が、また、
特開昭54−64105号公報には、活性炭素繊維およ
び他の繊維材料を水中に分散して抄紙する吸着性シート
を製造する方法が開示されている。さらに、塊状の活性
炭素繊維集合体は特開平2−38374号公報に開示さ
れている。しかしながら、これらの多孔質炭素材はいず
れも分子ふるい性を有していない。
In Japanese Patent Laid-Open No. 61-12918, a sheet obtained by making a paper from organic fibers for producing carbon fibers and pulp is impregnated with a solution of an organic polymer substance, dried and carbonized by heating to obtain a porous film. To produce a high quality carbon plate,
JP-A-54-64105 discloses a method for producing an adsorptive sheet in which activated carbon fibers and other fiber materials are dispersed in water to make a paper. Further, a lump-shaped activated carbon fiber aggregate is disclosed in JP-A-2-38374. However, none of these porous carbon materials has a molecular sieving property.

【0015】吸着カラム用にコンパクトでハンドリング
性に優れた形状の分子ふるい炭素材を得ようとすれば、
吸着材の形態に合った成形体の分子ふるい炭素材を製造
する必要がある。従来の分子ふるい炭素の製造方法から
成形体を得ようとすれば、煩雑な工程を経ているため、
板状成形体の分子ふるい特性が均質にならないという問
題があった。
In order to obtain a compact molecular sieve carbon material having a good handling property for an adsorption column,
It is necessary to produce a molecular sieve carbon material of a molded body that matches the form of the adsorbent. If you try to obtain a molded product from the conventional method for producing molecular sieving carbon, it will go through complicated steps,
There is a problem that the molecular sieving property of the plate-shaped molded product is not uniform.

【0016】[0016]

【発明が解決しようとする課題】本発明は、高価な材料
を使用せず、賦活化プロセスを導入せずに、高性能の分
子ふるい炭素の板状成形体を簡便に、安価に、再現性良
く製造することにある。すなわち、本発明は、粒状の分
子ふるい炭素以上のハンドリング性と、分子ふるい特
性、吸着容量を保持し、さらに、粒状の分子ふるい炭素
に比較して、充填容積当たりの有効幾何学的表面積が大
きい板状分子ふるい炭素、およびその製造方法を提供す
ることを目的とするものである。本発明によれば賦活化
プロセスを経ないため、収率も改善される。また、本発
明は強度の大きい分子ふるい炭素成形体を提供すること
を目的とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a high-performance molecular sieve carbon plate-shaped molded body easily, at low cost, and with high reproducibility without using an expensive material or introducing an activation process. It is to manufacture well. That is, the present invention retains the handling property more than granular molecular sieving carbon, the molecular sieving property, and the adsorption capacity, and has a larger effective geometric surface area per filling volume as compared with the granular molecular sieving carbon. It is an object of the present invention to provide a plate-like molecular sieving carbon and a method for producing the same. According to the present invention, since the activation process is not performed, the yield is also improved. Another object of the present invention is to provide a molecular sieving carbon compact having high strength.

【0017】[0017]

【課題を解決するための手段】本発明者等は、過剰に不
融化されたピッチ繊維の炭化処理の際に発生するミクロ
孔径分布に着目して鋭意検討した結果、本発明に至った
ものである。
Means for Solving the Problems The present inventors have achieved the present invention as a result of diligent study by paying attention to the micropore size distribution generated in the carbonization treatment of excessively infusibilized pitch fiber. is there.

【0018】ピッチ繊維を酸化性雰囲気にて、炭素繊維
強度が最大となる不融化条件以上の酸化条件にて不融化
処理した場合は750℃以上でも酸素の吸着容量の増加
が観察され、さらにミクロ孔径が狭まることを見いだし
た。さらに、過剰に不融化された繊維塊で構成された成
形体にして、炭化処理しても、分子ふるい性がほとんど
劣化しないことを見いだした。また、板状に成形すると
充填量を大きくすることができ、板状形状の少なくとも
片面に凹凸があり、かつ凹部が連続した構造であると、
吸着層内での圧力損失を低下させる効果がある。
When the pitch fibers are infusibilized in an oxidizing atmosphere under the oxidizing conditions of the infusibilizing conditions or higher at which the carbon fiber strength is maximized, an increase in oxygen adsorption capacity is observed even at 750 ° C. or higher. It was found that the pore size was narrowed. Further, it was found that the molecular sieving property is hardly deteriorated even when a molded body composed of an excessively infusible fiber lump is carbonized. In addition, when it is molded into a plate shape, the filling amount can be increased, and at least one surface of the plate shape has irregularities, and the structure has continuous recesses,
It has the effect of reducing the pressure loss in the adsorption layer.

【0019】即ち、ピッチ繊維を酸化性雰囲気にて過剰
に不融化処理し、不融化ピッチ繊維とピッチバインダー
を混合し、板状に予備成形し、繊維同士を接着させるた
めにピッチバインダーが溶融するまで昇温して所定の形
状に成形した後、不活性ガス雰囲気下、760〜900
℃にて炭化処理し、板状分子ふるい炭素成形体を得る。
さらに、ミクロ孔径を狭める場合は、熱分解炭素蒸着法
にて板状分子ふるい炭素成形体を製造しても良い。
That is, the pitch fibers are excessively infusibilized in an oxidizing atmosphere, the infusibilized pitch fibers and the pitch binder are mixed and preformed into a plate shape, and the pitch binder is melted to bond the fibers together. After being heated up to a predetermined shape, the temperature is raised to 760 to 900 in an inert gas atmosphere.
Carbonization treatment is performed at ℃ to obtain a plate-shaped molecular sieve carbon molded product.
Further, in the case of narrowing the micropore diameter, a plate-shaped molecular sieving carbon compact may be produced by a pyrolytic carbon deposition method.

【0020】この方法で得られる板状分子ふるい炭素成
形体はミクロ孔径が0.28〜0.43nm未満と狭
く、また、吸着カラムに適合した形態の板状分子ふるい
炭素成形体を製造できる。このため空気分離や発酵ガス
中からのメタンの分離等に優れた性能を発揮できること
を明らかにした。なお、本発明におけるミクロ孔径とは
2nm以下の細孔を示す。
The plate-shaped molecular sieving carbon molded product obtained by this method has a narrow micropore size of 0.28 to less than 0.43 nm, and a plate-shaped molecular sieving carbon molded product having a form suitable for an adsorption column can be produced. Therefore, it has been clarified that it can exhibit excellent performances such as air separation and separation of methane from fermentation gas. In addition, the micropore diameter in the present invention refers to pores having a diameter of 2 nm or less.

【0021】また、タールピッチを原料として、紡糸し
た後に、通常の炭素繊維製造における不融化処理条件、
すなわち、炭素繊維強度をほぼ最大にする不融化処理条
件においては、500〜750℃の温度にて炭化処理す
ると、やや分子ふるい性を有する分子ふるい炭素が調製
できるが、吸着容量が低く、分子ふるい特性も悪かっ
た。また、過剰に不融化処理すると、繊維状であるた
め、繊維強度が低下するという問題があった。
In addition, after the tar pitch is spun as a raw material, the infusibilizing treatment condition in the usual carbon fiber production is
That is, under the infusibilizing treatment conditions that maximize the carbon fiber strength, when carbonization treatment is performed at a temperature of 500 to 750 ° C., molecular sieving carbon having a little molecular sieving property can be prepared, but the adsorption capacity is low and the molecular sieving is small. The characteristics were also bad. Further, if the infusibilization treatment is excessively performed, there is a problem that the fiber strength is lowered because it is fibrous.

【0022】本発明者等は、上記課題を解決すべく鋭意
検討した結果、過剰に不融化処理された不融化繊維を
得、ついで、所望形状に、好ましくは板状に成形し、不
活性ガス雰囲気にて760〜900℃の温度にて炭化処
理すると吸着容量が高く、分子ふるい性に優れた板状の
分子ふるい炭素が得られることを見いだし、本発明を完
成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventors obtained an infusibilized fiber that was excessively infusibilized, and then formed it into a desired shape, preferably a plate shape, and then used an inert gas. It has been found that plate-like molecular sieving carbon having a high adsorption capacity and excellent molecular sieving property can be obtained by carbonizing at a temperature of 760 to 900 ° C. in the atmosphere, and completed the present invention.

【0023】すなわち、本発明は、繊維状分子ふるい炭
素から構成され、分子ふるい炭素のミクロ孔径分布が
0.28nm以上0.43nm未満の範囲にある分子ふ
るい炭素成形体を提供するものであり、成形体は板状に
するのがよく、成形体の表面の少なくとも一部に凹凸が
あり、板状分子ふるい炭素成形体のときにはその少なく
とも片面に凹凸があり、かつ凹部が連続した構造である
ことが望ましい。また、成形体は板状のものをそのまま
用いてもよいし、ハニカム状にして用いてもよい。
That is, the present invention provides a molecular sieving carbon molded body composed of fibrous molecular sieving carbon and having a micropore size distribution of the molecular sieving carbon in the range of 0.28 nm or more and less than 0.43 nm, The molded product is preferably in the form of a plate, and at least a part of the surface of the molded product has irregularities, and in the case of a plate-shaped molecular sieve carbon molded product, at least one surface has irregularities, and the recesses have a continuous structure. Is desirable. Further, as the molded body, a plate-shaped body may be used as it is or a honeycomb-shaped body may be used.

【0024】また、本発明は、ピッチ繊維を酸化性雰囲
気にて過剰に不融化処理し、不融化ピッチ繊維とピッチ
バインダーを混合し、好ましくは板状に予備成形し、繊
維同士を接着されるためにピッチバインダーが溶融する
まで昇温して所定の形状に成形した後、不活性ガス雰囲
気760〜900℃にて炭化処理を施すことを特徴とす
る多孔質分子ふるい炭素成形体の製造方法を提供するも
のであり、望ましくは、不融化されたピッチ繊維の酸素
含有量は10〜15重量%、繊維長は0.02〜20m
m、繊維径は4〜60μm、板状体のみかけ密度は0.
1g/cm3 以上、より好ましくは0.6g/cm3
であるのがよい。
In the present invention, the pitch fibers are excessively infusibilized in an oxidizing atmosphere, the infusibilized pitch fibers and the pitch binder are mixed, and preferably preformed into a plate shape, and the fibers are bonded to each other. For that purpose, the method for producing a porous molecular sieve carbon molded body is characterized in that the pitch binder is heated until it is melted and molded into a predetermined shape, and then carbonized in an inert gas atmosphere of 760 to 900 ° C. Desirably, the infusibilized pitch fiber has an oxygen content of 10 to 15% by weight and a fiber length of 0.02 to 20 m.
m, the fiber diameter is 4 to 60 μm, and the apparent density of the plate-shaped body is 0.
It is preferably 1 g / cm 3 or more, more preferably more than 0.6 g / cm 3 .

【0025】[0025]

【作用】以下に本発明の板状分子ふるい炭素およびその
製造方法についてさらに詳細に説明する。本発明の板状
分子ふるい炭素は、後に詳述する繊維状分子ふるい炭素
で構成され、そのミクロ孔径分布は0.28nm以上
0.43nm未満である。この成形体は限定されもので
はないが、板状にするのがよく、さらに板状体の少なく
とも片面には凹凸を有し、図1にも示すように凹部が連
続した構造にするのが好適である。
The plate-like molecular sieving carbon of the present invention and the method for producing the same will be described in more detail below. The plate-like molecular sieving carbon of the present invention is composed of fibrous molecular sieving carbon, which will be described in detail later, and its micropore size distribution is 0.28 nm or more and less than 0.43 nm. Although this molded body is not limited, it is preferable to make it into a plate shape, and it is preferable that at least one surface of the plate body has irregularities and the recessed portions are continuous as shown in FIG. Is.

【0026】次に、本発明の板状分子ふるい炭素の製造
方法についてを詳細に説明する。本発明に用いる原料
は、タールピッチが好ましい。これは、従来、活性炭素
繊維が製造されているポリアクリロニトリル系、フェノ
ール樹脂系、セルロース系に比較して、ピッチは原料と
して安価であり、製品収率が高く、不融化度の調整が容
易で、ミクロ孔径分布の狭いものが調製できるためであ
る。また、ここで用いるピッチは、後工程の紡糸、不融
化、炭化に適したものとなるように重質化された高軟化
点のものが適しており、特に200℃以上の軟化点のも
のが好ましい。このようなピッチとして、例えば、特公
昭61−002712号公報などに提案されている、精
製、溶剤抽出、蒸留、熱処理などを施して調製されたも
ので、実質的に光学的等方性ピッチが適している。これ
は、等方性ピッチより得られる炭素材は非晶質なため、
細孔構造を制御し易いためである。
Next, the method for producing the plate-like molecular sieving carbon of the present invention will be described in detail. The raw material used in the present invention is preferably tar pitch. This is because the pitch is cheaper as a raw material than the polyacrylonitrile-based, phenol resin-based, and cellulose-based materials in which activated carbon fibers are conventionally manufactured, the product yield is high, and the degree of infusibilization is easy to adjust. The reason is that a product having a narrow micropore size distribution can be prepared. In addition, the pitch used here is preferably one having a high softening point which is made heavy so as to be suitable for spinning, infusibilization and carbonization in the subsequent steps, and particularly one having a softening point of 200 ° C. or higher is suitable. preferable. As such a pitch, for example, a pitch prepared by subjecting to purification, solvent extraction, distillation, heat treatment, etc., which is proposed in Japanese Patent Publication No. 61-002712, has a substantially optically isotropic pitch. Are suitable. This is because the carbon material obtained from the isotropic pitch is amorphous,
This is because it is easy to control the pore structure.

【0027】次に、ピッチの紡糸は、公知の方法により
行なうことができ、例えば溶融押出紡糸、遠心紡糸等の
方法を採用することができる。上記ピッチ繊維の繊維径
は、好ましくは、4μmから60μmである。また、本
発明の板状分子ふるい炭素成形体の見かけ密度は、0.
1g/cm3 以上、より好ましくは0.6g/cm3
が好ましい。これは、繊維塊の見かけ密度が低すぎる
と、成形体の強度を保てなくなるためである。
Next, pitch spinning can be carried out by a known method, for example, melt extrusion spinning, centrifugal spinning, or the like. The fiber diameter of the pitch fiber is preferably 4 μm to 60 μm. Further, the apparent density of the plate-shaped molecular sieve carbon molded product of the present invention is 0.
It is preferably 1 g / cm 3 or more, more preferably more than 0.6 g / cm 3 . This is because if the apparent density of the fiber mass is too low, the strength of the molded body cannot be maintained.

【0028】また、繊維長さは、好ましくは、0.02
mm以上20mm以下である。これは、繊維長が短すぎ
ると繊維の形態の効果が少なく、バインダーを多く必要
とし、空隙率の低下、および分子ふるい性能が劣化す
る。繊維長さが長すぎると空隙率が大きくなりやすく、
また、成形体の均質性を悪化させる。板厚は、好ましく
は、1mm以上10mm以下である。これは、板厚が薄
すぎると成形体の強度が低下し、板厚が厚すぎると成形
体の均質性を悪化させるとともに分子ふるい性が劣化す
る。
The fiber length is preferably 0.02.
It is not less than mm and not more than 20 mm. This is because if the fiber length is too short, the effect of the morphology of the fiber is small, a large amount of binder is required, the porosity is lowered, and the molecular sieving performance is deteriorated. If the fiber length is too long, the porosity tends to increase,
Moreover, the homogeneity of the molded body is deteriorated. The plate thickness is preferably 1 mm or more and 10 mm or less. This is because if the plate thickness is too thin, the strength of the molded product will decrease, and if the plate thickness is too thick, the homogeneity of the molded product will deteriorate and the molecular sieving property will deteriorate.

【0029】不融化処理は、得られたピッチ繊維を高温
で炭化する際に形状を維持できるようにするために、酸
化性の雰囲気下で150〜350℃程度の温度で処理す
るが、炭素繊維の製造においては、通常、炭化時に炭素
繊維強度が最大となる不融化条件で酸化処理される。一
方、本発明での過剰に不融化処理する方法としては、炭
素繊維製造時の通常の不融化条件より長時間、高温度、
もしくは、高酸化性ガス濃度で処理される。この不融化
処理は、酸化性ガス、例えば、空気、酸素、二酸化窒
素、オゾンなどのガス雰囲気中で加熱処理することによ
り行なうことができる。
The infusibilizing treatment is carried out at a temperature of about 150 to 350 ° C. in an oxidizing atmosphere in order to maintain the shape when carbonizing the obtained pitch fiber at a high temperature. In the production of (1), the oxidation treatment is usually performed under the infusibilizing conditions that maximize the carbon fiber strength during carbonization. On the other hand, as a method of excessive infusibilizing treatment in the present invention, a longer time than the usual infusibilizing conditions during carbon fiber production, high temperature,
Alternatively, the treatment is performed with a high oxidizing gas concentration. This infusibilization treatment can be performed by heat treatment in a gas atmosphere of an oxidizing gas such as air, oxygen, nitrogen dioxide, or ozone.

【0030】繊維を板状に成形化する方法としては、例
えば、不融化繊維とバインダーを混合し、平底の金型容
器に所定量装入し、予備成形した後、バインダーの軟化
点よりも高い温度まで昇温し、バインダーを溶融し、不
融化繊維同士を接着して成形する。望ましくは、この成
形時に圧力を加えるのが良い。板状分子ふるい炭素の表
面に凹凸をつける場合は、平底の金型容器表面に所定の
形状の凹凸を付けておくのが望ましい。このとき、凹部
は連続した構造にしておくのがよい。このように凹凸を
つけておくと、ガスの流通性をよくし、吸着時の圧力損
失を小さくすることができる。
As a method of forming the fiber into a plate shape, for example, the infusible fiber and the binder are mixed, charged into a flat-bottomed mold container in a predetermined amount, preformed, and then higher than the softening point of the binder. The temperature is raised to a temperature, the binder is melted, and the infusible fibers are bonded to each other to be molded. Desirably, pressure is applied during this molding. When the surface of the plate-like molecular sieving carbon is provided with irregularities, it is desirable to provide the flat-bottomed mold container surface with irregularities of a predetermined shape. At this time, it is preferable that the recess has a continuous structure. By providing the unevenness in this manner, the gas flowability can be improved and the pressure loss during adsorption can be reduced.

【0031】すなわち、凹部の連続構造の効果は、ガス
の流れる流路を確保するためであり、吸着時の圧力損失
の低下、脱着時の吸着ガスの脱着速度を速める効果があ
る。また、成型体内部をガスが流通しないでよいため、
成型体の密度を高め、吸着槽に充填する際の充填量を大
きくすることが可能となる。板状であるため、ガス流路
から成型体内部へのガス拡散が容易に行なわれる効果が
ある。
That is, the effect of the continuous structure of the concave portions is to secure the flow path of the gas, and it has the effects of reducing the pressure loss during adsorption and increasing the desorption rate of the adsorbed gas during desorption. Also, since the gas does not have to flow inside the molded body,
It is possible to increase the density of the molded body and increase the filling amount when filling the adsorption tank. Since it is plate-shaped, there is an effect that gas can be easily diffused from the gas flow path into the inside of the molded body.

【0032】バインダーとしては、軟化点が80〜15
0℃程度の石炭系ピッチ、フェノール樹脂、フラン樹
脂、エポキシ樹脂等が使用できるが、分子ふるい性能を
劣化させないためには、軟化点が80〜150℃程度の
石炭系ピッチが好ましい。接着剤として働くバインダー
の量は、バインダーの残炭分(バインダーを不活性ガス
雰囲気下1000℃まで昇温した場合の残量で定義す
る)が繊維重量100重量部に対して、1重量部以上3
0重量部以下で使用することが好ましい。30重量部よ
り多いと、空隙率が低下、および分子ふるい性能の劣化
を招いて好ましくなく、また1重量部未満だと接着効果
がないからである。
The binder has a softening point of 80 to 15
Coal-based pitch of about 0 ° C., phenol resin, furan resin, epoxy resin and the like can be used, but coal-based pitch having a softening point of about 80 to 150 ° C. is preferable in order not to deteriorate the molecular sieving performance. The amount of the binder acting as an adhesive is 1 part by weight or more based on 100 parts by weight of the fiber when the residual carbon content of the binder (defined by the residual amount when the binder is heated to 1000 ° C. in an inert gas atmosphere) is 100 parts by weight. Three
It is preferably used in an amount of 0 parts by weight or less. This is because if it is more than 30 parts by weight, the porosity is lowered and the molecular sieving performance is deteriorated, which is not preferable, and if it is less than 1 part by weight, there is no adhesive effect.

【0033】このようにして得られた過剰に不融化処理
された繊維からなる板状の形成体を不活性ガス雰囲気下
で、760℃以上、900℃以下、より好ましくは80
0℃以上、900℃以下に加熱し、炭化することによ
り、吸着容量の大きい、分子ふるい性に優れた0.28
nm以上、0.43nm未満のミクロ孔を持つ繊維で構
成された板状の分子ふるい炭素が調製できる。760℃
未満では、ミクロ孔径分布が広くなり、900℃超では
ミクロ孔径が狭くなりすぎて、吸着速度の低下が大き
く、実用に適さない。
The plate-shaped formed body made of the excessively infusibilized fiber thus obtained is treated under an inert gas atmosphere at a temperature of 760 ° C. or higher and 900 ° C. or lower, more preferably 80 ° C.
0.28, which has a large adsorption capacity and excellent molecular sieving property, by being heated to 0 ° C or higher and 900 ° C or lower and carbonized
A plate-like molecular sieving carbon composed of fibers having micropores of not less than nm and less than 0.43 nm can be prepared. 760 ° C
If it is less than 1, the micropore size distribution becomes wide, and if it exceeds 900 ° C., the micropore size becomes too narrow, and the adsorption rate is greatly reduced, which is not suitable for practical use.

【0034】前記の加熱炭化時間は5分以上、8時間以
下、より好ましくは10分以上、2時間以下が好まし
い。5分未満ではミクロ孔径分布が広く、8時間超では
ミクロ孔径が狭くなりすぎて、吸着速度の低下が大きく
実用に適さない。
The heating and carbonizing time is preferably 5 minutes or more and 8 hours or less, more preferably 10 minutes or more and 2 hours or less. If it is less than 5 minutes, the micropore size distribution is wide, and if it exceeds 8 hours, the micropore size becomes too narrow, and the adsorption rate is large, which is not suitable for practical use.

【0035】本発明の製造方法でつくられた板状分子ふ
るい炭素は、n−ブタン(最小分子径0.43nm)を
ほとんど吸着せず、酸素(最小分子径0.28nm)、
二酸化炭素(最小分子径0.33nm)をよく吸着し、
ミクロ孔径分布が狭いため、酸素、窒素の分離、二酸化
炭素、メタンの分離性に優れている。炭化処理条件(温
度、時間)を調整することにより、このミクロ孔径分布
を調整することができる。炭化温度を高くすることによ
りミクロ孔径分布をさらに狭くすることができる。
The plate-like molecular sieving carbon produced by the production method of the present invention hardly adsorbs n-butane (minimum molecular diameter 0.43 nm), and oxygen (minimum molecular diameter 0.28 nm),
Well adsorbs carbon dioxide (minimum molecular diameter 0.33 nm),
Since the micropore size distribution is narrow, it is excellent in separating oxygen and nitrogen, and separating carbon dioxide and methane. This micropore size distribution can be adjusted by adjusting the carbonization conditions (temperature, time). The micropore size distribution can be further narrowed by increasing the carbonization temperature.

【0036】また、さらに本発明においては、前記炭化
処理により得られた板状分子ふるい炭素に熱分解炭素を
蒸着させる製造方法もとれる。すでにミクロ孔径分布が
調整されているため、熱分解炭素の蒸着条件は穏やかな
条件が採用できる。すなわち、前記炭化処理された板状
の成形体を不活性ガス雰囲気で600〜850℃まで加
熱し、引き続き前記温度で、芳香族炭化水素および/ま
たは脂環式炭化水素を含む不活性ガス雰囲気下で処理す
れば、芳香族炭化水素または脂環式炭化水素から放出さ
れる熱分解炭素がミクロ孔入り口付近に蒸着する。蒸着
処理温度、蒸着処理時間、芳香族炭化水素、脂環式炭化
水素の濃度を制御することにより、0.28nm以上、
0.43nm未満のミクロ孔を持つ板状分子ふるい炭素
を、再現性良く、安価に製造することができる。
Further, in the present invention, there is provided a manufacturing method in which pyrolytic carbon is vapor-deposited on the plate-like molecular sieving carbon obtained by the carbonization treatment. Since the micropore size distribution has already been adjusted, mild conditions can be used for the deposition of pyrolytic carbon. That is, the carbonized plate-shaped molded body is heated to 600 to 850 ° C. in an inert gas atmosphere, and subsequently at the temperature under an inert gas atmosphere containing an aromatic hydrocarbon and / or an alicyclic hydrocarbon. When treated with, the pyrolytic carbon released from the aromatic hydrocarbon or the alicyclic hydrocarbon is vapor-deposited near the entrance of the micropores. By controlling the vapor deposition treatment temperature, the vapor deposition treatment time, the concentrations of aromatic hydrocarbons and alicyclic hydrocarbons, 0.28 nm or more,
Plate-like molecular sieving carbon having micropores of less than 0.43 nm can be produced with good reproducibility and at low cost.

【0037】前記熱分解炭素の蒸着温度は、600〜8
50℃、好ましくは、700〜750℃である。600
℃未満では、熱分解炭素の発生量が少ないため、蒸着に
膨大な時間を要するからである。850℃超では、逆に
熱分解炭素の発生量が多すぎて、最適な熱分解炭素蒸着
時間が短くなりすぎて、ミクロ孔径狭小化速度を制御で
きないからである。芳香族炭化水素としては、ベンゼ
ン、キシレン、トルエン、エチルベンゼン、ナフタレン
等が、また脂環式炭化水素としてはシクロヘキサン等が
例示される。またはそれらの混合ガスでもよく、芳香族
炭化水素、脂環式炭化水素の不活性ガス中の濃度は、3
〜15%が好ましい。蒸着処理時間は、蒸着時間、芳香
族炭化水素の濃度、使用装置等で変化するので、種々の
組み合わせの中から選定すれば良いが、工業的な製造で
は10分〜120分の間にするのが品質の安定性の観点
から好ましい。
The deposition temperature of the pyrolytic carbon is 600-8.
The temperature is 50 ° C, preferably 700 to 750 ° C. 600
This is because if the temperature is lower than 0 ° C, the amount of pyrolytic carbon generated is small, and thus it takes a huge amount of time for vapor deposition. If it exceeds 850 ° C., on the contrary, the amount of pyrolytic carbon generated is too large, and the optimum pyrolytic carbon deposition time becomes too short, so that the micropore diameter narrowing rate cannot be controlled. Examples of aromatic hydrocarbons include benzene, xylene, toluene, ethylbenzene, naphthalene, and examples of alicyclic hydrocarbons include cyclohexane. Alternatively, a mixed gas thereof may be used, and the concentration of the aromatic hydrocarbon and the alicyclic hydrocarbon in the inert gas is 3
-15% is preferable. Since the vapor deposition treatment time varies depending on the vapor deposition time, the concentration of aromatic hydrocarbons, the equipment used, etc., it may be selected from various combinations, but in industrial production, it should be between 10 and 120 minutes. Is preferable from the viewpoint of quality stability.

【0038】以上の製造方法で、高品質の多孔質分子ふ
るい炭素成形体を得ることができるが、蒸着処理後、引
き続いて、不活性ガス雰囲気下で、蒸着処理温度以上、
900℃以下の温度に保持すると、なお一層良い。この
効果は、蒸着処理で得られたミクロ孔径分布を強固に固
定することにある。また、高温保持には0.4nmを越
えるミクロ孔径を狭める効果もあるので、蒸着処理で生
成したミクロ孔径分布をより、シャープにする効果もあ
る。蒸着処理温度以下ではこの効果は得られない。
A high-quality porous molecular sieving carbon molded body can be obtained by the above-mentioned manufacturing method. However, after the vapor deposition treatment, subsequently, in an inert gas atmosphere, the vapor deposition treatment temperature or higher,
It is even better to keep the temperature below 900 ° C. The effect is to firmly fix the micropore size distribution obtained by the vapor deposition process. Further, holding at high temperature also has the effect of narrowing the micropore diameter exceeding 0.4 nm, and therefore has the effect of making the distribution of micropores generated by the vapor deposition treatment sharper. This effect cannot be obtained below the vapor deposition treatment temperature.

【0039】以上説明した方法により、ミクロ孔径が
0.28nm以上、0.43nm未満で、かつミクロ孔
径分布の狭い板状分子ふるい炭素成形体を簡便に、かつ
再現性良く製造することができる。
By the method described above, it is possible to easily and reproducibly produce a plate-shaped molecular sieve carbon molded product having a micropore size of 0.28 nm or more and less than 0.43 nm and a narrow micropore size distribution.

【0040】本発明の板状分子ふるい炭素成形体は、繊
維状分子ふるい炭素から構成されているため強度が大き
い。さらに、本発明の板状分子ふるい炭素成形体は、用
途に応じた成形体の形態で得ることができ、作業性、ハ
ンドリング性に優れ、均質な充填が可能で、単位容積当
たりの吸着量が大きく、ガス流路が確保されているた
め、吸脱着における圧力損失が少ない。また、成形体の
強度も高く、粉化性損失が少なく、吸脱着回数の多いP
SA等への使用に適している。
The plate-like molecular sieving carbon molded product of the present invention is made of fibrous molecular sieving carbon and therefore has a high strength. Furthermore, the plate-shaped molecular sieve carbon molded body of the present invention can be obtained in the form of a molded body according to the application, is excellent in workability and handleability, can be homogeneously filled, and has an adsorption amount per unit volume. Since it is large and the gas flow path is secured, pressure loss during adsorption / desorption is small. Also, the strength of the molded product is high, the loss of pulverization is small, and the number of adsorption / desorption cycles is high.
Suitable for use in SA etc.

【0041】[0041]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。 (実施例1)タールピッチを原料として、ベンゼン不溶
分を56重量%含む軟化点215℃(温度傾斜法)全面
光学的等方性ピッチ(プリカーサーピッチ)を溶融紡糸
し、ピッチ繊維を得た。得られたピッチ繊維は連続長繊
維で、径は14μmであった。これを345℃まで空気
流通下で、不融化処理した。得られた不融化繊維の全繊
維重量を基準とした酸素含有率は13.1重量%であっ
た。
EXAMPLES The present invention will be specifically described below based on examples. Example 1 Tar pitch was used as a raw material, and a softening point of 215 ° C. (temperature gradient method) containing 56% by weight of benzene insoluble matter was melt-spun to obtain an optically isotropic pitch (precursor pitch), thereby obtaining pitch fibers. The pitch fiber obtained was a continuous long fiber and had a diameter of 14 μm. This was infusibilized to 345 ° C. under air flow. The oxygen content based on the total fiber weight of the obtained infusible fiber was 13.1% by weight.

【0042】得られた不融化繊維を自動繊維切断機で3
mmの長さに切断し、回転円盤式コーヒーミル粉砕機で
解砕処理して短繊維状(平均繊維長さ0.4mm)の不
融化短繊維を得た。短繊維100重量部に対して平均粒
子径5μmのピッチ微粒子(ピッチバインダー軟化点1
09℃)を残炭分換算で8重量部をあらかじめ混合し、
15mm間隔で1mm深さの5mmφの円筒台形の窪み
のある平底の金型容器に所定量装入し、上蓋平板に圧力
(0.1kgf/mm2 )をかけて予備成形した。予備
成形後、150℃まで昇温し、バインダーを溶融し、不
融化繊維同士を接着して成形した。得られた成形体を図
1に示す。図1において、(a)は単体を示し、(b)
はその積層複合体を示す。
The infusibilized fiber thus obtained was subjected to 3 by an automatic fiber cutting machine.
It was cut to a length of mm and crushed by a rotary disk type coffee mill grinder to obtain short fiber-like (average fiber length 0.4 mm) infusible short fibers. Pitch fine particles having an average particle diameter of 5 μm per 100 parts by weight of short fibers (pitch binder softening point 1
(09 ° C) is mixed in advance with 8 parts by weight in terms of residual carbon content,
A predetermined amount was charged into a flat-bottomed mold container having a recess of 5 mmφ and a trapezoid of 5 mmφ at 15 mm intervals and pre-molded by applying pressure (0.1 kgf / mm 2 ) to the upper lid plate. After preforming, the temperature was raised to 150 ° C., the binder was melted, and the infusible fibers were adhered to each other for molding. The obtained molded body is shown in FIG. In FIG. 1, (a) shows a single body, (b)
Indicates the laminated composite.

【0043】得られた板状の不融化繊維成形体を不活性
ガス雰囲気下(窒素ガス流通下)で、850℃まで昇温
し、0.5h炭化処理し、凸部を含む板厚6mmの多孔
質分子ふるい炭素成形体を得た。成形体みかけ密度は
0.7g/cm3 であった。850℃処理での炭化収率
は不融化繊維成形体に対して、79.5重量%であっ
た。得られた多孔質分子ふるい炭素成形体の一部を切り
取り、ミクロ孔径分布および分子ふるい性の評価を行な
った。分子ふるい性を評価するために、酸素(最小分子
径:0.28nm)、窒素(最小分子径:0.30n
m)、二酸化炭素(最小分子径:0.33nm)、エタ
ン(最小分子径:0.40nm)、n−ブタン(最小分
子径:0.43nm)、i−ブタン(最小分子径:0.
50nm)、四塩化炭素(最小分子径:0.60nm)
に対する、吸着等温線(25℃)を測定した。測定に
は、定容法による吸着等温線測定装置ベルソープ18
(日本ベル(株)製)を用いた。850℃炭化処理品の
粗粉砕品の測定結果を図2に示す。また、前記850℃
炭化処理品の粗粉砕品を用いた、二酸化炭素、メタン
(最小分子径:0.40nm)、n−ブタンの吸着等温
線測定結果を図3に示す。
The obtained plate-shaped infusible fiber molding was heated to 850 ° C. in an inert gas atmosphere (nitrogen gas flow), carbonized for 0.5 h, and having a plate thickness of 6 mm including a convex portion. A porous molecular sieve carbon compact was obtained. The apparent density of the molded body was 0.7 g / cm 3 . The carbonization yield at 850 ° C. treatment was 79.5% by weight based on the infusible fiber molding. A part of the obtained porous molecular sieving carbon compact was cut out, and the micropore size distribution and the molecular sieving property were evaluated. In order to evaluate the molecular sieving property, oxygen (minimum molecular diameter: 0.28 nm), nitrogen (minimum molecular diameter: 0.30 n)
m), carbon dioxide (minimum molecular diameter: 0.33 nm), ethane (minimum molecular diameter: 0.40 nm), n-butane (minimum molecular diameter: 0.43 nm), i-butane (minimum molecular diameter: 0.
50 nm), carbon tetrachloride (minimum molecular diameter: 0.60 nm)
The adsorption isotherm (25 ° C) was measured. For the measurement, the adsorption isotherm measuring device Bellsoap 18 by the constant volume method was used.
(Manufactured by Nippon Bell Co., Ltd.) was used. The measurement results of the coarsely crushed 850 ° C. carbonized product are shown in FIG. Also, the above 850 ℃
FIG. 3 shows the results of adsorption isotherm measurement of carbon dioxide, methane (minimum molecular diameter: 0.40 nm), and n-butane using a coarsely pulverized carbonized product.

【0044】なお、ミクロ孔径分布は、累積ミクロ孔容
積とミクロ孔径の関係で示している。前記吸着ガスに
て、吸着等温線を測定し、Dubinin-Astakhovプロットか
ら、各々の最大吸着容積を求め、その値で代表させた。
n−ブタン、メタンと炭酸ガスの吸着量には大きな差が
あり、優れた平衡分離型の分子ふるい性を示している。
製造された板状繊維塊分子ふるい炭素は、0.43nm
以上のミクロ孔径を実質的に有していないことが分かっ
た。
The micropore size distribution is shown by the relationship between the cumulative micropore volume and the micropore size. The adsorption isotherm was measured for the adsorption gas, and the maximum adsorption volume of each was determined from the Dubinin-Astakhov plot, and the value was represented.
There is a large difference in the amount of adsorption of n-butane, methane and carbon dioxide, which shows excellent equilibrium separation type molecular sieving property.
The produced plate-like fiber lump molecular sieving carbon has a carbon content of 0.43 nm.
It was found that they do not have the above-mentioned micropore size substantially.

【0045】図4は850℃炭化処理品の窒素、酸素の
吸着速度を比較したものである。測定方法は、容積既知
の容器内に分子ふるい炭素試料を入れ、系内を真空にし
た後、吸着させるガス(窒素、酸素)を導入し、導入後
の時間と圧力を計測するもので、装置は吸着等温線の測
定と同じベルソープ18を使用した。
FIG. 4 compares the adsorption rates of nitrogen and oxygen of the 850 ° C. carbonized product. The measurement method is to put a molecular sieving carbon sample in a container of known volume, evacuate the system, introduce a gas to be adsorbed (nitrogen, oxygen), and measure the time and pressure after the introduction. Used the same Belthorpe 18 used for the measurement of the adsorption isotherm.

【0046】図4から、酸素は非常に短い時間内で吸着
量が平衡に達するのに対して、窒素の吸着量が平衡に達
する時間は非常に長いことがわかる。つまり、この板状
分子ふるい炭素繊維は非常に良好な速度分離型の分子ふ
るい性をもつことが明らかである。また、上記板状の分
子ふるい炭素成形体を断面形状が50mm正方形の高さ
400mmの角柱状に充填し、バネ圧2.0kg/cm
2 で押え込んだ状態でPSA法により1サイクル60秒
で空気を通し、酸素と窒素を分離したところ168時間
使用しても分子ふるい炭素成形体の形状の乱れは殆どな
かった。また、設定圧力2.1kg/cm2 で分離窒素
濃度99.5%を達成することができた。
From FIG. 4, it is understood that the adsorption amount of oxygen reaches the equilibrium within a very short time, while the adsorption amount of nitrogen takes a very long time to reach the equilibrium. In other words, it is clear that this plate-shaped molecular sieving carbon fiber has a very good velocity separation type molecular sieving property. In addition, the plate-shaped molecular sieving carbon molded body was filled into a prismatic column having a cross section of 50 mm square and a height of 400 mm, and the spring pressure was 2.0 kg / cm.
When air was passed through the PSA method in a state of being held down by 2 in 60 seconds for 1 cycle to separate oxygen and nitrogen, the shape of the molecular sieving carbon compact was hardly disturbed even after 168 hours of use. Also, a separated nitrogen concentration of 99.5% could be achieved at a set pressure of 2.1 kg / cm 2 .

【0047】(比較例1)実施例1で得られたピッチ繊
維を、300℃まで空気流通下で、不融化処理した。得
られた不融化繊維を自動切断機にて3mmの長さに切断
し、回転式円盤式コーヒーミル粉砕機で解砕処理して短
繊維状(平均繊維長さ0.4mm)の不融化ピッチ短繊
維を得た。次いで、この不融化ピッチ短繊維100重量
部に対して平均粒子径5μmのピッチ微粒子(バインダ
ー軟化点109℃)を残炭分換算で8重量部をあらかじ
め混合し、15mm間隔で1mm深さの5mmφの円筒
台形の窪みのある平底の金型容器に所定量装入し、上蓋
平板に圧力(0.1kgf/mm2 )をかけて予備成形
した。予備成形後、150℃まで昇温し、バインダーを
溶融し、不融化繊維同士を接着して成形した。次いで、
この板状の不融化繊維成形体を窒素ガスを流通しながら
690℃まで昇温し、10min保持した後、冷却し、
板状分子ふるい炭素を調製した。690℃炭化処理品の
粗粉砕品の吸着量を測定した。これについては二酸化炭
素、n−ブタンは多量に吸着されるが、i−ブタンに関
してはほとんど吸着されなかった。製造された板状分子
ふるい炭素は、0.5nm以上のミクロ孔径を実質的に
有していないが、実施例1で調製された多孔質分子ふる
い炭素成形体に比較してミクロ孔径分布が広いことがわ
かる。
Comparative Example 1 The pitch fiber obtained in Example 1 was infusibilized up to 300 ° C. under air flow. The obtained infusible fiber is cut into a length of 3 mm with an automatic cutting machine and crushed with a rotary disk type coffee mill grinder to give a short fiber-shaped (average fiber length 0.4 mm) infusibilized pitch Short fibers were obtained. Next, to 100 parts by weight of this infusibilized pitch short fiber, 8 parts by weight of pitch fine particles (binder softening point: 109 ° C.) having an average particle diameter of 5 μm were mixed in advance in terms of residual carbon content, and 5 mmφ with a depth of 1 mm at 15 mm intervals. A predetermined amount was charged into a cylindrical trapezoidal hollow flat-bottomed mold container, and pressure (0.1 kgf / mm 2 ) was applied to the upper lid flat plate to perform preforming. After preforming, the temperature was raised to 150 ° C., the binder was melted, and the infusible fibers were adhered to each other for molding. Then
This plate-shaped infusible fiber molded body was heated to 690 ° C. while flowing nitrogen gas, held for 10 minutes, and then cooled.
Plate-like molecular sieving carbon was prepared. The adsorption amount of the coarsely crushed 690 ° C. carbonized product was measured. Regarding this, carbon dioxide and n-butane were adsorbed in large amounts, but i-butane was hardly adsorbed. The produced plate-like molecular sieving carbon does not substantially have a micropore size of 0.5 nm or more, but has a wider micropore size distribution than the porous molecular sieving carbon compact prepared in Example 1. I understand.

【0048】図5は、得られた多孔質分子ふるい炭素成
形体の酸素・窒素吸着速度を比較した結果である。この
図から、実施例1で調製された多孔質分子ふるい炭素成
形体に比較して、酸素、窒素に対して分子ふるい性能が
劣ることがわかる。また、板状の分子ふるい炭素成形体
を断面形状が50mm正方形の高さ400mmの角柱状
に充填し、バネ圧2.0kg/cm2 で押え込んだ状態
でPSA法により1サイクル60秒で空気を通し、酸素
と窒素を分離したところ168時間使用しても板状の分
子ふるい炭素成形体の形状の乱れは殆どなかった。しか
しながら、設定圧力7.5kg/cm2 でも分離窒素濃
度89.5%までしか濃度が上がらなかった。
FIG. 5 shows the results of comparing the oxygen / nitrogen adsorption rates of the obtained porous molecular sieve carbon compacts. From this figure, it is understood that the molecular sieving performance is inferior to oxygen and nitrogen as compared with the porous molecular sieving carbon molded body prepared in Example 1. In addition, a plate-shaped molecular sieve carbon molded body was filled into a prismatic column having a cross section of 50 mm square and a height of 400 mm, and was pressed with a spring pressure of 2.0 kg / cm 2 for 1 cycle 60 seconds by air by the PSA method. When oxygen and nitrogen were separated by passing through, the shape of the plate-shaped molecular sieving carbon compact was hardly disturbed even after 168 hours of use. However, even at the set pressure of 7.5 kg / cm 2 , the concentration of separated nitrogen increased only up to 89.5%.

【0049】(実施例2)実施例1で得られたピッチ繊
維を、345℃まで空気流通下で、不融化処理した。得
られた不融化繊維を自動切断機にて3mmの長さに切断
し、回転円盤式コーヒーミル粉砕機で解砕処理して短繊
維状(平均長さ0.4mm)の不融化ピッチ短繊維を得
た。得られた不融化ピッチ短繊維100重量部に対して
平均粒子径5μmのピッチ微粒子(ピッチバインダー軟
化点95℃)を残炭分換算で8重量部を予め混合し、全
く平面の平底の金型容器に所定量装入し、上蓋平板に圧
力(0.1kgf/mm2 )をかけて予備成形した。予
備成形後、150℃まで昇温し、バインダーを溶融し、
不融化繊維同士を接着して成形した。得られた成形体は
両面とも全くの平面であった。得られた板状の不融化繊
維成形体を窒素ガスを流通しながら850℃まで昇温
し、炭化処理し、分子ふるい炭素成形体を調製した。8
50℃処理での炭化収率は板状の不融化繊維成形体に対
して80.3重量%であった。850℃炭化処理品の粗
粉砕品の吸着量を測定した。
(Example 2) The pitch fiber obtained in Example 1 was infusibilized at 345 ° C under air flow. The obtained infusible fiber is cut into a length of 3 mm by an automatic cutting machine, and is crushed by a rotary disk type coffee mill grinder to be a short fibrous (average length 0.4 mm) infusibilized pitch short fiber. Got 8 parts by weight of fine pitch particles (pitch binder softening point: 95 ° C.) having an average particle diameter of 5 μm were mixed in advance with 100 parts by weight of the obtained infusible pitch short fiber, and a completely flat, flat-bottomed mold was obtained. A predetermined amount was charged into a container, and pressure (0.1 kgf / mm 2 ) was applied to the flat plate of the upper lid to perform preforming. After preforming, raise the temperature to 150 ° C to melt the binder,
The infusible fibers were bonded together and molded. The obtained molded body was completely flat on both sides. The obtained plate-shaped infusible fiber molded body was heated to 850 ° C. while flowing nitrogen gas and carbonized to prepare a molecular sieve carbon molded body. 8
The carbonization yield at 50 ° C. treatment was 80.3% by weight based on the plate-shaped infusible fiber molding. The adsorption amount of the coarsely pulverized 850 ° C. carbonized product was measured.

【0050】n−ブタンと炭酸ガスの吸着量には大きな
差があり、優れた平衡分離型の分子ふるい性を示した。
製造された板状の分子ふるい炭素繊維成形体は、0.4
3nm以上のミクロ孔径を実質的に有していないことが
分かった。上記板状の分子ふるい炭素成形体を断面形状
が50mm正方形の高さ400mmの角柱状に吸着層に
充填し、バネ圧力2.0kg/cm2 で押さえ込んだ状
態でPSA法により1サイクル60秒で空気を通し、酸
素と窒素を分離したところ168時間使用しても板状の
分子ふるい炭素成形体の形状の乱れは殆どなかった。し
かしながら、設定圧力6.5kg/cm2 でやっと分離
窒素濃度99.5%まで濃度が上がった。
There was a large difference in the amount of adsorption of n-butane and carbon dioxide, showing excellent equilibrium separation type molecular sieving property.
The produced plate-like molecular sieve carbon fiber molded product has 0.4
It was found to have substantially no micropore size of 3 nm or more. The above-mentioned plate-shaped molecular sieve carbon molded body was filled in the adsorption layer in the shape of a prism having a square cross section of 50 mm and a height of 400 mm, and was pressed with a spring pressure of 2.0 kg / cm 2 for 1 cycle 60 seconds by the PSA method. When oxygen and nitrogen were separated by passing air, there was almost no disorder in the shape of the plate-like molecular sieving carbon compact even after 168 hours of use. However, at the set pressure of 6.5 kg / cm 2 , the concentration finally increased to the separated nitrogen concentration of 99.5%.

【0051】(比較例2)実施例1で得られた不融化繊
維を用いて、厚み5mmのフエルトを形成した。これを
50mm正方形に切り取り、高さ400mmに積層し、
角柱状にし、実施例1と同じ条件で酸素と窒素を分離し
たところ、168時間の使用で積層高さが22%低下
し、さらに分子ふるい炭素フェルトからの粉化がみら
れ、分離性能は初期の性能より半減した。
Comparative Example 2 Using the infusible fiber obtained in Example 1, a felt having a thickness of 5 mm was formed. Cut this into a 50 mm square and stack it to a height of 400 mm,
When oxygen and nitrogen were separated in the form of prisms under the same conditions as in Example 1, the stacking height was reduced by 22% after 168 hours of use, and further pulverization from the molecular sieve carbon felt was observed. Halved from the performance of.

【0052】[0052]

【発明の効果】以上の説明から明らかなように、本発明
の多孔質分子ふるい炭素成形体の製造方法によれば、ミ
クロ孔径0.28nm以上、0.43nm未満の分子ふ
るい炭素を、賦活化プロセス無しに、簡便にかつ再現性
良く、製造することができる。また、容易に入手できる
ピッチを出発原料として、賦活化プロセスが無いため、
高性能の分子ふるい炭素を、高収率かつ安価に得ること
ができる。
As is clear from the above description, according to the method for producing a porous molecular sieving carbon molding of the present invention, the molecular sieving carbon having a micropore diameter of 0.28 nm or more and less than 0.43 nm is activated. It can be easily and reproducibly manufactured without a process. In addition, since there is no activation process using easily available pitch as a starting material,
High-performance molecular sieving carbon can be obtained in high yield and at low cost.

【0053】本発明によって得られる多孔質分子ふるい
炭素成形体は、特に、メタン、二酸化炭素に対する立体
分離型分子ふるい性能、ならびに酸素・窒素に対する速
度分離型分子ふるい性能に優れている。
The porous molecular sieving carbon molded product obtained by the present invention is particularly excellent in the performance of steric separation type molecular sieving for methane and carbon dioxide, and the performance of rate separation type molecular sieving for oxygen and nitrogen.

【0054】本発明の板状の分子ふるい炭素成形体は、
繊維状分子ふるい炭素から構成されているため成形体の
強度が大きい。さらに、本発明の板状の分子ふるい炭素
成形体は、用途に応じた成形体の形態で得ることがで
き、作業性、ハンドリング性に優れ、均質な充填が可能
で、単位容積当たりの吸着量が大きく、ガス流路が確保
されているため吸脱着における圧力損失が少ない。ま
た、成形体の強度も高く、粉化性損失が少なく、吸脱着
回数の多いPSA等の使用に適している。
The plate-like molecular sieve carbon molded product of the present invention is
Since it is composed of fibrous molecular sieving carbon, the strength of the molded product is high. Furthermore, the plate-shaped molecular sieve carbon molded body of the present invention can be obtained in the form of a molded body according to the application, is excellent in workability and handleability, can be uniformly filled, and has an adsorption amount per unit volume. Is large and the gas flow path is secured, so there is little pressure loss during adsorption and desorption. Moreover, the strength of the molded product is high, the loss of pulverization property is small, and it is suitable for use in PSA or the like, which has a large number of adsorption and desorption times.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1における板状の成形体の概略図であ
り、(a)は成形体の単体、(b)はその積層複合体で
ある。
FIG. 1 is a schematic view of a plate-shaped molded body in Example 1, where (a) is a single body of the molded body and (b) is a laminated composite body thereof.

【図2】 実施例1における850℃炭化処理の板状の
分子ふるい炭素成形体のミクロ孔径分布を累積分布で表
現した図である。縦軸はミクロ孔容積で、横軸はミクロ
孔径である。
FIG. 2 is a diagram showing a cumulative distribution of micropore size distribution of a plate-shaped molecular sieve carbon molded product subjected to carbonization at 850 ° C. in Example 1. The vertical axis represents the micropore volume, and the horizontal axis represents the micropore diameter.

【図3】 実施例1における850℃炭化処理の板状の
分子ふるい炭素成形体のn−ブタン、メタン、二酸化炭
素の吸着等温線である。縦軸は平衡吸着量で、横軸はガ
ス圧力である。
FIG. 3 is an adsorption isotherm of n-butane, methane, and carbon dioxide of a plate-shaped molecular sieve carbon molded product subjected to carbonization at 850 ° C. in Example 1. The vertical axis is the equilibrium adsorption amount, and the horizontal axis is the gas pressure.

【図4】 実施例1における850℃炭化処理の板状の
分子ふるい炭素成形体の酸素と窒素の吸着速度を、時間
に対する吸着量の変化で表現した図である。
FIG. 4 is a diagram expressing the adsorption rates of oxygen and nitrogen of a plate-like molecular sieving carbon molded product subjected to carbonization at 850 ° C. in Example 1 as a change in adsorption amount with time.

【図5】 比較例1における690℃炭化処理の板状の
分子ふるい炭素成形体の酸素と窒素の吸着速度を、時間
に対する吸着量の変化で表現した図である。
FIG. 5 is a diagram expressing the adsorption rates of oxygen and nitrogen of a plate-shaped molecular sieving carbon compact subjected to carbonization at 690 ° C. in Comparative Example 1 as changes in adsorption amount with time.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 9/14 512 (72)発明者 大 杉 幸 広 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 上 田 雅 美 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location D01F 9/14 512 (72) Inventor Hiroyuki Ougi Sugihiro Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Stock Corporate Technology Research Headquarters (72) Inventor Masami Ueda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Headquarters

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】繊維状分子ふるい炭素から構成され、分子
ふるい炭素のミクロ孔径分布が0.28nm以上0.4
3nm未満の範囲にあり、かつ、形状が板状であること
を特徴とする板状分子ふるい炭素。
1. A fibrous molecular sieving carbon having a micropore size distribution of 0.28 nm or more and 0.4 or more.
A plate-like molecular sieving carbon characterized by having a plate shape in the range of less than 3 nm.
【請求項2】板状分子ふるい炭素の少なくとも片面に凹
凸があり、かつ凹部が連続した構造であることを特徴と
する請求項1に記載の板状分子ふるい炭素。
2. The plate-like molecular sieving carbon according to claim 1, wherein the plate-like molecular sieving carbon has a structure in which at least one surface has irregularities and the recesses are continuous.
【請求項3】不融化されたピッチ繊維を板状に成型、接
着処理を施し所定の形状となし、次いで760〜900
℃の温度で炭化処理を施すことを特徴とする板状分子ふ
るい炭素の製造方法。
3. An infusibilized pitch fiber is molded into a plate shape and subjected to an adhesive treatment to obtain a predetermined shape, and then 760 to 900.
A process for producing plate-like molecular sieving carbon, which comprises carbonizing at a temperature of ℃.
【請求項4】前記不融化されたピッチ繊維の酸素含有量
が10〜15重量%である請求項3に記載の板状分子ふ
るい炭素の製造方法。
4. The method for producing plate-like molecular sieving carbon according to claim 3, wherein the infusibilized pitch fiber has an oxygen content of 10 to 15% by weight.
JP5190631A 1993-07-30 1993-07-30 Plate-shaped molecular sieve carbon and production thereof Withdrawn JPH0781915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5190631A JPH0781915A (en) 1993-07-30 1993-07-30 Plate-shaped molecular sieve carbon and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5190631A JPH0781915A (en) 1993-07-30 1993-07-30 Plate-shaped molecular sieve carbon and production thereof

Publications (1)

Publication Number Publication Date
JPH0781915A true JPH0781915A (en) 1995-03-28

Family

ID=16261284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5190631A Withdrawn JPH0781915A (en) 1993-07-30 1993-07-30 Plate-shaped molecular sieve carbon and production thereof

Country Status (1)

Country Link
JP (1) JPH0781915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121725A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Refrigerating device and multistage refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121725A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Refrigerating device and multistage refrigerating device

Similar Documents

Publication Publication Date Title
US6030698A (en) Activated carbon fiber composite material and method of making
US5972253A (en) Preparation of monolithic carbon fiber composite material
EP0519483B1 (en) A pitch-based activated carbon fiber
US4734394A (en) Process for producing molecular sieve carbon fibers
JPH0781915A (en) Plate-shaped molecular sieve carbon and production thereof
JP3310348B2 (en) Method for producing molecular sieve carbon
JP3253708B2 (en) Method for producing molecular sieve carbon of spherical fiber mass
JP3280094B2 (en) Method for producing molecular sieve carbon
US5888928A (en) Process for producing activated carbon fiber molding and activated carbon fiber molding
JPH06157018A (en) Porous molecular sieve carbon and its production
JPH07299357A (en) Production of spherical fiber lump molecular sieve carbon
JPH05155673A (en) Porous carbon material and its production
JPH11240707A (en) Activated carbon
JPH11240708A (en) Fibrous activated carbon
KR100328093B1 (en) Manufacturing method of composite activated carbon fiber
JPH07299356A (en) Production of molecular sieve carbon
JPH0489370A (en) Porous carbon material and production thereof
JP2635784B2 (en) Bunched fiber mass activated carbon and method for producing the same
JPS63139009A (en) Foamed carbon body for molecular sieve
JP7454199B1 (en) Molecular sieve carbon, its manufacturing method, and gas separation device
Jagtoyen et al. Carbon fiber composite molecular sieves for gas separation
Burchell et al. Activated carbon fiber composite material and method of making
JPS60167929A (en) Production of active carbon fiber
KR100417714B1 (en) Compounded of activated alumina and activated carbon fiber and a preparation method for the same
JPH03199426A (en) Activated carbon having form of spherical fiber lump and production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003