JPH0781253B2 - How to remove advancing fog from the runway and its vicinity - Google Patents

How to remove advancing fog from the runway and its vicinity

Info

Publication number
JPH0781253B2
JPH0781253B2 JP1023726A JP2372689A JPH0781253B2 JP H0781253 B2 JPH0781253 B2 JP H0781253B2 JP 1023726 A JP1023726 A JP 1023726A JP 2372689 A JP2372689 A JP 2372689A JP H0781253 B2 JPH0781253 B2 JP H0781253B2
Authority
JP
Japan
Prior art keywords
heat
runway
fog
panel heater
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1023726A
Other languages
Japanese (ja)
Other versions
JPH02204514A (en
Inventor
勝行 筧
祥 金沢
浩 中林
義夫 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP1023726A priority Critical patent/JPH0781253B2/en
Publication of JPH02204514A publication Critical patent/JPH02204514A/en
Publication of JPH0781253B2 publication Critical patent/JPH0781253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、黒潮上の高温多湿の空気が親潮上を通過する
際に発生する海霧等の移流霧が連続的に流入する空港の
滑走路等において、滑走路上およびその近傍の霧の濃度
を低減して航空機の安全な離着陸を可能ならしめる滑走
路およびその近傍の霧除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the gliding of an airport in which advective fog such as sea fog generated when hot and humid air over the Kuroshio flows over Oyashio continuously. The present invention relates to a runway and a method for removing fog in the vicinity of a runway that enables safe takeoff and landing of an aircraft by reducing the concentration of fog on and near the runway.

[従来の技術] 第6〜7図は従来技術の例で、特開昭58−83710に記載
された滑走路除霧装置で、第6図は滑走路と地下蓄熱構
造物の断面図、第7図は地下蓄熱構造物の拡大断面図で
ある。第6〜7図において、51は滑走路、52は太陽熱集
熱器、53は地下コンクリート構造物、54は送風機、55は
空気チャンバー、56は切り替えダンパー、57は吸気口、
58は空気吹き出しノズル、59、60、61、62は液体配管、
63は液タンク、64は蓄熱槽構造物である。該従来技術に
おける滑走路51上方の除霧は第6図に示すように滑走路
51の両側に多数設けられた空気吹き出しノズル58から高
温空気を上方に向けて噴射し、上昇気流と昇温とによっ
て行なうものである。その時の空気の昇温に必要なエネ
ルギーとして太陽熱を蓄熱槽構造物64内に蓄熱し、これ
を適宜取り出している。すなわち、地表の日射面に配設
された太陽熱集熱器52の真下の地下コンクリート構造物
53内に、各種の水和塩や含水塩混合物、またはパラフィ
ンやシリコンオイルなどの融点が比較的低くかつ潜熱の
比較的大きな油脂類等の物質を充填した蓄熱器ユニット
を集合配列してある。第7図においてまず蓄熱運転にお
いては送風機54の吐出空気は空気チャンバー55から切替
ダンパー56を経て太陽熱集熱器52に入り、この集熱器52
によって加熱された空気は上段の単位蓄熱槽の列から下
段の単位蓄熱槽の列へと蛇行しながら流れて行き、各々
の蓄熱器ユニット内の蓄熱物質に与熱したあと、最終的
には再び送風機54に吸引され、この循環を繰り返す。こ
の蓄熱運動を続行することにより、蓄熱器ユニット内の
蓄熱物質は溶融し、特に日射の強い場合には殆んどの蓄
熱ユニットは融解した蓄熱物質を収容する。霧の発生
は、大気状態を常時監視する温度センサーによってこれ
を事前に察知し、これの除霧運転、すなわち放熱運転を
行なう。この放熱運転においては切り替えダンパー56を
作動して空気チャンバー55の空気を空気吹き出しノズル
58の方に導き、吸気口57からの空気を太陽熱集熱器52に
流し込む。これによって送風機54のみの動力で吸気口57
から取り入れられた空気は蓄熱槽構造物64内を通過する
ことにより蓄熱物質の凝固熱により加熱され、更に空気
吹き出しノズル58から滑走路51の上方に噴射される。こ
れによって滑走路51上方の霧は消散される。
[Prior Art] FIGS. 6 to 7 are examples of prior art, which is a runway defoaming device described in Japanese Patent Laid-Open No. 58-83710, and FIG. 6 is a cross-sectional view of a runway and an underground heat storage structure. FIG. 7 is an enlarged sectional view of the underground heat storage structure. 6 to 7, 51 is a runway, 52 is a solar heat collector, 53 is an underground concrete structure, 54 is a blower, 55 is an air chamber, 56 is a switching damper, 57 is an intake port,
58 is an air blowing nozzle, 59, 60, 61, 62 are liquid piping,
63 is a liquid tank and 64 is a heat storage tank structure. The fog above the runway 51 in the prior art is as shown in FIG.
High temperature air is jetted upward from a large number of air blowing nozzles 58 provided on both sides of 51, and is performed by rising airflow and temperature rise. At that time, solar heat is stored in the heat storage tank structure 64 as energy necessary for raising the temperature of the air, and this is taken out as appropriate. That is, an underground concrete structure directly below the solar heat collector 52 arranged on the solar radiation surface of the ground surface.
A heat storage unit filled with substances such as oils and fats having a relatively low melting point and a relatively large latent heat, such as various hydrated salts and hydrated salt mixtures, or paraffin and silicon oil, is collectively arranged in the 53. In FIG. 7, first, in the heat storage operation, the discharge air of the blower 54 enters the solar heat collector 52 from the air chamber 55 through the switching damper 56, and this heat collector 52
The air heated by the meandering current flows from the row of upper unit heat storage tanks to the row of lower unit heat storage tanks, heats the heat storage substance in each heat storage unit, and finally again. The fan 54 sucks the air and repeats this circulation. By continuing this heat storage movement, the heat storage material in the heat storage unit is melted, and most of the heat storage units contain the melted heat storage material particularly when the solar radiation is strong. The generation of fog is detected in advance by a temperature sensor that constantly monitors the atmospheric condition, and the defoaming operation of the fog, that is, the heat radiation operation is performed. In this heat radiation operation, the switching damper 56 is operated to blow the air in the air chamber 55 into the air blowing nozzle.
Then, the air from the intake port 57 is introduced into the solar heat collector 52. As a result, the air intake 57
The air taken in from is heated by the heat of solidification of the heat storage substance as it passes through the heat storage tank structure 64, and is further jetted from the air blowing nozzle 58 to above the runway 51. This dissipates the fog above runway 51.

[発明が解決しようとする課題] このように上記従来の技術においても、熱源として廉価
な太陽熱を利用して空気を加熱し、加熱された高温空気
を滑走路上方に噴出することによって霧を消散させるこ
とが可能であった。
[Problems to be Solved by the Invention] As described above, also in the above-mentioned conventional technology, the mist is dissipated by heating the air by using inexpensive solar heat as a heat source and ejecting the heated high-temperature air above the runway. It was possible to

しかしながら上記従来の技術においては、蓄熱した太陽
熱によって昇温された空気を送風機によって昇圧し、滑
走路に沿って配設された多数の空気吹き出しノズルから
滑走路上方に噴出させて霧の消散を行なうために、大容
量の送風機と空気系統のダクト、配管設備を必要とする
とともに、稼動費用も非常に大きくなるという不都合を
有していた。
However, in the above-mentioned conventional technique, the air heated by the stored solar heat is boosted by a blower and ejected above the runway from a large number of air blowing nozzles arranged along the runway to dissipate the fog. Therefore, there is a disadvantage that a large-capacity blower, an air system duct, and piping equipment are required, and the operating cost becomes very large.

[課題を解決するための手段] 本発明は上記の不都合を低減し、簡潔な構成による比較
的低い設備費と、低廉な稼動費用によって滑走路上およ
びその近傍の移流霧を消散させ、良好な視程の保持を可
能にし、目視による航空機の離着陸を安全に行なわしめ
る移流霧除去方法を提供することを目的としている。
[Means for Solving the Problems] The present invention reduces the above-mentioned inconveniences, dissipates advancing fog on the runway and in the vicinity thereof with a relatively low equipment cost due to a simple structure and low operating cost, and has a good visibility. It is an object of the present invention to provide a method for removing advective fog that enables the aircraft to be retained and enables visual takeoff and landing of aircraft to be performed safely.

本目的は前記特許請求の範囲第1〜6項記載の手段によ
って達成される。すなわち、 1.移流霧が流入する空港において、滑走路近傍の地表面
上に、周壁および底面を断熱材によって囲繞し、上面を
遠赤外線領域において高い放射率を有する材料によって
構成したパネルヒーターを複数敷設し、流入する移流霧
の方向、速度或いは濃度等に対応して必要なパネルヒー
ターを選択し、選択したパネルヒーター内に熱媒体を送
入する滑走路およびその近傍の移流霧除去方法。
This object is achieved by means of the claims 1-6. That is: 1. At an airport where advective fog flows in, a plurality of panel heaters are formed on the ground surface near the runway by surrounding the peripheral wall and bottom surface with a heat insulating material, and the upper surface by a material having a high emissivity in the far infrared region. A method of removing advective fog in a runway for laying and selecting a required panel heater according to the direction, velocity, concentration, etc. of inflowing advancing mist, and feeding a heat medium into the selected panel heater and its vicinity.

2.パネルヒーターの熱源が太陽熱である請求項1.記載の
滑走路およびその近傍の移流霧除去方法。
2. The method for removing advective fog in the runway and its vicinity according to claim 1, wherein the heat source of the panel heater is solar heat.

3.パネルヒーターの熱源が地熱である請求項1.記載の滑
走路およびその近傍の移流霧除去方法。
3. The method for removing advancing fog in the runway and its vicinity according to claim 1, wherein the heat source of the panel heater is geothermal heat.

4.パネルヒーターの熱源が工業廃熱である請求項1.記載
の滑走路およびその近傍の移流霧除去方法。
4. The method for removing advancing fog in the runway and its vicinity according to claim 1, wherein the heat source of the panel heater is industrial waste heat.

5.パネルヒーターの熱源が廃棄物燃焼熱である請求項1.
記載の滑走路およびその近傍の移流霧除去方法。
5. The heat source of the panel heater is waste combustion heat.
A method for removing advective fog on the runway and its vicinity.

である。以下本発明の作用等について実施例に基づいて
説明する。
Is. Hereinafter, the operation and the like of the present invention will be described based on Examples.

[実施例] 第1〜5図は本発明に基づく実施例を示す図で、第1図
は滑走路の側部に敷設したパネルヒーターの熱源に太陽
熱を利用した場合の滑走路近傍の一部破断斜視図、第2
図は滑走路の移流霧進入側に敷設したパネルヒーターの
熱源に太陽熱を利用した場合の滑走路近傍の一部破断斜
視図、第3図は滑走路の側部に敷設したパネルヒーター
の熱源に地熱、工業廃熱、廃棄物燃焼熱等を利用した場
合の滑走路近傍の一部破断斜視図、第4図は滑走路の移
流霧進入側に敷設したパネルヒーターの熱源に地熱、工
業廃熱、廃棄物燃焼熱等を利用した場合の滑走路近傍の
一部破断斜視図、第5図は第1〜4図におけるパネルヒ
ーターの拡大斜視図である。第1〜5図において、1は
滑走路、2はパネルヒーター、3は集光型集熱器、4は
反射板、5は熱交換および蓄熱タンク、6は循環ポン
プ、7は熱媒体循環配管、8はレシーバタンク、9は熱
源、10は断熱材、11は熱媒体入口、12は熱媒体出口、13
は移流霧進入方向である。まず第1図において、滑走路
1の両側に滑走路1に沿ってパネルヒーター2を敷設す
る。第2図は、滑走路1の移流霧進入側にパネルヒータ
ー2を敷設する。第1〜2図において空港の滑走路1に
近い位置の地上には集光型集熱器3、反射板4、熱交換
および蓄熱タンク5等で構成された太陽エネルギーを蓄
積するユニットが配設されており、太陽光が照射してい
る間に熱交換および蓄熱タンク5内に太陽エネルギーを
蓄積する。熱交換および蓄熱タンク5内の熱は循環ポン
プ6によって熱水などの熱媒体を介してパネルヒーター
2に送られる。パネルヒーター2は複数のブロックに分
割されて敷設されており、第5図に示すように各パネル
ヒーター2の周壁および底面は断熱材10によって囲繞さ
れ、上面は遠赤外領域において高い放射率を有する例え
ばセラミックスあるいは塗料等がコーティングされてい
る。従って循環ポンプ6によってパネルヒーター2内に
熱水等の熱媒体が送入され、熱エネルギーがセラミック
スに伝えられると、セラミックスあるいは塗料等の表面
から遠赤外線が放射される。滑走路1の上方の霧に、該
遠赤外線が照射されることによって霧を形成する微細水
滴は加熱されて蒸発し霧は消散する。パネルヒーター2
を加熱した熱水等の熱媒体は温度を低下させ、レシーバ
タンク8を経由して熱交換および蓄熱タンク5内に返戻
される。第3〜4図はパネルヒーター2の熱源に太陽エ
ネルギー以外の熱を利用した場合の設備概要を示してい
る。第3〜4図において、パネルヒーター2の熱源9が
高温の温水や蒸気が残部熱水系、大深部熱水系、高温岩
体等を介して取り出される地熱エネルギーである場合、
高温ガスや高温水等の工業廃熱である場合、あるいはま
た固体、液体、気体等の可燃性物質の廃棄物の燃焼熱で
ある場合等において、まずそれぞれの熱源で発生した熱
を蒸気、高温ガスあるいは高温液体等の形態のまま熱交
換および蓄熱タンク5内に導入し、それぞれの有する潜
熱あるいは顕熱を水等の熱媒体と熱交換を行なって熱媒
体を加熱したのち再び熱発生源に返戻する。この操作を
繰り返し熱交換および蓄熱タンク5内に十分な熱量の蓄
積を行なう。滑走路1の上方に移流霧が流入した際、循
環ポンプ6を稼動して熱交換および蓄熱タンク5内の熱
水等の熱媒体を移流霧の流入方向あるいは濃度等に対応
して選択した複数のパネルヒーター2内に送入する。パ
ネルヒーター2の構造は第1〜2図の実施例と同様に第
5図に示す如く上面に遠赤外領域において高い放射率を
有するセラミックスあるいは塗料等がコーティングして
あり、熱媒体からの伝熱によって昇温したセラミックス
あるいは塗料等の表面から遠赤外線が放射される。そさ
れによって滑走路1上の霧を形成している微細水滴は昇
温、蒸発し霧は消散する。
[Examples] FIGS. 1 to 5 are views showing an example based on the present invention, and FIG. 1 is a part of the vicinity of a runway when solar heat is used as a heat source of a panel heater laid on the side of the runway. Broken perspective view, second
The figure shows a partially broken perspective view of the vicinity of the runway when solar heat is used as the heat source of the panel heater laid on the advection fog entrance side of the runway. Figure 3 shows the heat source of the panel heater laid on the side of the runway. Partially broken perspective view of the vicinity of the runway when geothermal, industrial waste heat, waste combustion heat, etc. are used. Fig. 4 shows the heat source of the panel heater laid on the advancing fog entrance side of the runway. FIG. 5 is a partially cutaway perspective view of the vicinity of the runway when waste heat of combustion is used, and FIG. 5 is an enlarged perspective view of the panel heater in FIGS. In FIGS. 1 to 5, 1 is a runway, 2 is a panel heater, 3 is a condensing heat collector, 4 is a reflection plate, 5 is a heat exchange and heat storage tank, 6 is a circulation pump, and 7 is a heat medium circulation pipe. , 8 is a receiver tank, 9 is a heat source, 10 is a heat insulating material, 11 is a heat medium inlet, 12 is a heat medium outlet, 13
Is the advancing fog direction. First, in FIG. 1, panel heaters 2 are laid along both sides of the runway 1 along the runway 1. In FIG. 2, a panel heater 2 is laid on the runway 1 on the advancing fog entrance side. 1 and 2, on the ground near the runway 1 of the airport, a unit for collecting solar energy, which is composed of a concentrator collector 3, a reflector 4, a heat exchange tank 5 and the like, is provided. The solar energy is stored in the heat exchange and heat storage tank 5 while the sunlight is radiated. The heat in the heat exchange and heat storage tank 5 is sent to the panel heater 2 by the circulation pump 6 via a heat medium such as hot water. The panel heater 2 is divided into a plurality of blocks and laid, and as shown in FIG. 5, the peripheral wall and the bottom surface of each panel heater 2 are surrounded by a heat insulating material 10, and the upper surface has a high emissivity in the far infrared region. For example, it is coated with ceramics or paint. Therefore, when the heat medium such as hot water is sent into the panel heater 2 by the circulation pump 6 and the heat energy is transmitted to the ceramics, far infrared rays are radiated from the surface of the ceramics or the paint. By irradiating the mist above the runway 1 with the far infrared rays, the fine water droplets forming the mist are heated and evaporated, and the mist dissipates. Panel heater 2
The temperature of the heat medium such as hot water that has been heated is lowered and returned to the heat exchange and heat storage tank 5 via the receiver tank 8. 3 to 4 show an outline of equipment when heat other than solar energy is used as the heat source of the panel heater 2. 3 to 4, in the case where the heat source 9 of the panel heater 2 is geothermal energy in which high-temperature hot water or steam is taken out through the remaining hot water system, the deep deep hot water system, the hot rock body, etc.,
In the case of industrial waste heat such as high-temperature gas or high-temperature water, or when it is the heat of combustion of waste of combustible substances such as solid, liquid, gas, etc., first, the heat generated by each heat source is converted into steam, high temperature. It is introduced into the heat exchange and heat storage tank 5 in the form of gas or high-temperature liquid as it is, and the latent heat or sensible heat of each is exchanged with the heat medium such as water to heat the heat medium and then to the heat generation source again. To return. This operation is repeated to perform heat exchange and accumulate a sufficient amount of heat in the heat storage tank 5. When advective mist flows into the upper part of the runway 1, the circulation pump 6 is operated to select a heat medium such as hot water in the heat exchange and heat storage tank 5 in accordance with the inflow direction or concentration of the advective mist. It is fed into the panel heater 2 of. Similar to the embodiment of FIGS. 1-2, the structure of the panel heater 2 is such that the upper surface thereof is coated with ceramics or paint having a high emissivity in the far infrared region as shown in FIG. Far-infrared rays are radiated from the surface of ceramics or paint which has been heated by heat. As a result, the fine water droplets forming the mist on the runway 1 are heated and evaporated to dissipate the mist.

[発明の効果] 本発明は上記実施例において説明したように、移流霧が
流入する空港において、滑走路近傍の地表面に、例えば
セラミックスあるいは塗料等をコーティングしたパネル
ヒーターを敷設し、太陽熱、地熱、工業廃熱あるいは廃
棄物燃焼熱等によって前記パネルヒーター表面のセラミ
ックスあるいは塗料等を昇温させて遠赤外線を霧中に放
射することにより、自然エネルギーあるいは廃熱の利用
による非常に低いランニングコストによって滑走路上お
よびその近傍の霧を消散あるいは濃度を低減して視程を
改善し、航空機の目視による離着陸を可能にすると言う
効果を有している。
[Effects of the Invention] As described in the above embodiments, the present invention lays a panel heater coated with, for example, ceramics or paint on the ground surface in the vicinity of a runway at an airport where advancing fog flows in, and the solar heat and the geothermal heat are applied. By heating the ceramics or paint on the surface of the panel heater by industrial waste heat or waste combustion heat to radiate far infrared rays into the mist, natural energy or waste heat is used to run at a very low running cost. It has the effect of dissipating or reducing the concentration of fog on and near the road to improve visibility and enable visual takeoff and landing of aircraft.

【図面の簡単な説明】[Brief description of drawings]

第1〜5図は本発明に基づく実施例を示す図で、第1図
は滑走路の側部に敷設したパネルヒーターの熱源に太陽
熱を利用した場合の滑走路近傍の一部破断斜視図、第2
図は滑走路の移流霧進入側に敷設したパネルヒーターの
熱源に太陽熱を利用した場合の滑走路近傍の一部破断斜
視図、第3図は滑走路の側部に敷設したパネルヒーター
の熱源に地熱、工業廃熱、廃棄物燃焼熱等を利用した場
合の滑走路近傍の一部破断斜視図、第4図は滑走路の移
流霧進入側に敷設したパネルヒーターの熱源に地熱、工
業廃熱、廃棄物燃焼熱等を利用した場合の滑走路近傍の
一部破断斜視図、第5図は第1〜4図におけるパネルヒ
ーターの拡大斜視図である。 第6〜7図は従来技術の例である。 1……滑走路、2……パネルヒーター、3……集光型集
熱器、4……反射板、5……熱交換および蓄熱タンク、
6……循環ポンプ、7……熱媒体循環配管、8……レシ
ーバタンク、9……熱源、10……断熱材、11……熱媒体
入口、12……熱媒体出口、13……移流霧進入方向、51…
…滑走路、52……太陽熱集熱器、53……地下コンクリー
ト構造物、54……送風機、55……空気チャンバー、56…
…切り替えダンパー、57……吸気口、58……空気吹き出
しノズル、59、60、61、62……液体配管、63……液タン
ク、64……蓄熱槽構造物。
1 to 5 are views showing an embodiment based on the present invention, and FIG. 1 is a partially cutaway perspective view in the vicinity of a runway when solar heat is used as a heat source of a panel heater laid on the side of the runway, Second
The figure shows a partially broken perspective view of the vicinity of the runway when solar heat is used as the heat source of the panel heater laid on the advection fog entrance side of the runway. Figure 3 shows the heat source of the panel heater laid on the side of the runway. Partially broken perspective view of the vicinity of the runway when geothermal, industrial waste heat, waste combustion heat, etc. are used. Fig. 4 shows the heat source of the panel heater laid on the advancing fog entrance side of the runway. FIG. 5 is a partially cutaway perspective view of the vicinity of the runway when waste heat of combustion is used, and FIG. 5 is an enlarged perspective view of the panel heater in FIGS. 6 to 7 are examples of the prior art. 1 ... Runway, 2 ... Panel heater, 3 ... Concentrator heat collector, 4 ... Reflector plate, 5 ... Heat exchange and heat storage tank,
6 ... Circulation pump, 7 ... Heat medium circulation piping, 8 ... Receiver tank, 9 ... Heat source, 10 ... Insulation material, 11 ... Heat medium inlet, 12 ... Heat medium outlet, 13 ... Advection fog Approach direction, 51 ...
… Runway, 52 …… Solar collector, 53 …… Underground concrete structure, 54 …… Blower, 55 …… Air chamber, 56…
… Switching damper, 57 …… Intake port, 58 …… Air blowing nozzle, 59,60,61,62 …… Liquid piping, 63 …… Liquid tank, 64 …… Heat storage tank structure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土田 義夫 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 (56)参考文献 特開 昭58−160415(JP,A) 特開 昭63−293201(JP,A) 実開 昭59−129913(JP,U) 実開 昭62−16117(JP,U) 実開 昭61−141327(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshio Tsuchida 118 Futatsuka, Noda City, Chiba Prefecture Kawasaki Heavy Industries Ltd. Noda Factory (56) Reference JP-A-58-160415 (JP, A) JP-A-63-293201 (JP, A) Actual opening Sho 59-129913 (JP, U) Actual opening Sho 62-16117 (JP, U) Actual opening Sho 61-141327 (JP, U)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】移流霧が流入する空港において、滑走路近
傍の地表面上に、 周壁および底面を断熱材によって囲繞し、上面を遠赤外
線領域において高い放射率を有する材料によって構成し
たパネルヒーターを複数敷設し、 流入する移流霧の方向、速度或いは濃度等に対応して必
要なパネルヒーターを選択し、 選択したパネルヒーター内に熱媒体を送入する ことを特徴とする滑走路およびその近傍の移流霧除去方
法。
1. A panel heater having a peripheral wall and a bottom surface surrounded by a heat insulating material and having a top surface made of a material having a high emissivity in the far infrared region on an earth surface near a runway at an airport where advancing fog flows in. Multiple runners are installed, and the required panel heater is selected according to the direction, speed, concentration, etc. of the inflowing advancing fog, and the heat medium is fed into the selected panel heater. Advection fog removal method.
【請求項2】パネルヒーターの熱源が太陽熱である請求
項1.記載の滑走路およびその近傍の移流霧除去方法。
2. The method for removing advancing fog in the runway and its vicinity according to claim 1, wherein the heat source of the panel heater is solar heat.
【請求項3】パネルヒーターの熱源が地熱である請求項
1.記載の滑走路およびその近傍の移流霧除去方法。
3. The heat source of the panel heater is geothermal heat.
1. Advection fog removal method on the runway and its vicinity.
【請求項4】パネルヒーターの熱源が工業廃熱である請
求項1.記載の滑走路およびその近傍の移流霧除去方法。
4. The method for removing advancing fog in the runway and its vicinity according to claim 1, wherein the heat source of the panel heater is industrial waste heat.
【請求項5】パネルヒーターの熱源が廃棄物燃焼熱であ
る請求項1.記載の滑走路およびその近傍の移流霧除去方
法。
5. The method for removing advancing fog in the runway and its vicinity according to claim 1, wherein the heat source of the panel heater is waste heat of combustion.
JP1023726A 1989-02-03 1989-02-03 How to remove advancing fog from the runway and its vicinity Expired - Lifetime JPH0781253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023726A JPH0781253B2 (en) 1989-02-03 1989-02-03 How to remove advancing fog from the runway and its vicinity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023726A JPH0781253B2 (en) 1989-02-03 1989-02-03 How to remove advancing fog from the runway and its vicinity

Publications (2)

Publication Number Publication Date
JPH02204514A JPH02204514A (en) 1990-08-14
JPH0781253B2 true JPH0781253B2 (en) 1995-08-30

Family

ID=12118320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023726A Expired - Lifetime JPH0781253B2 (en) 1989-02-03 1989-02-03 How to remove advancing fog from the runway and its vicinity

Country Status (1)

Country Link
JP (1) JPH0781253B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552506Y2 (en) * 1991-04-24 1997-10-29 ユニチカ株式会社 Nets for snow melting
KR20040097100A (en) * 2004-10-27 2004-11-17 최은성 a dence fog removal system and method of the runway and road
KR100698585B1 (en) * 2005-03-22 2007-03-22 주식회사 화흥도로안전씨스템 Fog preventing system
KR100912798B1 (en) * 2007-05-21 2009-08-19 민승기 Mist Dilution Device for Traffic Safety
KR100949700B1 (en) * 2007-05-21 2010-03-26 민승기 Mist Dilution Device for Traffic Safety
KR102120902B1 (en) * 2017-07-05 2020-06-17 이현주 Apparatus for removing fog

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160415A (en) * 1982-03-18 1983-09-22 高砂熱学工業株式会社 Overhead solar energy collecting and sound blocking apparatus
JPS59129913U (en) * 1983-02-15 1984-08-31 松下電工株式会社 road fog eliminator
JPS61141327U (en) * 1985-02-15 1986-09-01
JPS6216117U (en) * 1985-07-15 1987-01-30
JPS63293201A (en) * 1987-05-23 1988-11-30 当麻 庄司 Heat panel type snow melting treatment apparatus utilizing living waste water

Also Published As

Publication number Publication date
JPH02204514A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
US5548907A (en) Method and apparatus for transferring heat, mass, and momentum between a fluid and a surface
US4382365A (en) Energy conversion derived from pressure and temperature differentials at different elevations
CA1155437A (en) Isothermal heat pipe system
JPH0781253B2 (en) How to remove advancing fog from the runway and its vicinity
US5597140A (en) Infrared deicers for aircraft positioned on a taxiway and methods for using same
JPH11509799A (en) Method and apparatus for deicing an airplane by infrared radiation
JP3273748B2 (en) Snow melting method
JPH0211748B2 (en)
JP4272281B2 (en) Contamination methods and equipment
SE459011B (en) DEVICE FOR HEAT TREATMENT OF A SUBSTANCE, IN PARTICULAR INFRASTRUCTURE RADIATION OF A CONTINUOUS PAPER PATH IN A PAPER MACHINE
US4085729A (en) Solar air heater
US4465056A (en) Method and means for removing heat from a heat storage layer of water
RU2391460C2 (en) Highly efficient snow melting plant (versions)
SU1002599A1 (en) Pit airing method
RU2069945C1 (en) Method and apparatus for protecting crops from light frost
KR200369968Y1 (en) The compound type heat absorber make use of solar heat
JPH05179836A (en) Heat pipe type snow melting device
RU2088495C1 (en) Skin panel suffering considerable thermal loads due to aerodynamic heating
RU2071565C1 (en) Method for ventilation of quarries
JPH0376913A (en) Removal of fog
JPH079085B2 (en) Runway fog removal method
CA1187768A (en) Method of and means for lifting water and generating power therefrom
KR20180035382A (en) Temperature control system for equipment house
JPS58123049A (en) Snow thawing device having water heating function using solar heat
JPH0628613Y2 (en) Roof snow melting equipment