JPH0780921B2 - Microcrystalline chitosan and method for producing the same - Google Patents

Microcrystalline chitosan and method for producing the same

Info

Publication number
JPH0780921B2
JPH0780921B2 JP62013834A JP1383487A JPH0780921B2 JP H0780921 B2 JPH0780921 B2 JP H0780921B2 JP 62013834 A JP62013834 A JP 62013834A JP 1383487 A JP1383487 A JP 1383487A JP H0780921 B2 JPH0780921 B2 JP H0780921B2
Authority
JP
Japan
Prior art keywords
chitosan
acid
microcrystalline chitosan
water
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62013834A
Other languages
Japanese (ja)
Other versions
JPS63182304A (en
Inventor
拓 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP62013834A priority Critical patent/JPH0780921B2/en
Publication of JPS63182304A publication Critical patent/JPS63182304A/en
Publication of JPH0780921B2 publication Critical patent/JPH0780921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は微結晶キトサンおよびその製造法に関する。詳
しくは天然物から分離して得たキトサンの非晶部分を酸
加水分解により除去して得られる微結晶キトサンならび
にその製造法に関する。
TECHNICAL FIELD The present invention relates to microcrystalline chitosan and a method for producing the same. More particularly, it relates to microcrystalline chitosan obtained by removing an amorphous portion of chitosan obtained by separating from a natural product by acid hydrolysis, and a method for producing the same.

〈従来技術〉 セルロース,アミロース,キチン,コラーゲン等の結晶
性天然高分子物質さらにポリアミド,ポリエステル,ポ
リオレフィン等の結晶性合成高分子であって、結晶性部
分と非結晶部分を有する物質から酸加水分解により非晶
部分を除去して結晶部分を取りだして得た各種の微結晶
ポリマーの性質と製造方法がO.A.Battista著“Microcry
stal Polymer Science"Mc Graw Hill(1975年)に詳し
く述べられている。
<Prior Art> Crystalline natural polymer substances such as cellulose, amylose, chitin, collagen and the like, and crystalline synthetic polymers such as polyamide, polyester, polyolefin and the like, which are acid-hydrolyzed from substances having a crystalline portion and an amorphous portion. OABattista's "Microcry" describes the properties and manufacturing method of various microcrystalline polymers obtained by removing the amorphous part by removing the crystalline part by
stal Polymer Science "Mc Graw Hill (1975).

これら微結晶ポリマーのうち、親水性ポリマーの性質に
共通するものとしては圧縮成型できること、及び微結晶
ポリマーの水分散物を剪断下高速攪拌すると容易にゲル
状となることなどである。
Among these microcrystalline polymers, what is common to the properties of hydrophilic polymers is that they can be molded by compression, and that an aqueous dispersion of a microcrystalline polymer can easily become a gel when stirred at high speed under shear.

一方、甲殻類、昆虫類の組織支持体として自然界に広く
分布するキチンならびにキチンを脱アセチル化すること
により得られるキトサンは医療材料をはじめとして多く
の分野での機能性材料として近年注目されており活発な
研究がなされている。キトサンは遊離のアミン基を有す
ることから、カチオン性ポリマーとして種々の機能発現
が期待されるが、酸と接触すると酸塩を形成し水に溶解
するようになるため、先述の微結晶ポリマー製造技術を
適用することができず、キトサンを微結晶として得る先
行技術は発表されていない。
On the other hand, chitin, which is widely distributed in nature as a tissue support for crustaceans and insects, and chitosan obtained by deacetylating chitin have been attracting attention in recent years as functional materials in many fields including medical materials. Active research is being done. Since chitosan has a free amine group, it is expected to exhibit various functions as a cationic polymer, but when it comes into contact with an acid, it forms an acid salt and dissolves in water. Is not applicable, and no prior art for obtaining chitosan as fine crystals has been published.

〈発明が解決しようとする問題点〉 従来の技術に準じキトサンを不均一系で酸加水分解しよ
うとしてもキトサンが溶解して均一系となり、分解が進
行して結晶部分,非結晶部分を問わず、モノマー単位で
ある2−アミノ−2−デオキシ−D−グリコースまで分
解されてしまい、微結晶キトサンを得ることはできな
い。
<Problems to be solved by the invention> According to the conventional technique, even if an attempt is made to acid-hydrolyze chitosan in a heterogeneous system, chitosan is dissolved and becomes a homogeneous system, and the decomposition proceeds, regardless of whether it is a crystalline part or an amorphous part. However, 2-amino-2-deoxy-D-glycose, which is a monomer unit, is decomposed and microcrystalline chitosan cannot be obtained.

本発明は、上記したような従来の技術の問題点を解決し
て、すぐれた使途をもった微結晶キトサンとその製造方
法を提供しようとするものである。
The present invention is intended to solve the above-mentioned problems of the conventional techniques and provide a microcrystalline chitosan and a method for producing the same, which have excellent uses.

〈問題点を解決するための手段〉 本発明者は、キトサンを適当な有機溶媒〜水〜鉱酸の系
で処理すれば、キトサンの不均一系での酸加水分解が可
能となり、これにより結晶部分を微結晶キトサンとして
回収することが可能になる、という事実を見いだし本発
明に到達した。
<Means for Solving Problems> The present inventor can treat acid in a heterogeneous system of chitosan by treating chitosan with a system of a suitable organic solvent, water and a mineral acid. The present inventors have reached the present invention by discovering the fact that it is possible to recover a portion as microcrystalline chitosan.

キトサンを有機溶媒〜水〜鉱酸の系で処理し、非晶部分
を除去して得られる微結晶キトサンは微粉末である、原
料キトサンと物性を比較すると重合度は低く且つ均一化
され結晶化度は高くなっていることがみとめられる。
Chitosan is a fine powder obtained by treating chitosan with a system of organic solvent-water-mineral acid, and removing the amorphous part, and it is a fine powder when compared with the raw material chitosan It can be seen that the degree is high.

〈発明の構成〉 本発明は1%酢酸水溶液を溶媒として測定する極限粘度
数が1.5%〜2.0dl/gの範囲にあり、X線法結晶化度が80
〜90%の範囲にあることを特徴とする微結晶キトサンに
関するものである。
<Structure of the Invention> The present invention has an intrinsic viscosity in the range of 1.5% to 2.0 dl / g measured using a 1% acetic acid aqueous solution as a solvent, and an X-ray crystallinity of 80.
It relates to microcrystalline chitosan, which is characterized by being in the range of up to 90%.

本発明はまた、キトサンを有機溶媒〜水〜鉱酸よりなる
系で部分加水分解することを特徴とする微結晶キトサン
の製造方法に関するものである。
The present invention also relates to a method for producing microcrystalline chitosan, which comprises partially hydrolyzing chitosan with a system consisting of an organic solvent, water and a mineral acid.

本発明の微結晶キトサンの原料であるキトサンは、エビ
やカニの甲殻類の殻を精製して得られるキチンをアルカ
リ処理により脱アセチル化して得られるがこの方法で製
造したフレーク状キトサンが市販されている。
Chitosan, which is the raw material for the microcrystalline chitosan of the present invention, is obtained by deacetylating chitin obtained by purifying crustacean shells of shrimp and crab by alkali treatment, but flaky chitosan produced by this method is commercially available. ing.

本発明の製法において、原料キトサンの酸加水分解時に
用いる有機溶媒としては水と相溶性のあるものが好まし
く、アルコール類、ケトン類などが好ましい。特にn−
プロパノール,iso−プロパノール,n−ブタノール,sec−
ブタノール,iso−ブタノール,tert−ブタノール等が特
に好ましい。これらの溶媒は水と相溶性がよく、また比
較的沸点が高いので反応温度を高く設定し、短時間の反
応を可能にする。
In the production method of the present invention, the organic solvent used during the acid hydrolysis of the raw material chitosan is preferably one that is compatible with water, and alcohols, ketones and the like are preferable. Especially n-
Propanol, iso-propanol, n-butanol, sec-
Butanol, iso-butanol, tert-butanol and the like are particularly preferable. Since these solvents have good compatibility with water and also have a relatively high boiling point, the reaction temperature is set high to enable a short reaction time.

本発明の製法に用いる鉱酸としては例えば塩酸,硫酸,
硝酸,燐酸などである。
Examples of the mineral acid used in the production method of the present invention include hydrochloric acid, sulfuric acid,
Examples include nitric acid and phosphoric acid.

本発明の製法は、その好ましい態様に従えば、次のよう
にして実施することができる。
According to the preferred embodiment, the production method of the present invention can be carried out as follows.

キトサンと下記の物質を記載の量(いずれもキトサン10
0重量部に対して): 有機溶媒 300〜1,000重量部 水 300〜1,000重量部 鉱酸 100〜 200重量部 で混合して一緒に加水分解容器に仕込み、還流温度(85
〜90℃)で0.5〜2時間にわたって攪拌する。以上の処
理によってキトサンの酸加水分解が完了する。次いで、
該系を室温まで冷却別し、得られた粗微結晶キトサン
を加水分解に使用したのと同じ種類の有機溶媒1,000重
量部に投入し、室温で15〜30分攪拌した後別すると、
微粉末の製品が湿潤状態で得られる。これは付着鉱酸の
大部分が除去された微結晶キトサンであるが、このもの
をカセイソーダ30重量部、水1,500重量部、有機溶媒
(加水分解に使用したのと同じ種類のものが好ましい)
1,500重量部からなる溶液に投入し常温で15〜30分攪拌
し、付着酸とアミノ基へ付加している酸を中和する。こ
の後、微結晶キトサンを洗液が中性になるまで水で洗滌
する。水洗後、微結晶キトサンを乾燥するが、この乾燥
方法により微結晶キトサンの機能発現が左右される。
The amounts of chitosan and the substances listed below (both chitosan 10
Organic solvent: 300-1,000 parts by weight Water: 300-1,000 parts by weight Mineral acid: 100-200 parts by weight Mix in a hydrolysis vessel at the reflux temperature (85
Stir at ~ 90 ° C) for 0.5-2 hours. The above-mentioned treatment completes the acid hydrolysis of chitosan. Then
The system was cooled to room temperature, and the obtained crude fine crystalline chitosan was added to 1,000 parts by weight of the same type of organic solvent used for the hydrolysis, and the mixture was stirred at room temperature for 15 to 30 minutes and then separated.
A finely divided product is obtained in the wet state. This is a microcrystalline chitosan from which most of the deposited mineral acid has been removed. This is 30 parts by weight caustic soda, 1,500 parts by weight of water, organic solvent (preferably the same type used for hydrolysis).
It is added to a solution consisting of 1,500 parts by weight and stirred at room temperature for 15 to 30 minutes to neutralize the attached acid and the acid added to the amino group. After that, the microcrystalline chitosan is washed with water until the washing liquid becomes neutral. After washing with water, the microcrystalline chitosan is dried. The function of microcrystalline chitosan is affected by this drying method.

好ましい乾燥の実施態様としては、(1)凍結乾燥、
(2)有機溶媒で水を置換した後50〜60℃の温度で乾燥
し、(3)噴霧乾燥が挙げられる。(1)または(2)
の方法で乾燥した場合は微粉末が2次凝集して塊とな
る。塊状の乾燥物を粉砕することで所望の微結晶キトサ
ンが得られる。通常90%以上が60μm以下の粒径を有す
る微粉末としてえられる。
Preferred embodiments of drying include (1) freeze-drying,
(2) After substituting water with an organic solvent, it is dried at a temperature of 50 to 60 ° C., and (3) spray drying is mentioned. (1) or (2)
When dried by the above method, the fine powder is secondarily aggregated to form a lump. The desired microcrystalline chitosan is obtained by crushing the lumpy dried product. Usually, 90% or more is obtained as a fine powder having a particle size of 60 μm or less.

〈発明の効果〉 本発明の方法によって得ることのできる微結晶キトサン
は圧縮成型性があり打錠成型できるので錠剤の賦形剤兼
崩壊剤として使用可能である。医薬の打錠に用いた場合
の崩壊性は微結晶セルロースに比し優れている。また微
結晶キトサンを水に懸濁させ高剪断下攪拌すると該懸濁
液系は粘稠なゲル状になるため、食品に添加して賦形剤
としても利用できる。さらに上述のゲル状物をガラス板
上にアプリケーターを用い展延し、乾燥すると薄膜クロ
マトグラフィー用担体として使用することができる。
<Effects of the Invention> The microcrystalline chitosan obtainable by the method of the present invention has compression moldability and can be formed into tablets, and therefore can be used as an excipient / disintegrant for tablets. The disintegration property when used for tableting a medicine is superior to that of microcrystalline cellulose. Further, when microcrystalline chitosan is suspended in water and stirred under high shear, the suspension system becomes a viscous gel, and therefore it can be added to foods and used as an excipient. Further, the above gel-like material is spread on a glass plate with an applicator and dried to be used as a carrier for thin film chromatography.

〈実施例〉 以下に本発明を実施例により、更に詳細に説明する。<Example> Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 市販のキトサンフレーク(共和油脂(株)製、〔η〕1%
酢酸=141,結晶化度60%)100gを、イソプロパノール
(IPA)524g、水60g、36%塩酸478gの混合液中に投入
し、還流温度(87℃)に加温し、攪拌しながら、30分間
保持した。その後冷却し、過し得られた粗微結晶キト
サンを1,000gのIPAに投入、室温で30分間攪拌した。こ
れを過した後、固形分を、カセイソーダ30g,水1,500
g,IPA1,500gの混合液中に入れ、室温で30分間処理し
た。処理後、水洗、アセトン置換、乾燥、粉砕を行な
い、微結晶キトサン粉末(〔η〕1% 酢酸=1.9,結晶化度
85%,粒度95%以上が60μm以下)70gを得た。
Example 1 Commercially available chitosan flakes (manufactured by Kyowa Yushi Co., Ltd., [η] 1%
100 g of acetic acid = 141, crystallinity of 60%) was added to a mixed solution of 524 g of isopropanol (IPA), 60 g of water, and 478 g of 36% hydrochloric acid, and the mixture was heated to a reflux temperature (87 ° C) and stirred to 30 Hold for minutes. Then, the mixture was cooled, and the crude fine crystal chitosan obtained was put into 1,000 g of IPA and stirred at room temperature for 30 minutes. After passing this, the solid content is 30 g of caustic soda, 1,500 of water.
It was put in a mixed solution of 1,500 g of IPA and treated for 30 minutes at room temperature. After the treatment, it was washed with water, replaced with acetone, dried, and pulverized to obtain fine crystalline chitosan powder ([η] 1% acetic acid = 1.9, crystallinity).
70% (85%, particle size 95% or more 60 μm or less) was obtained.

実施例2 実施例1で用いたと同じキトサンフレークを実施例1と
同じ処方で、加水分解時間だけを1時間30分に変えて他
は全く同じ条件で処理した。後処理、乾燥、粉砕も全く
実施例1と同様に行ない、微結晶キトサン粉末(〔η〕
1% 酢酸=1.9,結晶化度87%,粒度:95%以上が60μm以
下)60gを得た。
Example 2 The same chitosan flakes as used in Example 1 were treated with the same formulation as in Example 1 except that the hydrolysis time was changed to 1 hour and 30 minutes, and the other conditions were exactly the same. Post-treatment, drying, and pulverization were carried out in the same manner as in Example 1, and microcrystalline chitosan powder ([η]
60% of 1% acetic acid = 1.9, crystallinity 87%, particle size: 95% or more and 60 μm or less) were obtained.

実施例3 実施例1で用いたと同じキトサンフレーク100gを、イソ
プロパノール524g、水219g、36%塩酸319gの混合液中に
投入し、還流温度(88℃)に加温し、攪拌しながら1時
間保持した。その後の後処理は全く実施例1と同様に行
ない、微結晶キトサン粉末(〔η〕1% 酢酸=2.0,結晶化
度80%,粒度90%以上が60μm以下)73gを得た。
Example 3 100 g of the same chitosan flakes as used in Example 1 was put into a mixed solution of 524 g of isopropanol, 219 g of water and 319 g of 36% hydrochloric acid, heated to a reflux temperature (88 ° C.) and kept for 1 hour while stirring. did. Subsequent post-treatment was carried out in the same manner as in Example 1 to obtain 73 g of microcrystalline chitosan powder ([η] 1% acetic acid = 2.0, crystallinity 80%, particle size 90% or more 60 μm or less).

実施例4および5 実施例1で得られた微結晶キトサンを用い水懸濁液とな
し、それをホモミキサーで10,000rpmで攪拌し、粘稠な
ゲル状物を得た。得られたゲル状物の粘度をB型粘度計
(ローターNo.4,60rpm,25℃)で測定した。結果を次表
に示す。
Examples 4 and 5 The microcrystalline chitosan obtained in Example 1 was used to prepare an aqueous suspension, which was stirred with a homomixer at 10,000 rpm to obtain a viscous gel. The viscosity of the obtained gel-like material was measured with a B-type viscometer (rotor No. 4, 60 rpm, 25 ° C). The results are shown in the table below.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】1%酢酸水溶液を溶媒として測定する極限
粘度数が1.5〜2.0dl/gの範囲にあり、X線法結晶化度が
80〜90%の範囲にあることを特徴とする微結晶キトサ
ン。
1. The intrinsic viscosity number measured with a 1% acetic acid aqueous solution as a solvent is in the range of 1.5 to 2.0 dl / g, and the X-ray crystallinity is
Microcrystalline chitosan characterized by being in the range of 80-90%.
【請求項2】キトサンを有機溶媒〜水〜鉱酸より成る系
で部分加水分解することを特徴とする微結晶キトサンの
製造方法。
2. A method for producing microcrystalline chitosan, which comprises partially hydrolyzing chitosan with a system consisting of an organic solvent, water and a mineral acid.
【請求項3】前記有機溶媒が水溶性溶媒であることを特
徴とする特許請求の範囲第2項記載の微結晶キトサンの
製造方法。
3. The method for producing microcrystalline chitosan according to claim 2, wherein the organic solvent is a water-soluble solvent.
【請求項4】前記有機溶媒がアルコールであることを特
徴とする特許請求の範囲第3項記載の微結晶キトサンの
製造方法。
4. The method for producing microcrystalline chitosan according to claim 3, wherein the organic solvent is alcohol.
【請求項5】前記鉱酸が塩酸、硫酸、硝酸のいずれかで
あることを特徴とする特許請求の範囲第2項記載の微結
晶キトサンの製造方法。
5. The method for producing microcrystalline chitosan according to claim 2, wherein the mineral acid is any one of hydrochloric acid, sulfuric acid and nitric acid.
【請求項6】前記部分加水分解による製造においてキト
サンの使用量100重量部に対し、前記有機溶媒300〜1,00
0重量部、水300〜1,000重量部、鉱酸100〜200重量部を
それぞれの使用量とする特許請求の範囲第2項,第3
項,第4項および第5項のいずれかに記載の微結晶キト
サンの製造方法。
6. The organic solvent 300 to 1,00 per 100 parts by weight of chitosan used in the production by the partial hydrolysis.
Claims 2 and 3 in which the amount of use is 0 parts by weight, 300 to 1,000 parts by weight of water, and 100 to 200 parts by weight of mineral acid.
Item 6. A method for producing microcrystalline chitosan according to any one of Items 4, 4 and 5.
JP62013834A 1987-01-23 1987-01-23 Microcrystalline chitosan and method for producing the same Expired - Lifetime JPH0780921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013834A JPH0780921B2 (en) 1987-01-23 1987-01-23 Microcrystalline chitosan and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013834A JPH0780921B2 (en) 1987-01-23 1987-01-23 Microcrystalline chitosan and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63182304A JPS63182304A (en) 1988-07-27
JPH0780921B2 true JPH0780921B2 (en) 1995-08-30

Family

ID=11844302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013834A Expired - Lifetime JPH0780921B2 (en) 1987-01-23 1987-01-23 Microcrystalline chitosan and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0780921B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI83426C (en) * 1989-06-30 1991-07-10 Firextra Oy FOERFARANDE FOER KONTINUERLIG FRAMSTAELLNING AV MICROCRYSTALLINE KITOSAN.
CN1248679C (en) * 2000-07-18 2006-04-05 株式会社艾贝克斯 Water soluble microflake through air gap and process thereof
JP4759151B2 (en) * 2001-02-16 2011-08-31 日本水産株式会社 Production method of low molecular weight chitosan by heterogeneous system
AU2003201052A1 (en) * 2002-01-09 2003-07-24 Abbott Laboratories De Costa Rica Ltd Methods of producing modified microcrystalline chitosan and uses therefor
KR100553667B1 (en) * 2002-05-08 2006-02-24 메디칸(주) Process of an injection type solid chitosan
CN1223610C (en) * 2003-07-16 2005-10-19 中国科学院海洋研究所 Microware degradative crust oligose compound and its preparing method

Also Published As

Publication number Publication date
JPS63182304A (en) 1988-07-27

Similar Documents

Publication Publication Date Title
Bakshi et al. Chitosan as an environment friendly biomaterial–a review on recent modifications and applications
JP6639441B2 (en) Method for producing a hydrogel
US6509039B1 (en) Crosslinked products of biopolymers containing amino groups
US4929722A (en) Acid decrystallization of aminopolysaccharides and derivatives thereof
Barikani et al. Preparation and application of chitin and its derivatives: a review
EP0271551B1 (en) Acid decrystallization of higly cristalline chitosan or partially deacylated chitin
CN1228371C (en) Preparation method and uses of carboxymethyl chitosan and sodium alginate blend microcapsule
CN103601819B (en) Method for homogeneous preparation of carboxyl chitin with low deacetylation degree and application of carboxyl chitin
JPH0780921B2 (en) Microcrystalline chitosan and method for producing the same
US6444797B1 (en) Chitosan microflake and method of manufacturing the same
WO2008038864A1 (en) Low toxic, biocompatible film using chitosan and polyethylene glycol
CA2407584A1 (en) Process for preparing chitosan particles
JP4566274B2 (en) Chitin slurry and manufacturing method thereof
JP2537421B2 (en) Hydroxypropylated deacetylated chitin and method for producing the same
JP3046105B2 (en) Chitosan-plant fiber composite and method for preparing the same
Elangovan et al. Extraction, characterization and biological activity of Galactomannan rich endosperm of Borassus flabellifer (Linn.) suitable for biofabrication of tissue scaffolds
CN110981984A (en) Preparation method of high-viscosity sodium carboxymethyl starch
JPH0212961B2 (en)
JP3231276B2 (en) Chitosan composition and method for producing the same
JPH11302183A (en) Chitosan composition and its production
KR100470715B1 (en) A capsule of porous bead of water soluble chitosan and the preparation method thereof
JP2018053067A (en) Manufacturing method of amorphous chitin and application thereof
KR20050087175A (en) Preparation methods of chitosan-gelatin-algin sponge using ultrasonication
CN111675773B (en) Preparation method and application of chitosan with controllable molecular weight range
Sakib et al. Pharmaceutical Applications of Sterculia Gum