JPH0780281A - Production of ceramic hollow particles - Google Patents

Production of ceramic hollow particles

Info

Publication number
JPH0780281A
JPH0780281A JP18914693A JP18914693A JPH0780281A JP H0780281 A JPH0780281 A JP H0780281A JP 18914693 A JP18914693 A JP 18914693A JP 18914693 A JP18914693 A JP 18914693A JP H0780281 A JPH0780281 A JP H0780281A
Authority
JP
Japan
Prior art keywords
particles
ceramic powder
ceramic
core
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18914693A
Other languages
Japanese (ja)
Inventor
Ichiro Kiji
一郎 木地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUKOSHI KOGYO KK
Original Assignee
MARUKOSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUKOSHI KOGYO KK filed Critical MARUKOSHI KOGYO KK
Priority to JP18914693A priority Critical patent/JPH0780281A/en
Publication of JPH0780281A publication Critical patent/JPH0780281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Glanulating (AREA)

Abstract

PURPOSE:To produce ceramic hollow particles by performing one process coating core material particles with a ceramic powder in a predetermined thickness within a short time by one manufacturing apparatus. CONSTITUTION:In a method for producing ceramic hollow particles, a process coating the surface of spherical core particles 11 with a predetermined particle size composed of an org. material with a ceramic powder 21 through a binder is performed by fluidizing the total amt. of the core particles 11 to spray a predetermined amt. of a binder soln. 31 containing the org. material, an inorg. material or both of them on the core particles 11 and also supplying a predetermined amt. of the ceramic powder 21 to the core particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、断熱材、濾過材その他
に使用されるセラミック中空体粒子の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hollow ceramic particles used for heat insulating materials, filter materials and the like.

【0002】[0002]

【従来の技術】従来、造粒された有機物芯材粒子にバイ
ンダーを介してセラミック粉(耐火原料粉を含む。以下
同じ。)を被覆させ、これらを乾燥させたのち、被覆し
たセラミック粉を焼結してこれらの焼結中空体粒子を製
造する製造法においては、特開平2−277544号公
報などに記載されているように、、前記芯材粒子にセラ
ミック粉を所定厚みに被覆するためには、(a)芯材粒
子にバインダーを塗布し、次いで、(b)セラミック粉
をバインダー塗布面上に付着させ、少なくとも、この2
工程を段階的に繰り返しながら、セラミック粉を所定厚
みに被覆していた。
2. Description of the Related Art Conventionally, granulated organic core particles are coated with a ceramic powder (including refractory raw material powder; the same applies hereinafter) through a binder, and these are dried, and then the coated ceramic powder is burned. In the production method for producing these sintered hollow body particles by binding, in order to coat the core particles with a ceramic powder to a predetermined thickness, as described in JP-A-2-277544 and the like. Of (a) applies a binder to the core material particles, and then (b) deposits ceramic powder on the binder application surface, and
While repeating the process stepwise, the ceramic powder was coated to a predetermined thickness.

【0003】このため、(a)工程と(b)工程とで
は、製造装置を別々にするか、同じ製造装置で行うとき
は、異なる工程管理が必要となり、歩留りの低下やコス
ト高を招く等の欠点を有していた。
For this reason, in the steps (a) and (b), when the manufacturing apparatuses are separated or when the same manufacturing apparatus is used, different process management is required, resulting in a decrease in yield and an increase in cost. Had the drawback of.

【0004】[0004]

【発明が解決しようとする課題】本発明は、芯材粒子に
所定厚みのセラミック粉を被覆させる工程が、1工程、
1製造装置で、短時間に行うことができるセラミック中
空体粒子の製造法を提供するものである。
DISCLOSURE OF THE INVENTION According to the present invention, a step of coating core particles with a ceramic powder having a predetermined thickness is one step,
The present invention provides a method for producing ceramic hollow body particles which can be performed in a short time with one production apparatus.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するため、有機物芯材粒子の表面にバインダーを介し
てセラミック粉を被覆させる工程を含むセラミック中空
体粒子の製造法において、所定径の球状有機物芯材粒子
にセラミック粉を所定厚みに被覆させる工程が、前記芯
材粒子の所定量全量を流動させて、それに有機物又は無
機物又は両者からなる所定量のバインダー液を噴射する
と共に、所定量のセラミック粉を供給することからなる
セラミック中空体粒子の製造法を提供するものである。
In order to achieve the above object, the present invention provides a method for producing hollow ceramic particles, which comprises a step of coating the surface of organic core particles with ceramic powder through a binder. The step of coating the spherical organic substance core material particles with ceramic powder to a predetermined thickness is such that a predetermined amount of the core material particles is allowed to flow and a predetermined amount of binder liquid consisting of an organic substance or an inorganic substance or both is sprayed onto the core substance particles. The present invention provides a method for producing ceramic hollow body particles, which comprises supplying a fixed amount of ceramic powder.

【0006】本発明において、芯材粒子は、有機可燃性
物質の球状粒子からなり、できるだけ低い温度で分解す
る物質が好ましい。また、ガス化してセラミック被覆層
を通過する際には、セラミック被覆層を破壊することな
く通過して消失する物質が好ましい。このため発泡スチ
ロール球粒子やポリエチレン球粒子等が使用される。ま
た、芯材粒子は、球径約1〜10ミリメートルのものが
望ましく、また真円度が高く、球径分布の均一性のもの
が望まれる。
In the present invention, the core material particles are composed of spherical particles of an organic combustible substance, and a substance which decomposes at a temperature as low as possible is preferable. Further, when gasifying and passing through the ceramic coating layer, a substance that passes and disappears without destroying the ceramic coating layer is preferable. For this reason, expanded polystyrene sphere particles and polyethylene sphere particles are used. Further, the core material particles preferably have a sphere diameter of about 1 to 10 mm, and have a high roundness and a uniform sphere diameter distribution.

【0007】芯材粒子の所定量全量を流動させるために
は、図1に示すような回転容器に所定量全量を入れて回
転させる方法、図2に示すように、容器1B内に所定量
全量11Bを入れたのち、底部12Bから管13Bの圧
力空気で浮遊させる方法、容器内に所定量全量を入れた
のち、容器自体を振動させる方法などやこれらを組み合
せる方法などが挙げられる。なお、図2において、2B
はセラミック粉を収容したホッパー、3Bはバインダー
液噴霧管である。
In order to make a predetermined amount of the core material particles flow, a method of putting a predetermined amount of the core material particles in a rotary container as shown in FIG. 1 and rotating the core material particles, as shown in FIG. Examples of the method include a method of suspending 11B after the bottom portion 12B is floated by the pressurized air in the tube 13B, a method of vibrating the container itself after a predetermined amount of the total amount is put into the container, and a method of combining these. In FIG. 2, 2B
Is a hopper containing ceramic powder, and 3B is a binder liquid spray tube.

【0008】バインダー液は、有機物としては、各種セ
ルローズ、ポリビニルアルコール、澱粉、糖蜜、リグニ
ン等の水溶液や、無機物としては、水ガラス、コロイド
アルミナ、コロイドシリカ、各種燐酸等の液状物が使用
される。
As the binder liquid, aqueous solutions of various types of cellulose, polyvinyl alcohol, starch, molasses, lignin and the like are used as organic substances, and liquid substances such as water glass, colloidal alumina, colloidal silica and various phosphoric acids are used as inorganic substances. .

【0009】バインダー液の噴射は、微細な噴霧を生成
させるため、通常はノズルで液滴を生成させるが、回転
による遠心力を利用する場合もある。
Since the jetting of the binder liquid produces fine spray, droplets are usually produced by the nozzle, but centrifugal force due to rotation may be used in some cases.

【0010】セラミック粉は、通常、粒度0.01〜
0.84ミリメートルの範囲のものが使用され、また、
組成としては、アルミナを70重量部以上含み、残部が
シリカを主体とするムライト質、アルミナを70重量部
以上含み、残部がマグネシアを主体とするスピネル質、
シリカを90重量部以上含む高シリカ質、アルミナを9
0重量部以上含む高アルミナ質、マグネシアを90重量
部以上含む高マグネシア質、カルシアを90重量部以上
含む高カルシア質、マグネシアとカルシアの両者を50
重量部含むドロマイト質、ジルコニアを90重量部以上
含むジルコニア質およびシリカ、アルミナ、マグネシア
の3成分からなるコージエライト質のものなどの酸化物
セラミックを主成分とするもの、炭化珪素、窒化珪素お
よびサイアロンなどの非酸化物セラミックを主成分とす
るもの、炭酸カルシウム、炭酸マグネシウム、あるい
は、この両者を含むものなどが、通常、使用される。
The ceramic powder usually has a particle size of 0.01-.
The range of 0.84 mm is used, and
The composition includes 70 parts by weight or more of alumina, the balance is mullite mainly composed of silica, 70 parts by weight or more of alumina and the balance is spinel mainly composed of magnesia,
High-silica containing 90 parts by weight or more of silica, alumina 9
High alumina containing 0 parts by weight or more, high magnesia containing 90 parts by weight or more magnesia, high calcia containing 90 parts by weight or more of calcia, both magnesia and calcia 50
Parts by weight dolomite, zirconia containing 90 parts by weight or more of zirconia and those mainly containing oxide ceramics such as silica, alumina, cordierite composed of three components of magnesia, silicon carbide, silicon nitride and sialon In general, the non-oxide ceramics described in 1 above, calcium carbonate, magnesium carbonate, or a mixture containing both of them are used.

【0011】セラミック粉の供給は、ホッパー等からの
重力落下による方法、圧力空気を介して噴出させる方法
などが挙げられる。
The ceramic powder can be supplied by a method such as gravity dropping from a hopper or the like, or a method of ejecting the powder through pressurized air.

【0012】[0012]

【実施例】本発明の実施例が図1に示されている。直径
3mmの発泡スチロール球粒子11の100重量部を回
転造粒機1に投入する。回転造粒機1を始動させ、回転
速度を所定速度に保持すると、投入された発泡スチロー
ル球粒子11は遠心力により側壁部分で底からの高さが
最高になりながら、皿状の表面を形成しつつ全体として
回転しながらスチロール球粒子11自身も互いに接触し
つつ個々に転動する。造粒機1の側方上部に設置された
ホッパー2には、予め粒度調整された乾燥したムライト
組成のセラミック粉21が8000重量部貯蔵されてお
り、下部の粉末流量調整弁22を通じ、セラミック粉2
1を回転造粒機1に所定の供給速度で投入する。同時
に、造粒機1の直径方向に設置したバインダー供給管3
の複数のノズル32からバインダー液31(ポリビニル
アルコール1%水溶液)1000重量部を回転しつつあ
る粒子群11の表面に噴霧速度1〜5ml/秒の範囲で
調整しながら、噴射する。1〜3分間でスチロール球1
1表面がバインダー液31で濡らされると共に、セラミ
ック粉21が付着し、約20分後にはスチロール球粒子
の表面に所定厚み0.5ミリメートルのセラミック層が
被覆される。セラミック層の被覆が完了すれば、造粒機
1側壁の排出口から造粒物を取り出し、底部が金あみの
乾燥容器に入れる。乾燥前重量は9100部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention is shown in FIG. 100 parts by weight of expanded polystyrene sphere particles 11 having a diameter of 3 mm are put into the rotary granulator 1. When the rotary granulator 1 is started and the rotational speed is maintained at a predetermined speed, the expanded polystyrene sphere particles 11 that have been introduced form a dish-shaped surface while the height from the bottom is maximized at the side wall due to the centrifugal force. While rotating as a whole, the styrene sphere particles 11 themselves also roll while individually contacting each other. The hopper 2 installed on the upper side of the granulator 1 stores 8000 parts by weight of a ceramic powder 21 of a dried mullite composition whose particle size has been adjusted in advance. Two
1 is charged into the rotary granulator 1 at a predetermined supply rate. At the same time, the binder supply pipe 3 installed in the diameter direction of the granulator 1
1000 parts by weight of the binder liquid 31 (1% aqueous solution of polyvinyl alcohol) is sprayed onto the surface of the rotating particle group 11 from the plurality of nozzles 32 while adjusting the spraying speed in the range of 1 to 5 ml / sec. Styrene ball 1 in 1-3 minutes
The surface 1 is wetted with the binder liquid 31, the ceramic powder 21 is attached, and after about 20 minutes, the surface of the styrene sphere particles is coated with a ceramic layer having a predetermined thickness of 0.5 mm. When the coating of the ceramic layer is completed, the granulated product is taken out from the discharge port on the side wall of the granulator 1 and put in a drying container having a gold net at the bottom. The weight before drying is 9100 parts.

【0013】[0013]

【発明の効果】本発明製造法によれば、芯材粒子に所定
厚みのセラミック粉を被覆させるには、芯材粒子の所定
量の全量を流動させておき、それに所定量のバインダー
液を噴射させると共に、所定量のセラミック粉を供給す
れば、短時間に、一挙に、所定厚みのセラミック被覆層
を有する芯材粒子が、1工程、1製造装置で得られるこ
とになり、工程管理の省略化と歩留りの向上をもたらし
て大巾なコスト安をはかることができる。
According to the manufacturing method of the present invention, in order to coat the core material particles with the ceramic powder of the predetermined thickness, the predetermined amount of the core material particles is made to flow, and then the predetermined amount of the binder liquid is sprayed on it. In addition, by supplying a predetermined amount of ceramic powder, core material particles having a ceramic coating layer of a predetermined thickness can be obtained at once in one step with one manufacturing apparatus, thus omitting process control. It is possible to reduce the cost significantly by improving the yield and improving the yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明製造装置例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a manufacturing apparatus of the present invention.

【図2】別の本発明製造装置例を示す説明図である。FIG. 2 is an explanatory view showing another example of the manufacturing apparatus of the present invention.

【符合の説明】[Explanation of sign]

11 芯材粒子 21 セラミック粉 31 バインダー液 11 Core Particles 21 Ceramic Powder 31 Binder Liquid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機物芯材粒子の表面にバインダーを介
してセラミック粉を被覆させる工程を含むセラミック中
空体粒子の製造法において、所定径の球状有機物芯材粒
子にセラミック粉を所定厚みに被覆させる工程が、前記
芯材粒子の所定量全量を流動させて、それに有機物又は
無機物又は両者からなる所定量のバインダー液を噴射す
ると共に、所定量のセラミック粉を供給することからな
るセラミック中空体粒子の製造法。
1. A method for producing hollow ceramic particles, which comprises a step of coating the surface of organic core particles with a ceramic powder via a binder, wherein spherical organic core particles having a predetermined diameter are coated with the ceramic powder to a predetermined thickness. The step is to flow a predetermined amount of the core material particles, and to inject a predetermined amount of a binder liquid composed of an organic material or an inorganic material or both into the core material particles, and to supply a predetermined amount of ceramic powder to the ceramic hollow body particles. Manufacturing method.
JP18914693A 1993-06-30 1993-06-30 Production of ceramic hollow particles Pending JPH0780281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18914693A JPH0780281A (en) 1993-06-30 1993-06-30 Production of ceramic hollow particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18914693A JPH0780281A (en) 1993-06-30 1993-06-30 Production of ceramic hollow particles

Publications (1)

Publication Number Publication Date
JPH0780281A true JPH0780281A (en) 1995-03-28

Family

ID=16236197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18914693A Pending JPH0780281A (en) 1993-06-30 1993-06-30 Production of ceramic hollow particles

Country Status (1)

Country Link
JP (1) JPH0780281A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740581A1 (en) * 1994-01-21 1996-11-06 Bruce Nathaniel Gray Particulate material
US6355345B1 (en) 1997-12-12 2002-03-12 Teijin Limited Laminate film for preventing glass from shattering
KR101383255B1 (en) * 2012-06-01 2014-04-10 삼화콘덴서공업주식회사 Electrostatic force type powder coating apparatus and dielectric powder coating method for multi layer ceramic capacitor using the same
JP2014141371A (en) * 2013-01-23 2014-08-07 Agc Ceramics Co Ltd Thick-skinned hollow ceramic particles and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270726A (en) * 1990-03-22 1991-12-02 Kanagawa Pref Gov Preparation of hollow sphere

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270726A (en) * 1990-03-22 1991-12-02 Kanagawa Pref Gov Preparation of hollow sphere

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740581A1 (en) * 1994-01-21 1996-11-06 Bruce Nathaniel Gray Particulate material
EP0740581A4 (en) * 1994-01-21 1999-06-02 Bruce Nathaniel Gray Particulate material
US6355345B1 (en) 1997-12-12 2002-03-12 Teijin Limited Laminate film for preventing glass from shattering
KR101383255B1 (en) * 2012-06-01 2014-04-10 삼화콘덴서공업주식회사 Electrostatic force type powder coating apparatus and dielectric powder coating method for multi layer ceramic capacitor using the same
JP2014141371A (en) * 2013-01-23 2014-08-07 Agc Ceramics Co Ltd Thick-skinned hollow ceramic particles and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2022033267A1 (en) Manufacturing method for atomising core, atomising core, and electronic atomising apparatus thereof
Jones Solution and suspension layering
JP5312953B2 (en) Spray device for producing finely dispersed spray and process for producing free-flowing spray-dried alumina powder using the spray device
CN101429041B (en) Fire-resistant light granules and method of production thereof
JP2008505835A (en) Method for producing solid ceramic particles using a spray drying process
Jones Air suspension coating for multiparticulates
US20080220111A1 (en) Method and apparatus for producing free-form products
JP2004522581A5 (en)
RU2167841C2 (en) Spherical ceramic components prepared by molding, and method of manufacturing thereof
CN101291885A (en) Low thermal expansion foundry media
JPS6013735B2 (en) Method for producing granules consisting of a core and a coating layer
CN110372212A (en) Adobe film forming moisturizer, ink-jet printing ink and decoration glue and preparation method
JPH0780281A (en) Production of ceramic hollow particles
US6602556B2 (en) Ceramic shell thermal spray powders and methods of use thereof
JPH06262054A (en) Method and apparatus for granulation and granulated article obtained thereby
GB1270020A (en) Improvements in or relating to spray drying devices and methods for the operation of such devices
CN109550623A (en) A method of improving crucible used for polycrystalline silicon ingot casting inside surface roughness
US3684558A (en) Process of enrobing powder particles
JPH0234884B2 (en)
JPS63190629A (en) Spray drying fluidization granulator
CN110271087A (en) The manufacturing method of honeycomb structure
JPH10216575A (en) Apparatus and method for granulation
JPH03257081A (en) Production of porous ceramics
JP3226809B2 (en) Manufacturing method of hollow granule mold flux
JP2001129382A (en) Method for coating fine particle and device therefor