JPH0779550B2 - Power converter control method - Google Patents

Power converter control method

Info

Publication number
JPH0779550B2
JPH0779550B2 JP61179968A JP17996886A JPH0779550B2 JP H0779550 B2 JPH0779550 B2 JP H0779550B2 JP 61179968 A JP61179968 A JP 61179968A JP 17996886 A JP17996886 A JP 17996886A JP H0779550 B2 JPH0779550 B2 JP H0779550B2
Authority
JP
Japan
Prior art keywords
self
power converter
extinguishing
switching
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61179968A
Other languages
Japanese (ja)
Other versions
JPS6339470A (en
Inventor
和彦 佐々木
光幸 本部
一男 本田
茂太 上田
博美 稲葉
秀明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61179968A priority Critical patent/JPH0779550B2/en
Publication of JPS6339470A publication Critical patent/JPS6339470A/en
Publication of JPH0779550B2 publication Critical patent/JPH0779550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自己消弧素子を用いる電力変換器に係り、特に
高周波スイツチングする電力変換器に好適な制御方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a power converter using a self-extinguishing element, and more particularly to a control method suitable for a high-frequency switching power converter.

〔従来の技術〕[Conventional technology]

自己消弧素子を用いてスイツチング制御を行う電力変換
器の制御方法は、例えば特開昭59−204470号等に記載さ
れている。このような電力変換において、波形改善を図
る為には搬送波周波数を高くすることが考えられるが、
その結果、自己消弧素子のスイツチング回数が上昇する
ことになる点については特に考慮されていなかつた。
A method of controlling a power converter that performs switching control using a self-extinguishing element is described, for example, in JP-A-59-204470. In such power conversion, it is possible to increase the carrier frequency in order to improve the waveform.
As a result, no particular consideration has been given to the fact that the number of times the self-extinguishing element is switched increases.

〔発明が解決しようとする問題点〕 波形改善は極めて重要な課題であり、この為、スイツチ
ング周波数は高くせざるを得ない。しかし、その反面、
スイツチングの高周波化を伴い自己消弧素子の損失が増
大し、強いてはスイツチング時に発生する熱の増加で素
子が破壊されるおそれがあることが解つた。
[Problems to be Solved by the Invention] Waveform improvement is a very important issue, and therefore the switching frequency must be increased. However, on the other hand,
It was found that the loss of the self-extinguishing element increases as the frequency of the switching increases, and the element may be destroyed by the increase of heat generated during the switching.

本発明の目的は、自己消弧素子の損失を経減すると共
に、交流波形の高調波成分を低減可能な電力変換器の制
御方法を提供することにある。
An object of the present invention is to provide a power converter control method capable of reducing the loss of the self-extinguishing element and reducing the harmonic components of the AC waveform.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、複数個の自己消弧素子を三相ブリッジ接続
し、該自己消弧素子をパルス幅変調制御によって得られ
るスイッチングパルス列の制御信号により導通,非導通
することで、前記ブリッジに入力される直流を交流に変
換、あるいは交流入力を直流に変換する電力変換器の制
御方法において、前記ブリッジの正極側もしくは負極側
に接続された複数の自己消弧素子群内で、所定周期内に
おける前記スイッチングパルスの分配順序を、前記所定
周期毎に、ある周期と次に続く周期とでは前記分配順序
が逆になるように変更し、変更直前に導通状態にある前
記自己消弧素子が変更直後も導通を保つようにしたこと
により達成される。
The purpose is to connect a plurality of self-extinguishing elements to a three-phase bridge, and to make the self-extinguishing elements conductive and non-conductive by a control signal of a switching pulse train obtained by pulse width modulation control, thereby inputting to the bridge. In a method of controlling a power converter that converts direct current into alternating current or converts alternating current input into direct current, in a plurality of self-extinguishing element groups connected to the positive electrode side or the negative electrode side of the bridge, the The distribution order of the switching pulses is changed such that the distribution order is reversed between a certain cycle and a subsequent cycle for each of the predetermined cycles, and even immediately after the change, the self-extinguishing element in the conductive state immediately before the change is changed. This is achieved by maintaining continuity.

〔作用〕[Action]

例えば、分配回路で通常第1自己消弧素子から第2自己
消弧素子へ、次に第2自己消弧素子から第3自己消弧素
子へ転流するというサイクルを1周期としてくりかえし
行うよう分配(1,2,3−1,2,3−……)している。これに
対し本発明は、先ず第1サイクルの分配が前述どおり
(1,2,3)で、第2サイクルでは第3自己消弧素子から
第2自己消弧素子へ、次に第2自己消弧素子から第1自
己消弧素子へ転流(3,2,1)するという様に分配順序を
切換える。第3サイクルは第1サイクルと同じで転流す
るといつた分配(1,2,3−3,2,1−1,2,3−……)の制御
を行うので、一定期間の転流サイクル数が等しければ、
スイツチング回数が節約でき、通常のスイツチングパル
ス列と巨視的に同じであるので、低次高調波が同等の制
御が、誤動作することなくできる。
For example, in the distribution circuit, normally, a cycle of commutation from the first self-extinguishing element to the second self-extinguishing element and then from the second self-extinguishing element to the third self-extinguishing element is distributed as one cycle. (1,2,3-1,2,3 ---). On the other hand, in the present invention, first, the distribution of the first cycle is (1,2,3) as described above, and in the second cycle, the third self-extinguishing element moves to the second self-extinguishing element, and then the second self-extinguishing element. The distribution order is switched so that commutation (3,2,1) is made from the arc element to the first self-extinguishing element. The 3rd cycle is the same as the 1st cycle, and when the commutation occurs, the distribution (1,2,3-3,2,1-1,2,3 −...) is controlled. If the numbers are equal,
Since the number of times of switching can be saved and the switching pulse train is macroscopically the same as the normal switching pulse train, it is possible to perform control with the same low-order harmonics without malfunction.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。第1図
は、本発明を実施する電力変換器の構成図である。この
場合は、エレベーター制御を対象にしている。本装置
は、乗りかご8の積載量の変化により巻上げ器6に生ず
る負荷変化に対応した直流電力を与える電源1と、直流
リアクトル2と、自己消弧素子G1〜G6で構成されたブリ
ツジ回路3と、自己消弧素子G1〜G6のスイツチング時に
発生する過電圧を吸収するコンデンサ4と、巻上げ器6
を駆動する誘導電動機5で構成されている。また、本装
置の制御回路15、速度指令V*を出すエレベーター制御
回路11と、誘導電動機5の状態を管理しながら速度指令
V*に対応した周波数指令*を発生する周波数指令回
路12と、周波数指令*に基づき自己消弧素子G1〜G6
スイツチングパルスP1〜P6を発生・分配するパルス分配
回路13と、自己消弧素子G1〜G6の点弧及び消弧を制御す
るゲート回路14とで構成される。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram of a power converter embodying the present invention. In this case, the elevator control is targeted. This device is a bridge that is composed of a power source 1 that gives a DC power corresponding to a load change generated in a hoisting device 6 due to a change in a load of a car 8, a DC reactor 2, and self-extinguishing elements G 1 to G 6. The circuit 3, the capacitor 4 that absorbs the overvoltage generated when the self-extinguishing elements G 1 to G 6 are switched, and the hoist 6
It is composed of an induction motor 5 for driving. Further, a control circuit 15 of the present apparatus, an elevator control circuit 11 that outputs a speed command V *, a frequency command circuit 12 that generates a frequency command * corresponding to the speed command V * while managing the state of the induction motor 5, and a frequency. A pulse distribution circuit 13 that generates and distributes the switching pulses P 1 to P 6 of the self-extinguishing elements G 1 to G 6 based on the command *, and controls the firing and extinction of the self-extinguishing elements G 1 to G 6. And a gate circuit 14 for switching.

次に第2図を使いパルス分配回路13におけるスイツチン
グパルス列P1〜P6の発生原理について説明する。第2図
(d)は、ある電気角60度の期間Tにおける発生原理図
で、変調波em1,em2,em3は、各々位相差120度となる振
幅Woの正弦波である。この周期は、周波数指令*によ
り決まる。ここで、任意の周期Tcを設定し、em1,em2
em3の大きさを利用し周期Tcを分割すれば、正弦波状の
パルス幅分布を有するパルス列が得られる。この周期Tc
は、パルス幅制御における搬送波の周期と等価である。
Next, the generation principle of the switching pulse trains P 1 to P 6 in the pulse distribution circuit 13 will be described with reference to FIG. Figure 2 (d) is in generation principle diagram in the period T of a 60 electrical degrees, the modulation wave e m1, e m2, e m3 is the sine wave amplitude Wo each a phase difference of 120 degrees. This cycle is determined by the frequency command *. Here, by setting an arbitrary period T c , e m1 , e m2 ,
A pulse train having a sinusoidal pulse width distribution can be obtained by dividing the period T c using the size of e m3 . This period T c
Is equivalent to the carrier cycle in pulse width control.

今周期Tcの中間点t1での変調波em1,em2,em3の瞬時値
を使うなら、変調波em1,em2,em3の瞬時値は、A,B,Cと
なる。このうち、Cを得るのに用いた基準値W1は、変調
率等の関係で決まる。ここで、期間Tでは自己消弧素子
G5が連続して点弧していると仮定する。期間Tはインバ
ータ動作の60度に相当する。第2図(b)で示すよう
に、P1にはB/(A+B+C)に対応する幅のパルスを分
配し、P2にはC/(A+B+C)に対応する幅が、そして
P3にはA/(A+B+C)に対応する幅のパルスを分配す
る。
If now using the instantaneous value of the modulating wave e m1, e m2, e m3 at the midpoint t 1 of the period T c, the instantaneous value of the modulating wave e m1, e m2, e m3 becomes A, B, and C . Of these, the reference value W 1 used to obtain C is determined by the relationship such as the modulation rate. Here, in the period T, the self-extinguishing element
Suppose G 5 is continuously firing. The period T corresponds to 60 degrees of inverter operation. As shown in FIG. 2 (b), a pulse having a width corresponding to B / (A + B + C) is distributed to P 1 , a width corresponding to C / (A + B + C) is distributed to P 2 , and
A pulse having a width corresponding to A / (A + B + C) is distributed to P 3 .

この図の場合、周期Tc毎にパルスは、P2−P3−P1の順序
で分配され、この動作がくりかえされている。
In this figure, pulse every period T c, it is distributed in the order of P 2 -P 3 -P 1, this operation is repeated.

そこで本発明では、このパルス分配の方法を見直し、第
3図に示すようにパルスを分配する。ここでは第2図
(b)と同じ60度期間を選んである。本発明のパルス分
配法では、第3図(a)で示すように周期Tc1でP1−P2
−P3の順でパルスを分配し、次の周期Tc2では、周期Tc1
の時とは逆にP3−P2−P1の順にパルスを分配する。次の
周期Tc3では、周期Tc1と同じ順序で分配を行い、これを
くりかえしてゆく。
Therefore, in the present invention, this pulse distribution method is reviewed and pulses are distributed as shown in FIG. Here, the same 60 degree period as in FIG. 2 (b) is selected. The pulse distribution method of the present invention, P 1 -P 2 in period T c1 as shown in FIG. 3 (a)
The pulses are distributed in the order of −P 3 , and in the next period T c2 , the period T c1
Distributing the pulses in the order of P 3 -P 2 -P 1 contrary to the case of. In the next cycle T c3 , distribution is performed in the same order as in the cycle T c1, and this is repeated.

尚、周期Tc1のパルス分配順序が第2図(b)と同じ場
合で、本発明を実施した場合のパルス列を第3図(b)
に示す。この場合、パルス列の対称性が第2図(a)よ
りも若干劣つている。
Incidentally, when the pulse distribution order of the cycle T c1 is the same as that in FIG. 2 (b), the pulse train in the case of implementing the present invention is shown in FIG. 3 (b).
Shown in. In this case, the symmetry of the pulse train is slightly inferior to that in FIG. 2 (a).

第3図(a)のパルス分配を用い、基本波−周期に対し
行うと、第4図に示す様なスイツチングパルス列P1〜P6
が得られ、自己消弧素子G1〜G6が動作し、パルス幅制御
電流IU,IV,IWが得られる。
When the pulse distribution shown in FIG. 3A is used for the fundamental wave-period, the switching pulse trains P 1 to P 6 as shown in FIG. 4 are obtained.
Is obtained, the self-extinguishing elements G 1 to G 6 operate, and pulse width control currents I U , I V , and I W are obtained.

ここで、自己消弧素子1個当りのパルス列の個数をみる
と、第3図及び第4図に示したT/Tc=5の場合、電気角
360度の間で12個である。第2図(c)に示した従来の
分配では15個である。T/Tc=20の場合には、従来の分配
では60個であるのに対し、本発明では41個となる。した
がつて、自己消弧素子のスイツチング回数が減り、自己
消弧素子のスイツチング時に発生する損失が減少する。
この効果は、上述したようにTに対するTcの比が小さく
なるほど、すなわち搬送周波数が高くなるほど大きい。
Here, looking at the number of pulse trains per self-extinguishing element, when T / T c = 5 shown in FIGS. 3 and 4, the electrical angle is
There are 12 in 360 degrees. In the conventional distribution shown in FIG. 2 (c), the number is 15. When T / T c = 20, the number is 60 in the conventional distribution, whereas it is 41 in the present invention. Therefore, the number of times the self-extinguishing element is switched is reduced, and the loss generated during the switching of the self-extinguishing element is reduced.
This effect becomes greater as the ratio of T c to T becomes smaller, that is, the carrier frequency becomes higher, as described above.

また本発明は、いままでみてきたようにパルス分配に対
するものなので、パルス幅制御電流IU,IV,IWの低次高
調波に関して、その量はほとんど変化しない。そこで自
己消弧素子のスイツチング回数を従来方式のものと同じ
にすれば、搬送波周波数が高まり、高調波の含有量を減
少できる。
Also, since the present invention is for pulse distribution as has been seen so far, the amount of the pulse width control currents I U , I V , and I W of the low-order harmonics hardly changes. Therefore, if the number of times of switching of the self-extinguishing element is made the same as that of the conventional method, the carrier frequency is increased and the content of harmonics can be reduced.

以上、本実施例によれば、自己消弧素子の発熱量を増や
すことなく、高調波を少なくすることができるので、釣
合いおもり7と乗りかご8で構成するエレベーターの機
械系の共振点に重なる低調波のトルクリツプルが抑えら
れ、快適なエレベーター制御が得られる。
As described above, according to the present embodiment, the harmonics can be reduced without increasing the heat generation amount of the self-extinguishing element, so that the resonance point of the mechanical system of the elevator constituted by the counterweight 7 and the car 8 overlaps. Subharmonic torque ripple is suppressed and comfortable elevator control is obtained.

尚、第3図及び第4図に示した実施例の場合、パルスを
P1−P2−P3,P3−P2−P1の順と、P2−P3−P1,P1−P3
P2の順に分配する方法を示したが、P3−P1−P2,P2−P1
−P3の順に分配するようにしてもよい。
In the case of the embodiment shown in FIG. 3 and FIG.
P 1 and the order of the -P 2 -P 3, P 3 -P 2 -P 1, P 2 -P 3 -P 1, P 1 -P 3 -
Although the method of distribution in the order of P 2 was shown, P 3 −P 1 −P 2 and P 2 −P 1
-P 3 may be distributed in this order.

また本実施例では、周期Tcの1サイクル毎に、パルス分
配の順序を変更する方法を示したが、周期Tcの2サイク
ル、もしくは3サイクル等の複数サイクル毎の変更する
よう制御してもよい。ただし、変更のサイクルが増加す
ると本発明の効果は小さくなる。
In the present embodiment, in each cycle of period T c, there is shown how to change the order of the pulse distribution, to control to change every several cycles of such two cycles or three cycles, the period T c Good. However, the effect of the present invention decreases as the number of change cycles increases.

以上、本実施例は直流から交流への電力変換器について
述べたが、交流電力との周期処理、通率の制御等の手段
を付加することにより、交流から直流への電力変換器に
本発明を実施できるのは、言うまでもない。
Although the present embodiment has described the DC-to-AC power converter, the present invention can be applied to an AC-to-DC power converter by adding means such as periodic processing with AC power and control of the duty factor. Needless to say, can be implemented.

〔発明の効果〕〔The invention's effect〕

本発明によれば、搬送波の周波数を上げても、自己消弧
素子のスイツチング回数を低く抑えることができるの
で、自己消弧素子の熱の発生が小さくなり、電力変換効
率が高くなる。一方スイツチング回数が従来と同じなら
高調波を抑えられるので、簡単なフイルタ回路で、容易
に低歪の波形が得られる効果がある。
According to the present invention, even if the frequency of the carrier wave is increased, the number of times of switching of the self-arc-extinguishing element can be suppressed to a low value, so that heat generation of the self-arc-extinguishing element is reduced and power conversion efficiency is increased. On the other hand, if the number of times of switching is the same as in the conventional case, harmonics can be suppressed, so that there is an effect that a low distortion waveform can be easily obtained with a simple filter circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のエレベーター用電力変換器
の構成図、第2図は第1図の電力変換器の自己消弧素子
のスイツチングパルス発生原理図、第3図は第1図の電
力変換器のためのスイツチングパルス列説明図、第4図
は第1図の電力変換器の各部動作波形図である。 1…電源、2…直流リアクトル、3…ブリツジ回路、5
…誘導電動機、6…巻上げ器、7…釣りあいおもり、8
…乗りかご、9,10…階床、11…エレベーター制御回路、
12…周波数指令回路、13…パルス分配回路、14…ゲート
回路、15…制御回路、G1〜G6…自己消弧素子。
FIG. 1 is a configuration diagram of an elevator power converter according to an embodiment of the present invention, FIG. 2 is a principle diagram of generating a switching pulse of a self-extinguishing element of the power converter of FIG. 1, and FIG. FIG. 4 is an explanatory diagram of a switching pulse train for the power converter shown in FIG. 4, and FIG. 4 is an operation waveform diagram of each part of the power converter shown in FIG. 1 ... Power supply, 2 ... DC reactor, 3 ... Bridge circuit, 5
… Induction motor, 6… Hoist, 7… Fishing weight, 8
… Car, 9,10… floor, 11… elevator control circuit,
12 ... frequency command circuit, 13 ... pulse distributing circuit, 14 ... gate circuit, 15 ... control circuit, G 1 ~G 6 ... self-turn-off devices.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 茂太 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 稲葉 博美 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 高橋 秀明 茨城県勝田市市毛1070番地 株式会社日立 製作所水戸工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeta Ueda 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Institute, Ltd. (72) Hiromi Inaba 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Hideaki Takahashi 1070 Ma, Katsuta City, Ibaraki Prefecture Hitachi Co., Ltd. Mito Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数個の自己消弧素子を三相ブリッジ接続
し、該自己消弧素子をパルス幅変調制御によって得られ
るスイッチングパルス列の制御信号により導通,非導通
することで、前記ブリッジに入力される直流を交流に変
換、あるいは交流入力を直流に変換する電力変換器の制
御方法において、 前記ブリッジの正極側もしくは負極側に接続された複数
の自己消弧素子群内で、所定周期内における前記スイッ
チングパルスの分配順序を、前記所定周期毎に、ある周
期と次に続く周期とでは前記分配順序が逆になるように
変更し、変更直前に導通状態にある前記自己消弧形素子
が変更直後も導通を保つようにしたことを特徴とする電
力変換器の制御方法。
1. A plurality of self-extinguishing elements are connected in a three-phase bridge, and the self-extinguishing elements are input to the bridge by conducting and non-conducting by a control signal of a switching pulse train obtained by pulse width modulation control. In the method of controlling a power converter for converting direct current to alternating current or converting alternating current input to direct current, in a plurality of self-extinguishing element groups connected to the positive electrode side or the negative electrode side of the bridge, within a predetermined cycle The distribution order of the switching pulses is changed such that the distribution order is reversed between a certain cycle and a subsequent cycle for each of the predetermined cycles, and the self-extinguishing element that is in a conductive state immediately before the change is changed. A method for controlling a power converter, which is characterized in that it maintains continuity immediately after that.
【請求項2】特許請求の範囲第1項において、 前記所定周期は、前記パルス幅変調制御に用いる搬送波
の周期とすること特徴とする電力変換器の制御方法。
2. The power converter control method according to claim 1, wherein the predetermined period is a period of a carrier wave used for the pulse width modulation control.
JP61179968A 1986-08-01 1986-08-01 Power converter control method Expired - Lifetime JPH0779550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61179968A JPH0779550B2 (en) 1986-08-01 1986-08-01 Power converter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61179968A JPH0779550B2 (en) 1986-08-01 1986-08-01 Power converter control method

Publications (2)

Publication Number Publication Date
JPS6339470A JPS6339470A (en) 1988-02-19
JPH0779550B2 true JPH0779550B2 (en) 1995-08-23

Family

ID=16075125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179968A Expired - Lifetime JPH0779550B2 (en) 1986-08-01 1986-08-01 Power converter control method

Country Status (1)

Country Link
JP (1) JPH0779550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970888B2 (en) * 2017-12-19 2021-11-24 株式会社ジェイテクト Motor control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740370A (en) * 1980-08-21 1982-03-05 Meidensha Electric Mfg Co Ltd Inverter control system for driving inductive load

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740370A (en) * 1980-08-21 1982-03-05 Meidensha Electric Mfg Co Ltd Inverter control system for driving inductive load

Also Published As

Publication number Publication date
JPS6339470A (en) 1988-02-19

Similar Documents

Publication Publication Date Title
Matsui et al. Application of parallel connected NPC-PWM inverters with multilevel modulation for AC motor drive
Carrara et al. A new multilevel PWM method: A theoretical analysis
US7428158B2 (en) System and method for reducing harmonic effects on a power delivery system
US6556461B1 (en) Step switched PWM sine generator
US5610806A (en) Pulse width modulation method for driving three phase power inverter/converter switches with balanced discontinuous phase commands
JPH0437669B2 (en)
JPH09308256A (en) Pwm inverter apparatus
JP2005237194A (en) Control unit for electric vehicle
JP3826363B2 (en) Electric vehicle control device
JPH0779550B2 (en) Power converter control method
JP3747259B2 (en) Electric vehicle control device
JP2005176600A (en) Control unit of electric vehicle
JP4277360B2 (en) 3-level inverter controller
Patnaik et al. An investigation into even harmonic injection in pole voltages of a single phase inverter
Khan et al. Delta and adaptive delta modulated single phase AC/AC converter
Naresh et al. Impedance Source Inverter Fed Permanent Magnet BLDC Motor.
JP3411995B2 (en) Power converter
JP2006230195A (en) Control unit of electric vehicle
KR20040040530A (en) Parallel control system of single-phase inverter
CN113478065A (en) Control method and control circuit of multiplexing H-bridge circuit and friction welding device
Morimoto et al. Voltage modulation factor of the magnetic flux control PWM method for inverter
JPH082180B2 (en) AC-DC converter
JP2002125378A (en) Power converter
JPH07222454A (en) Control method and controller of pwm inverter
SU1488944A1 (en) Method of shaping master voltage of controller of three-phase voltage of three-phase frequency converter