JPH077932B2 - Multidirectional communication system - Google Patents

Multidirectional communication system

Info

Publication number
JPH077932B2
JPH077932B2 JP8414888A JP8414888A JPH077932B2 JP H077932 B2 JPH077932 B2 JP H077932B2 JP 8414888 A JP8414888 A JP 8414888A JP 8414888 A JP8414888 A JP 8414888A JP H077932 B2 JPH077932 B2 JP H077932B2
Authority
JP
Japan
Prior art keywords
station
master station
slave
slave station
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8414888A
Other languages
Japanese (ja)
Other versions
JPH01256830A (en
Inventor
茂 杉原
利昭 由城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8414888A priority Critical patent/JPH077932B2/en
Publication of JPH01256830A publication Critical patent/JPH01256830A/en
Publication of JPH077932B2 publication Critical patent/JPH077932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,多方向多重通信方式に関し,特にデマンド・
アサイン方式を用いる多方向多重通信方式の親局におけ
る現用・予備系の機器障害検出・及び切替制御に関す
る。
The present invention relates to a multi-directional multiplex communication system, and in particular to demand
The present invention relates to detection and switching control of a device failure of a working / standby system in a master station of a multi-directional multiplex communication system using an assign system.

〔従来の技術〕[Conventional technology]

多方向多重通信方式は,一つの親局と位置的に点在する
複数の子局との間の効率的な通信を意図して形成されて
おり,親局から各子局に対し,それぞれ所定の情報が時
分割多重(TDM:Time Division Multiplex)されて送信
される。各子局においては,それぞれ自局の対象となる
情報が分離選択されて取出される。他方,各子局から親
局に対しては,それぞれ自局に割当てられている所定の
時間帯の間のみ所定の情報がバースト状の信号として送
信される時分割多元接続(TDMA:Time Division Multipl
e Access)がとられ,親局においては各子局からの情報
がそれぞれ分離され出力される。
The multi-directional multiplex communication system is designed for efficient communication between one master station and a plurality of slave stations that are scattered in terms of position. Information is time-division multiplexed (TDM) and transmitted. At each slave station, the information that is the subject of its own station is separately selected and taken out. On the other hand, time division multiple access (TDMA: Time Division Multiple Access) in which predetermined information is transmitted from each slave station to the master station as a burst-like signal only during a predetermined time period allocated to the own station.
e Access) is performed, and the information from each slave station is separated and output at the master station.

この方式においては,親局の機器は各子局間の回線に対
し共通となっている為,親局の機器の障害は全回線障害
を起こすことになり,その為親局の機器は現用・予備を
備えた冗長構成が取られている。上記のTDMA方式におい
て予め各子局に対し送信時間帯を割当てておくプリアサ
イン方式の場合には,親局と各子局との間には前記時間
帯に対応する伝送路が常時形成されている。この為親局
における機器障害を監視するには,これらの伝送路を常
時監視して全子局との伝送路障害を検出することで,予
備系への切替制御を行うことが出来る。
In this method, since the device of the master station is common to the lines between each slave station, the failure of the device of the master station causes all line failures, so the device of the master station is currently in use. A redundant configuration with a spare is taken. In the case of the pre-assignment method in which a transmission time zone is assigned to each slave station in advance in the TDMA method, a transmission line corresponding to the time zone is always formed between the master station and each slave station. There is. Therefore, in order to monitor equipment failure in the master station, switching control to the standby system can be performed by constantly monitoring these transmission paths and detecting transmission path failures with all slave stations.

第3図,第4図により従来の親局の危機監視及び切替制
御方式について説明する。各子局への送信情報1a〜1nは
チャンネル処理回路106a〜106nにより入力連続信号か
ら,予め指定されたTDMフレーム上の所定時間帯(以
下,チャンネルと呼ぶ)に速度変換されTDM信号2とな
り,分岐回路105により現用送信部100,予備送信部100′
にそれぞれ入力される。各送信部ではベースバンド処理
回路101,101′によりフレーム同期信号,回線監視用信
号等の多重が行われ,第4図(A)に示すベースバンド
TDMフレーム信号4,4′が作られる。これらのベースバン
ドTDMフレーム信号4,4′は変調器102,102′により変調
され,送信回路103,103′により所定の周波数に変換さ
れる。送信回路103,103′の出力6,6′は送信切替回路10
4により正常側に選択され,送信出力7として各子局へ
向け送信される。
A conventional crisis monitoring and switching control system of the master station will be described with reference to FIGS. 3 and 4. Transmission information 1a to 1n to each slave station is converted into a TDM signal 2 by a channel processing circuit 106a to 106n from an input continuous signal to a TDM signal 2 in a predetermined time zone (hereinafter referred to as a channel) on a TDM frame designated in advance, The branch circuit 105 allows the working transmitter 100 and the spare transmitter 100 '.
Are input respectively. In each transmitting unit, the baseband processing circuits 101 and 101 'multiplex the frame synchronization signal, the line monitoring signal, etc., and the baseband shown in FIG.
TDM frame signals 4, 4'are created. These baseband TDM frame signals 4 and 4'are modulated by modulators 102 and 102 ', and converted into predetermined frequencies by transmission circuits 103 and 103'. The outputs 6 and 6'of the transmission circuits 103 and 103 'are the transmission switching circuit 10
It is selected to the normal side by 4 and is transmitted to each slave station as transmission output 7.

一方,各子局からの受信信号15は,第4図(B)に示す
様な各子局のバースト信号であり,分岐回路204で現用
受信部200,予備受信部200′へ入力される。各受信部に
おいては,分岐された信号14,14′からそれぞれ受信回
路203,203′により周波数変換され,更に復調回路202,2
02′により復調される。これらの復調信号12,12′は受
信ベースバンド処理回路201,201′にて回線監視信号等
の分離が行われ,受信切替回路205により正常側が選択
される。各チャンネル処理回路206a〜206nでは当該する
チャンネル信号を分離すると共に速度変換しそれぞれ受
信信号10a〜10nを出力する。
On the other hand, the received signal 15 from each slave station is a burst signal of each slave station as shown in FIG. 4 (B), and is input to the working receiver 200 and the spare receiver 200 'by the branch circuit 204. In each receiving section, the branched signals 14, 14 'are frequency-converted by the receiving circuits 203, 203', respectively, and further demodulated by the demodulating circuits 202, 2 '.
It is demodulated by 02 '. These demodulated signals 12 and 12 'are separated into line supervisory signals and the like by the reception baseband processing circuits 201 and 201', and the normal side is selected by the reception switching circuit 205. Each of the channel processing circuits 206a to 206n separates the corresponding channel signal and performs speed conversion, and outputs reception signals 10a to 10n, respectively.

この方式において,特に受信部200,200′の障害監視に
関しては,受信信号が第4図に示す様なバースト信号で
あり,又各子局は位置的に散在している為に受信電解は
各バースト毎に異なっている。従って,復調器202,20
2′の入力レベルを一定とする為に通常,リミッタ増幅
器が使用されている。この為,受信系の障害を復調器の
入力レベルで監視しようとしても,入力が正常なバース
ト信号か,単なる熱雑音なのかの区別が出来ず,十分な
精度を持ち得ない。その為,通常は各バースト毎に送信
側にて情報信号に対してパリティチェック等を行なって
監視ビットを付加している。受信側では受信ベースバン
ド処理回路にてそれらを監視し,全チャンネルのパリテ
ィ誤りがある閾値を越えると受信障害と判断し,受信ア
ラーム18又は18′をアラーム制御回路300に送り,正常
側への切替信号17をそれぞれ送信及び受信切替回路に送
ることで切替制御が行われていた。
In this system, especially regarding the fault monitoring of the receiving units 200 and 200 ', the received signal is a burst signal as shown in FIG. 4, and the reception electrolysis is performed for each burst because each slave station is scattered in position. Is different. Therefore, the demodulators 202, 20
A limiter amplifier is usually used to keep the 2'input level constant. Therefore, even if an attempt is made to monitor the reception system failure by the input level of the demodulator, it cannot be distinguished whether the input is a normal burst signal or simple thermal noise, and sufficient accuracy cannot be obtained. For this reason, normally, a parity check or the like is performed on the information signal on the transmitting side for each burst to add a monitoring bit. On the reception side, the reception baseband processing circuit monitors them, and if a parity error of all channels exceeds a certain threshold value, it is judged as a reception failure, and a reception alarm 18 or 18 'is sent to the alarm control circuit 300, and the normal side is transmitted. The switching control was performed by sending the switching signal 17 to the transmission and reception switching circuits, respectively.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した受信系の障害監視方法は,予め各子局に対し送
信時間帯を割当てておくプリアサイン方式においては,
常に各局の信号が正しく受信されていることが受信系機
器正常と判断される根拠となり得る。ところが,デマン
ド・アサイン方式では無旋回路の利用効率を高める為
に,情報の送信を必要としない間は送信を停止し,必要
とされる時のみ親局に対し送信要求を行い,その都度,
使用チャンネルを指定してもらいそのチャンネルを使用
して必要な間だけそのチャンネルを占有する。このため
使用される無線チャンネルが常に一定でなく時々刻々変
化すること,及び時間帯によっては全子局が送信を必要
としない為に親局の受信信号が存在しない状態が存在す
ることになる。これに対し,上述した受信監視方式で
は,時々刻々の無線チャンネルの占有情報を必要とする
ので,全子局の送信停止状態においては全く監視が行え
なくなるという欠点がある。
The above-mentioned failure monitoring method of the receiving system, in the pre-assign method in which the transmission time zone is assigned to each slave station in advance,
The fact that the signal of each station is always received correctly can be the basis for determining that the receiving system device is normal. However, in the demand assign method, in order to improve the utilization efficiency of the non-rotating circuit, the transmission is stopped while the information is not required to be transmitted, and the transmission request is made to the master station only when the information is required.
Have a user specify a channel to use and occupy that channel for as long as necessary. For this reason, the radio channel used is not always constant and changes momentarily, and depending on the time of day, there may be a state in which the reception signal of the master station does not exist because all slave stations do not require transmission. On the other hand, the above-mentioned reception monitoring method has a drawback in that it cannot perform monitoring at all when the transmission of all the slave stations is stopped because the occupation information of the wireless channel is required every moment.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明はデマンド・アサイン方式をとる多方向多重通信
方式において,親局は試験制御命令を情報伝送チャンネ
ルを介して順次子局に対しポーリングを行い,ポーリン
グされた子局は前記試験制御命令に従い試験信号を情報
伝送チャンネルを介して送出し,親局においてはこれら
の試験信号をそれぞれ現用・予備系で分離して監視する
手段を備え,前記試験信号の正・誤に応じて親局におけ
る現用・予備の切替制御を行うことを特徴とする。
According to the present invention, in a multi-directional multiplex communication system adopting a demand assign system, a master station sequentially polls a slave station for a test control command through an information transmission channel, and the polled slave station tests according to the test control command. A signal is transmitted through the information transmission channel, and the master station is provided with means for separating and monitoring these test signals in the working / standby system, respectively. It is characterized by performing a spare switching control.

〔実施例〕〔Example〕

第1図,第2図を参照して本発明の実施例を説明する。
デマンド・アサイン方式においては,各子局の発着呼接
続制御の為に第2図に示す様にチャンネルCH-pと情報チ
ャンネルCHa〜CHnが用意される。子局への送信信号1a〜
1nはチャンネル処理回路106a〜106nにより指定された無
線DTMフレーム上の所定チャンネルに変換されてTDM信号
2となり,分岐回路105によりそれぞれ現用送信部100,
予備送信部100′に入力される。この時,制御回路400に
よりポーリング用呼接続信号8,8′はチャンネルCH-p
に,試験制御命令9,9′は任意の情報チャンネルにそれ
ぞれ入力される。TDM多重された後は従来と同様,変調
・周波数変換が行われ送信出力7となる。他方,受信系
も従来と同様に周波数変換・復調が行われ,受信ベース
バンド処理回路201,201′にて制御チャンネル信号16,1
6′及び試験制御命令9,9′に従い子局から送られてきた
試験信号18,18′が分離され,制御回路400に出力される
と同時に受信切替回路205を介して各チャンネル処理回
路206a〜206nへ出力される。
An embodiment of the present invention will be described with reference to FIGS.
In the demand assign system, a channel CH-p and information channels CHa to CHn are prepared as shown in FIG. 2 for controlling outgoing / incoming call connection of each slave station. Transmission signal to slave station 1a ~
1n is converted into a TDM signal 2 by being converted into a predetermined channel on the wireless DTM frame designated by the channel processing circuits 106a to 106n, and the branch circuit 105 causes the active transmission section 100,
It is input to the preliminary transmission unit 100 '. At this time, the control circuit 400 causes the polling call connection signals 8 and 8'to be generated on the channel CH-p.
In addition, the test control commands 9 and 9'are input to arbitrary information channels. After TDM multiplexing, modulation and frequency conversion are performed as in the conventional case, and the transmission output 7 is obtained. On the other hand, the receiving system is also subjected to frequency conversion / demodulation as in the conventional case, and the receiving baseband processing circuits 201, 201 'control channel signals 16,1.
The test signals 18 and 18 'sent from the slave station are separated according to 6'and the test control commands 9 and 9'and are output to the control circuit 400, and at the same time, via the reception switching circuit 205, each channel processing circuit 206a ... Output to 206n.

この構成において,制御回路400は自局に属する子局を
ポーリング用呼接続信号8,8′を利用して順次ポーリン
グすると共に試験制御命令9,9′を送出する,当該子局
は試験制御命令9,9′に従い試験信号18,18′を親局に任
意の情報チャンネルを介して送信する。従って,親局の
制御回路400は指定した子局からの試験信号18,18′を監
視し,試験信号18,18′が受信現用及び予備系共に誤り
無く受信された時は,当該子局及び自局共に正常と判断
出来る。また,現用・予備どちらか一方のみ試験信号1
8,18′が正しいと受信された時は,当該子局正常,自局
受信系試験信号18,18′の誤り側が障害と判定出来る。
更に,現用・予備共に試験信号18,18′誤りの時は,当
該子局障害又は自局現用・予備同時障害の可能性が有
り,判定は次の子局をポーリングし,その試験信号18,1
8′の正誤で当該子局か自局障害かが判定出来ることに
なる。
In this configuration, the control circuit 400 sequentially polls the slave stations belonging to the local station by using the polling call connection signals 8, 8'and sends the test control command 9, 9 '. According to 9,9 ', the test signal 18,18' is transmitted to the master station via an arbitrary information channel. Therefore, the control circuit 400 of the master station monitors the test signals 18 and 18 'from the designated slave station, and when the test signals 18 and 18' are received without error in both the receiving working and standby systems, Both stations can be judged to be normal. The test signal 1
When 8,18 'is received as correct, it can be determined that the slave station is normal and the error side of the local station reception system test signal 18,18' is a failure.
Further, when the test signals 18 and 18 'are in error for both the working and protection stations, there is a possibility of failure of the slave station or simultaneous failure of the working and protection stations of the own station. 1
It is possible to judge whether the slave station or the local station is faulty by checking the 8'correctness.

これらは第1表にまとめられる。These are summarized in Table 1.

通常,同時障害の確率は十分小さいので,共に障害の場
合は当該子局の障害(第1表の4),又は自局送信障害
(第1表の5)と判定出来る。従って,制御回路400は
この判定に基づいて切替制御信号17を送信切替回路104,
受信切替回路205に送り,切替えを行うことによりデマ
ンド・アサイン方式においても比較的容易かつ,確実な
障害検出が可能となる。
Usually, since the probability of simultaneous failure is sufficiently small, it can be determined that the failure is the failure of the slave station (4 in Table 1) or the transmission failure of the local station (5 in Table 1). Therefore, the control circuit 400 sends the switching control signal 17 based on this determination to the transmission switching circuit 104,
By sending the signal to the reception switching circuit 205 and performing switching, it is possible to detect a fault relatively easily and surely even in the demand assign method.

〔発明の効果〕〔The invention's effect〕

以上の様に本発明は,デマンド・アサイン方式において
無送信中の各子局に対して,その障害の有無を監視する
為に,試験制御信号を情報チャンネルを用いて,各子局
を順次ポーリングし,当該子局は試験制御信号に従い試
験信号を情報チャンネルを用いて親局に送信するように
したことにより,情報チャンネルの時間的有効利用がで
きる。また,試験信号の監視による正誤で全子局の監視
を可能とすると同時に,自局の障害監視をも確実かつ容
易に行うことが出来,システム全体の信頼性を高める効
果がある。
As described above, according to the present invention, in order to monitor each slave station that is not transmitting in the demand assign method whether or not there is a failure, a test control signal is sequentially polled using the information channel. However, since the slave station transmits the test signal to the master station using the information channel according to the test control signal, the information channel can be effectively used in time. In addition, it is possible to monitor all slave stations by checking the correctness of the test signal, and at the same time, it is possible to reliably and easily monitor the fault of the own station, which has the effect of increasing the reliability of the entire system.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の基本的な構成を示す図,第2図は本発
明のフレーム構成例を示す図,第3図は従来のプリアサ
イン方式に於ける構成図,第4図はその場合のフレーム
構成例を示す。 100,101′……送信部(現用/予備),101,101′……送
信ベースバンド処理回路,102,102′……変調器,103,10
3′……送信回路,104……送信切替回路,105……分岐回
路,106……送信チャンネル処理回路,201,201′……受信
ベースバンド処理回路,202,202′……復調器,203,203′
……受信回路,204……分岐回路,205……受信切替回路,2
06……受信チャンネル処理回路,300……アラーム制御回
路,400……制御回路,を示す。
FIG. 1 is a diagram showing a basic configuration of the present invention, FIG. 2 is a diagram showing an example of a frame configuration of the present invention, FIG. 3 is a configuration diagram in a conventional pre-assign system, and FIG. An example of the frame configuration of is shown. 100,101 '... Transmitter (active / spare), 101,101' ... Transmission baseband processing circuit, 102,102 '... Modulator, 103,10
3 '... Transmission circuit, 104 ... Transmission switching circuit, 105 ... Branch circuit, 106 ... Transmission channel processing circuit, 201, 201' ... Reception baseband processing circuit, 202, 202 '... Demodulator, 203, 203'
...... Reception circuit, 204 …… Branching circuit, 205 …… Reception switching circuit, 2
06 ... Receiving channel processing circuit, 300 ... Alarm control circuit, 400 ... Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の親局とこの親局に従属対応する複数
の子局とを備え,前記子局に於て情報の送信を必要とす
る時のみ当該子局に所定の送信チャンネルを割当てるデ
マンド・アサイン方式をとる多方向多重通信方式におい
て,前記親局は試験制御命令を情報伝送チャンネルを介
して順次子局に対しポーリングを行い,ポーリングされ
た子局は前記試験制御命令に従い試験信号を情報伝送チ
ャンネルを介して送出する手段を備え,親局に於てはこ
れらの試験信号をそれぞれ現用・予備系で分離して監視
する手段を備え,前記試験信号の正・誤に応じて親局に
おける現用・予備の切替制御を行うことを特徴とする多
方向多重通信方式。
1. A predetermined master station and a plurality of slave stations subordinate to the master station are provided, and a predetermined transmission channel is assigned to the slave station only when the slave station needs to transmit information. In the multi-directional multiplex communication system which adopts the demand assign system, the master station sequentially polls the slave station for a test control command through the information transmission channel, and the polled slave station sends a test signal according to the test control command. The master station is provided with means for sending out through the information transmission channel, and the master station is provided with means for monitoring these test signals by separating them in the working / standby system respectively, and depending on whether the test signal is correct or incorrect, the master station Multidirectional communication system characterized by performing active / standby switching control in.
JP8414888A 1988-04-07 1988-04-07 Multidirectional communication system Expired - Lifetime JPH077932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8414888A JPH077932B2 (en) 1988-04-07 1988-04-07 Multidirectional communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8414888A JPH077932B2 (en) 1988-04-07 1988-04-07 Multidirectional communication system

Publications (2)

Publication Number Publication Date
JPH01256830A JPH01256830A (en) 1989-10-13
JPH077932B2 true JPH077932B2 (en) 1995-01-30

Family

ID=13822417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8414888A Expired - Lifetime JPH077932B2 (en) 1988-04-07 1988-04-07 Multidirectional communication system

Country Status (1)

Country Link
JP (1) JPH077932B2 (en)

Also Published As

Publication number Publication date
JPH01256830A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
JPH0712161B2 (en) Multi-directional multiplex communication system
JPH077932B2 (en) Multidirectional communication system
JP3465663B2 (en) Digital wireless communication monitoring system
JPH0389636A (en) Interference wave detection control system
JP3705408B2 (en) Hot standby line switching device and hot standby line switching method
JP3031263B2 (en) Transmission output control in hot standby mode
JP2812092B2 (en) Time division multiple access wireless device
JP2633283B2 (en) Control method of multi-channel access wireless telephone
JP2669345B2 (en) Satellite broadcasting system
JP3116476B2 (en) Redundant switching method
JP2757700B2 (en) Condition monitoring system
JP3165085B2 (en) Digital wireless transceiver
JPH08204668A (en) Station monitor system
KR20010076004A (en) An Exclusive Line System For A Defense Network
JPH01147935A (en) Fault detector
JPS63217735A (en) Slave station equipment for time division multi-direction multiplex communication system
JPH04235420A (en) Digital radio transmission system
JPH01233848A (en) Standby line operating system
JPS6086947A (en) Polling method of remote monitor controller
JPH07110000B2 (en) Wireless receiver monitoring method
JPH0575516A (en) System for monitoring satellite communication circuit
JPH0553095B2 (en)
JPH0716193B2 (en) Power-off detection method for modulator / demodulator
JPH0748713B2 (en) Digital multiplex transmission system
JPH02131065A (en) Data transmission system