JPH01256830A - Multi-direction multiplex communication system - Google Patents

Multi-direction multiplex communication system

Info

Publication number
JPH01256830A
JPH01256830A JP8414888A JP8414888A JPH01256830A JP H01256830 A JPH01256830 A JP H01256830A JP 8414888 A JP8414888 A JP 8414888A JP 8414888 A JP8414888 A JP 8414888A JP H01256830 A JPH01256830 A JP H01256830A
Authority
JP
Japan
Prior art keywords
station
test
slave
slave station
master station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8414888A
Other languages
Japanese (ja)
Other versions
JPH077932B2 (en
Inventor
Shigeru Sugihara
茂 杉原
Toshiaki Yuki
由城 利昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP8414888A priority Critical patent/JPH077932B2/en
Publication of JPH01256830A publication Critical patent/JPH01256830A/en
Publication of JPH077932B2 publication Critical patent/JPH077932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE:To contrive timewise effective utilization of an information channel by allowing a master station to monitor a test signal from a slave station while separating it by an active and a standby system in a multi-direction multiplex communication system adopting the demand assign system and applying the changeover control of active/standby system in response to the correctness of the test signal. CONSTITUTION:A control circuit 400 uses polling call connection signals 8, 8 to apply sequential polling to slave stations belonging to its own station and sends test controls instructions 9, 9'. Then a slave station sends test signals 18, 18' to the master station through an optional information channel according to the test control instructions 9, 9'. Thus, the control circuit 400 of the master station monitors the test signals 18, 18' from the designated slave station and when the test signals 18, 18' are received to the active and standby system without error, both the slave station and its own station are decided to be normal. When any of the test signals 18, 18' of the active/standby system is received correctly, the incorrect test signals 18, 18' of the slave station is decided to be faulty. Thus, the fault is detected surely and comparatively easily even in the demand assign system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多方向多重通信方式に関し、特にデマンド・
アサイン方式を用いる多方向多重通信方式の親局におけ
る現用・予備系の機器障害検出・及び切替制御に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multidirectional multiplex communication system, and in particular to a demand-based multiplex communication system.
This paper relates to equipment failure detection and switching control for active and standby systems in a master station of a multidirectional multiplex communication system using an assignment method.

〔従来の技術〕[Conventional technology]

多方向多重通信方式は、一つの親局と位置的に点在する
複数の子局との間の効率的な通信を意図して形成されて
おり、親局から各子局に対し、それぞれ所定の情報が時
分割多重(TDM : TimeDivision M
ultiplex )されて送信される。各子局におい
ては、それぞれ自局の対象となる情報が分離選択されて
取出される。他方、各子局から親局に対しては、それぞ
れ自局に割当てられている所定の時間帯の間のみ所定の
情報がバースト状の信号として送信される時分割多元接
続(TDMA : TimeDivision Mul
tiple Access )がとられ、親局において
は各子局からの情報がそれぞれ分離され出力される。
The multi-directional multiplex communication system is designed for efficient communication between a single master station and multiple slave stations that are geographically scattered. information is time division multiplexed (TDM: Time Division M).
multiplex) and then transmitted. Each slave station separates and selects and extracts the information that is its own target. On the other hand, time division multiple access (TDMA) is used in which predetermined information is transmitted as a burst signal from each slave station to the master station only during a predetermined time slot assigned to each slave station.
The master station separates and outputs the information from each slave station.

この方式においては、親局の機器は各子局間の回線に対
し共通となっている為、親局の機器の障害は全回線障害
を起こすことになり、その為親局の機器は現用・予備を
備えた冗長構成が取られている。上記のTDMA方式に
おいて予め各子局に対し送信時間帯を割当てておくブリ
アサイン方式の場合には、親局と各子局との間には前記
時間帯に対応する伝送路が常時形成されている。この為
親局における機器障害を監視するには、これらの伝送路
を常時監視して全子局との伝送路障害を検出することで
、予備系への切替制御を行うことが出来る。
In this system, the equipment at the master station is common to the line between each slave station, so a failure in the equipment at the master station will cause a failure in all lines, so the equipment at the master station is A redundant configuration with spares is in place. In the case of the above TDMA system, in the case of the Briassign method in which a transmission time slot is assigned to each slave station in advance, a transmission path corresponding to the said time slot is always formed between the master station and each slave station. There is. Therefore, in order to monitor equipment failures in the master station, switching to the standby system can be controlled by constantly monitoring these transmission lines and detecting transmission line failures with all slave stations.

第3図、第4図により従来の親局の機器監視及び切替制
御方式について説明する。各子局への送信情報1a〜1
nはチャンネル処理回路106a〜106nにより入力
連続信号から、予め指定されたTDMフレーム上の所定
時間帯(以下、チャンネルと呼ぶ)に速度変換されTD
M信号2とな夛1分岐回路105によシ現用送信部10
0.予備送信部100′にそれぞれ入力される。各送信
部ではベースバンド処理回路101 、101’によシ
フレーム同期信号。
A conventional device monitoring and switching control system of a master station will be explained with reference to FIGS. 3 and 4. Transmission information 1a to 1 to each slave station
n is a TD signal whose speed is converted by the channel processing circuits 106a to 106n from an input continuous signal to a predetermined time period (hereinafter referred to as a channel) on a prespecified TDM frame.
The active transmitter 10 is connected to the M signal 2 and 1 branch circuit 105.
0. The signals are respectively input to the preliminary transmitter 100'. In each transmitter, a frame synchronization signal is generated by the baseband processing circuits 101 and 101'.

回線監視用信号等の多重が行われ、第4図(A)に示す
ベースバンドTDMフレーム信号4,4′が作られる。
Line monitoring signals and the like are multiplexed to produce baseband TDM frame signals 4, 4' shown in FIG. 4(A).

これらのベースバンドTDMフレーム信号4゜4′は変
調器102.’102’により変調され、送信回路10
3 、103’によシ所定の周波数に変換される。送信
回路103 、103’の出力6,61は送信切替回路
104により正常側に選択され、送信部カフとして各子
局へ向は送信される。
These baseband TDM frame signals 4°4' are sent to the modulator 102. '102', the transmitting circuit 10
3, 103' converts the signal into a predetermined frequency. The outputs 6 and 61 of the transmitting circuits 103 and 103' are selected as normal by the transmitting switching circuit 104, and are transmitted to each slave station as a transmitter cuff.

一方、各子局からの受信信号15は、第4図(B)に示
す様な各子局のバースト信号であり2分岐回路204で
現用受信部200.予備受信部200′へ入力される。
On the other hand, the received signal 15 from each slave station is a burst signal of each slave station as shown in FIG. The signal is input to the preliminary receiving section 200'.

各受信部においては2分岐された信号14 、14’か
らそれぞれ受信回路203゜203′により周波数変換
され、更に復調回路202゜202′によシ復調される
。これらの復調信号12゜12/は受信ベースバンド処
理回路201 、201’にて回線監視信号等の分離が
行われ、受信切替回路205により正常側が選択される
。各チャンネル処理回路2068〜206nでは該当す
るチャンネル信号を分離すると共に速度変換しそれぞれ
受信信号10a〜10nを出力する。
In each receiving section, the signals 14 and 14' branched into two are subjected to frequency conversion by receiving circuits 203 and 203', respectively, and then demodulated by demodulating circuits 202 and 202'. These demodulated signals 12.degree.12/ are separated into line monitoring signals and the like by reception baseband processing circuits 201 and 201', and the normal side is selected by reception switching circuit 205. Each channel processing circuit 2068-206n separates the corresponding channel signal, converts the speed thereof, and outputs received signals 10a-10n, respectively.

この方式において、特に受信部200 、200’の障
害監視に関しては、受信信号が第4図に示す様なバース
ト信号であシ、又各子局は位置的に散在している為に受
信電界は各バースト毎に異なっている。従って、復調器
202 、202’の入力レベルを一定とする為に通常
、リミッタ増幅器が使用されている。この為、受信系の
障害を復調器の入力レベルで監視しようとしても、入力
が正常なバースト信号か、単なる熱雑音なのかの区別が
出来ず、十分な精度を持ち得な、い。その為1通常は各
バースト毎に送信側にて情報信号に対してハリティチエ
ツク等を行なって監視ビットを付加している。受信側で
は受信ベースバンド処理回路にてそれらを監視し、全チ
ャンネルのノ9リティ誤シがある閾値を越えると受信障
害と判断し、受信アラーム18又は18′をアラーム制
御回路300に送シ、正常側への切替信号17をそれぞ
れ送信及び受信切替回路に送ることで切替制御が行われ
ていた。
In this system, especially regarding failure monitoring of the receiving sections 200 and 200', the received signal is a burst signal as shown in Fig. 4, and since each slave station is geographically scattered, the received electric field is Each burst is different. Therefore, a limiter amplifier is usually used to keep the input level of the demodulators 202, 202' constant. For this reason, even if an attempt is made to monitor reception system failures using the input level of the demodulator, it will not be possible to distinguish whether the input is a normal burst signal or mere thermal noise, and the accuracy will not be sufficient. For this reason, normally, a monitoring bit is added by performing a integrity check on the information signal on the transmitting side for each burst. On the receiving side, a reception baseband processing circuit monitors them, and when the error rate of all channels exceeds a certain threshold, it is determined that there is a reception failure, and a reception alarm 18 or 18' is sent to the alarm control circuit 300. Switching control was performed by sending switching signals 17 to the normal side to the transmission and reception switching circuits, respectively.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した受信系の障害監視方法は、予め各子局に対し送
信時間帯を割当てておくグリアサイン方式においては、
常に各局の信号が正しく受信されていることが受信系機
器正常と判断される根拠となシ得る。ところが、デマン
ド・アサイン方式では無線回路の利用効率を高める為に
、情報の送信を必要としない間は送信を停止し、必要と
される時のみ親局に対し送信要求を行い、その都度、使
用チャンネルを指定してもらいそのチャンネルを使用し
て必要な間だけそのチャンネルを占有する。
The above-mentioned reception system failure monitoring method is based on the glia assignment method in which a transmission time slot is assigned to each slave station in advance.
The fact that signals from each station are always correctly received can be the basis for determining that the receiving system equipment is normal. However, in the demand assignment method, in order to increase the efficiency of wireless circuit usage, transmission of information is stopped while it is not needed, and a transmission request is made to the master station only when it is needed. Have the user specify a channel, use that channel, and occupy that channel only for as long as necessary.

このため使用される無線チャンネルが常に一定でなく時
々刻々変化すること、及び時間帯によっては全子局が送
信を必要としない為に親局の受信信号が存在しない状態
が存在することになる。これに対し、上述した受信監視
方式では2時々刻々の無線チャンネルの占有情報を必要
とするので、全子局の送信停止状態においては全く監視
が行えなくなるという欠点がある。
For this reason, the radio channel used is not always constant and changes from moment to moment, and depending on the time of day, there may be a state in which there is no received signal from the master station because all the slave stations do not need to transmit. On the other hand, the above-mentioned reception monitoring method requires radio channel occupancy information every two moments, and therefore has the drawback that monitoring cannot be performed at all when all slave stations are in a state where transmission is stopped.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はデマンド・アサイン方式をとる多方向多重通信
方式において、親局は試験制御命令を情報伝送チャンネ
ルを介して順次子局に対しポーリングを行い、ポーリン
グされた子局は前記試験制御命令に従い試験信号を情報
伝送チャンネルを介して送出し、親局においてぽこnら
の試験信号をそ扛ぞn現用・予備系で分離して監視する
手段を備え、前記試験信号の正・誤に応じて親局におけ
る現用・予備の切替制御を行うことを特徴とする。
The present invention provides a multi-directional multiple communication system that uses a demand assignment method, in which a master station sequentially polls slave stations with test control commands via an information transmission channel, and the polled slave stations perform tests in accordance with the test control commands. The signal is sent through an information transmission channel, and the parent station is provided with means for separating and monitoring the test signal of Poko et al. It is characterized by controlling switching between active and standby at the station.

〔実施例〕〔Example〕

第1図、第2図を参照して本発明の詳細な説明する。デ
マンド・アサイン方式においては、各子局の発着呼接続
制御の為に第2図に示す様にチャンネルCH−pと情報
チャンネルCHa −CHnが用意される。子局への送
信信号1 a % I nはチャンネル処理回路106
 a ” 106 nによシ指定さnた無線TDMフレ
ーム上の所定チャンネルに変換さnてTDM信号2とな
り2分岐回路105によりそれぞn現用送信部100.
予備送信部100′に入力さnる。この時、制御回路4
00によりポーリング用呼接続信号8,8′はチャンネ
ルCH−pに、試験制御命令9,9′は任意の情報チャ
ンネルにそれぞれ入力さ扛る。TDM多重さnた後は従
来と同様。
The present invention will be described in detail with reference to FIGS. 1 and 2. In the demand assignment system, a channel CH-p and information channels CHa to CHn are prepared as shown in FIG. 2 to control incoming and outgoing call connections for each slave station. The transmission signal 1a%In to the slave station is the channel processing circuit 106
a'' 106 n is converted into a predetermined channel on the wireless TDM frame designated by n, and becomes TDM signal 2, which is transmitted by two branch circuits 105 to n active transmitting units 100 and 106, respectively.
The signal is input to the preliminary transmitter 100'. At this time, the control circuit 4
00, the polling call connection signals 8, 8' are input to the channel CH-p, and the test control commands 9, 9' are input to an arbitrary information channel, respectively. After TDM multiplexing, it is the same as before.

変調・周波数変換が行われ送信部カフとなる。他方、受
信系も従来と同様に周波数変換・復調が行わn、受信ベ
ースバンド処理回路201,201’にて制御チャンネ
ル信号16.16’及び試験制御命令9,9′に従い子
局から送られてきた試験信号18.18’が分離され、
制御回路400に出力さnると同時に受信切替回路20
5を介して各チャンネル処理回路206a〜206nへ
出力さnる。
It undergoes modulation and frequency conversion and becomes the transmitter cuff. On the other hand, the reception system also performs frequency conversion and demodulation in the same manner as before, and the reception baseband processing circuits 201 and 201' receive signals sent from slave stations according to control channel signals 16 and 16' and test control commands 9 and 9'. The test signal 18.18' is separated,
At the same time as output to the control circuit 400, the reception switching circuit 20
5 to each channel processing circuit 206a-206n.

この構成において、制御回路400は自局に属する子局
をポーリング用呼接続信号8,81を利用して順次ポー
リングすると共に試験制御命令9,9′  を送出する
。当該子局は試験制御命令9,91に従い試験信号18
 、18’を親局に任意の情報チャンネルを介して送信
する。従って、親局の制御回路400は指定した子局か
らの試験信号18 、18’を監視し、試験信号18゜
18’が受信現用及び予備系共に誤シ無く受信された時
は、当該子局及び自局共に正常と判断出来る。また、現
用・予備どちらが一方のみ試験信号18゜18′が正し
いと受宿さnた時は、当該子局正常。
In this configuration, the control circuit 400 sequentially polls the slave stations belonging to its own station using the polling call connection signals 8 and 81, and also sends test control commands 9 and 9'. The slave station transmits test signal 18 according to test control commands 9 and 91.
, 18' to the master station via an arbitrary information channel. Therefore, the control circuit 400 of the master station monitors the test signals 18, 18' from the designated slave station, and when the test signal 18, 18' is received without error in both the working and standby systems, the slave station and the own station can be judged to be normal. Also, if only one of the active and standby terminals accepts that the test signal 18°18' is correct, the slave station is normal.

自局受信系試験信号18.18’の誤シ側が障害と判定
出来る。更に、現用・予備共に試験信号18゜18′誤
シの時は、当該子局障害又は自局現用・予備同時障害の
可能性が有シ2判定は次の子局をポーリングし、その試
験信号18.18’の正誤で当該子局か自局障害かが判
定出来ることになる。
It can be determined that the erroneous side of the receiving system test signals 18 and 18' of the own station is a failure. Furthermore, if both the working and standby test signals are 18° and 18' erroneous, there is a possibility that there is a failure in the slave station or a simultaneous failure in both the working and standby stations. Depending on whether 18.18' is correct or incorrect, it is possible to determine whether the problem is the slave station or the own station.

こnらは第1表にまとめら扛る。These are summarized in Table 1.

以下余日 通常、同時障害の確率は十分小さいので、共に障害の場
合は当該子局の障害(第1表の4)、又は自局送信障害
(第1表の5〕と判定出来る。従って、制御回路400
はこの判定に基づいて切替制御信号17を送信切替回路
104.受信切替口w1205に送シ、切替えを行うこ
とによシデマンド・アサイン方式においても比較的容易
かつ、確実な障害検出が可能となる。
Normally, the probability of simultaneous failures is sufficiently small, so if both failures occur, it can be determined that it is a failure of the slave station (4 in Table 1) or a transmission failure of the own station (5 in Table 1). Control circuit 400
transmits the switching control signal 17 based on this determination to the switching circuit 104. By performing transmission and switching to the reception switching port w1205, relatively easy and reliable failure detection is possible even in the demand assignment method.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明は、デマンド・アサイン方式において
無送信中の各子局に対して、その障害の有無を監視する
為に、試験制御信号を情報チャンネルを用いて、各子局
を順次ポーリングし、当該子局は試験制御信号に従い試
験信号を情報チャンネルを用いて親局に送信するように
したことにより、情報チャンネルの時間的有効利用がで
きる。
As described above, the present invention sequentially polls each slave station using a test control signal using an information channel in order to monitor the presence or absence of a failure in each slave station that is not transmitting in the demand assignment method. However, since the slave station transmits the test signal to the master station using the information channel in accordance with the test control signal, the information channel can be used effectively in terms of time.

また、試験信号の監視による正誤で全子局の監視を可能
とすると同時に、自局の障害監視をも確実かつ容易に行
うことが出来、システム全体の信頼性を高める効果があ
る。
In addition, it is possible to monitor all slave stations based on whether the test signal is correct or not, and at the same time, it is possible to reliably and easily monitor failures in the own station, which has the effect of increasing the reliability of the entire system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的な構成を示す図、第2図は本発
明のフレーム構成例を示す図、第3図は従来のブリアサ
イン方式に於ける構成図、第4図はその場合のフレーム
構成例を示す。 100 、101’・・・送信部(現用/予備)、10
1゜101′・・・送信ベースバンド処理回路、 10
2,102’・・・変調器、103,103’・・・送
信回路、1o4・・・送信切替回路、105・・・分岐
回路、106・・・送信チャンネル処理回路、201z
zor・・・受信ベースバンド処理回路、202,20
2’−・・復調器、203,203’−・・受信回路、
204・・・分岐回路、205・・・受信切替回路、2
06・・・受信チャンネル処理回路、300・・・アラ
ーム制御回路、40o・・・制御回路、を示す。 第1図 第2医 1             TDMフレーム  −+
子局→R局 (黒局受イ:q号ン 第4図 算見局 −ろ局 (j見局受イAQ号う
Fig. 1 is a diagram showing the basic configuration of the present invention, Fig. 2 is a diagram showing an example of the frame configuration of the present invention, Fig. 3 is a block diagram in the conventional Briassign system, and Fig. 4 is the case in that case. An example of the frame structure is shown below. 100, 101'... Transmitter (working/spare), 10
1゜101′...Transmission baseband processing circuit, 10
2,102'...Modulator, 103,103'...Transmission circuit, 1o4...Transmission switching circuit, 105...Branch circuit, 106...Transmission channel processing circuit, 201z
zor...reception baseband processing circuit, 202, 20
2'--Demodulator, 203, 203'--Receiving circuit,
204... Branch circuit, 205... Reception switching circuit, 2
06... Reception channel processing circuit, 300... Alarm control circuit, 40o... Control circuit. Figure 1 Second doctor 1 TDM frame -+
Slave station → R station (Black station receiving A: Q number N 4th figure calculation station - Lo station (J watching station receiving A Q number U)

Claims (1)

【特許請求の範囲】[Claims] 1、所定の親局とこの親局に従属対応する複数の子局と
を備え、前記子局に於て情報の送信を必要とする時のみ
当該子局に所定の送信チャンネルを割当てるデマンド・
アサイン方式をとる多方向多重通信方式において、前記
親局は試験制御命令を情報伝送チャンネルを介して順次
子局に対しポーリングを行い、ポーリングされた子局は
前記試験制御命令に従い試験信号を情報伝送チャンネル
を介して送出する手段を備え、親局に於てはこれらの試
験信号をそれぞれ現用・予備系で分離して監視する手段
を備え、前記試験信号の正・誤に応じて親局における現
用・予備の切替制御を行うことを特徴とする多方向多重
通信方式。
1. A demand system that is equipped with a predetermined master station and a plurality of slave stations corresponding to the master station, and that assigns a predetermined transmission channel to the slave station only when the slave station needs to transmit information.
In a multidirectional multiplex communication system that uses an assignment method, the master station sequentially polls slave stations with test control commands via an information transmission channel, and the polled slave stations transmit test signals according to the test control commands. The master station is equipped with means for separately monitoring these test signals in the working and standby systems, and depending on whether the test signals are correct or incorrect, - A multidirectional multiplex communication system characterized by performing backup switching control.
JP8414888A 1988-04-07 1988-04-07 Multidirectional communication system Expired - Lifetime JPH077932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8414888A JPH077932B2 (en) 1988-04-07 1988-04-07 Multidirectional communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8414888A JPH077932B2 (en) 1988-04-07 1988-04-07 Multidirectional communication system

Publications (2)

Publication Number Publication Date
JPH01256830A true JPH01256830A (en) 1989-10-13
JPH077932B2 JPH077932B2 (en) 1995-01-30

Family

ID=13822417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8414888A Expired - Lifetime JPH077932B2 (en) 1988-04-07 1988-04-07 Multidirectional communication system

Country Status (1)

Country Link
JP (1) JPH077932B2 (en)

Also Published As

Publication number Publication date
JPH077932B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JPH0712161B2 (en) Multi-directional multiplex communication system
JPH01256830A (en) Multi-direction multiplex communication system
JPS5941620B2 (en) Loopback method of dual loop transmission system
JPH0389636A (en) Interference wave detection control system
JP3705408B2 (en) Hot standby line switching device and hot standby line switching method
JP3116476B2 (en) Redundant switching method
JP3031263B2 (en) Transmission output control in hot standby mode
JPH0568901B2 (en)
JPS61222344A (en) Waiting time setting device for data transmission system
JP2633283B2 (en) Control method of multi-channel access wireless telephone
JPH05102940A (en) Method and device for monitoring matrix switch
JP3165085B2 (en) Digital wireless transceiver
JPH0318378B2 (en)
JPH0728241B2 (en) 1: 1 standby hot standby communication device
JPH04235420A (en) Digital radio transmission system
JPH0716193B2 (en) Power-off detection method for modulator / demodulator
JPS63283236A (en) System for switching spare device
JPH01233848A (en) Standby line operating system
JPS6086947A (en) Polling method of remote monitor controller
JPH0553095B2 (en)
JPS63217735A (en) Slave station equipment for time division multi-direction multiplex communication system
JPS60165148A (en) Remote supervisory and controlling equipment
JPS63268318A (en) Standby set changeover system
JPS63104538A (en) Control system for loop back of time division multiplex type transmission line
JPS63294025A (en) Communication channel system