JPH0778552A - Field emission type cathode and manufacture thereof - Google Patents

Field emission type cathode and manufacture thereof

Info

Publication number
JPH0778552A
JPH0778552A JP22417693A JP22417693A JPH0778552A JP H0778552 A JPH0778552 A JP H0778552A JP 22417693 A JP22417693 A JP 22417693A JP 22417693 A JP22417693 A JP 22417693A JP H0778552 A JPH0778552 A JP H0778552A
Authority
JP
Japan
Prior art keywords
single crystal
field emission
melting point
wire
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22417693A
Other languages
Japanese (ja)
Inventor
Shingo Kimura
伸吾 木村
Hiroyuki Shinada
博之 品田
Taku Oshima
卓 大嶋
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22417693A priority Critical patent/JPH0778552A/en
Publication of JPH0778552A publication Critical patent/JPH0778552A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To actuate a field emission type cathode for a long time stably by applying metal powder having a higher melting point than a specific temperature on a joint part of a single crystal wire with a heating filament, and sintering the metal powder for supporting the joint part. CONSTITUTION:On a joint part of a high melting point metal single wire 1 of tungsten or the like with a filament 2, metal powder 3 of zirconium or the like having a melting point which is lower than the melting point of the wire 1 and the filament 2 and which is 1800K or more is applied. This is then heated and sintered to harden the powder 3. The single crystal wire 1 and the filament 2 are thus joined together, and conductivity is provided. Generation of defects such as those in spot welding will not occur in the single crystal wire 1, thereby current stability, service life, and reliability of a cathode are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子線描画装置や電子顕
微鏡等の電子線応用装置において用いられる電子源に係
り、特に、長寿命で、安定な電界放射型陰極およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron source used in an electron beam application apparatus such as an electron beam drawing apparatus and an electron microscope, and more particularly to a long-life and stable field emission type cathode and its manufacturing method.

【0002】[0002]

【従来の技術】電子線描画装置や電子顕微鏡等の電子線
応用装置の電子源として広く用いられている電界放射型
陰極は、細い高融点金属の単結晶線の先端を針状に尖が
らせ、先端が仕事関数の低い特定の面方位、例えば、
(100)面や(310)面となるようにし、そこに強電界
を印加し、トンネル効果で電子を引き出している。これ
については電子・イオンビームハンドブック141頁〜
159頁に述べられている。この電界放射型陰極は、加
熱するためのヘアピン状のフィラメントと、電子を引き
出すための先端を針状に尖がらせた細い高融点金属の単
結晶線で構成されているが、その接合はスポット溶接で
行われている。しかし、このスポット溶接を行うこと
で、単結晶線の結晶配列に欠陥が生じる。
2. Description of the Related Art A field emission type cathode, which is widely used as an electron source for electron beam application devices such as electron beam drawing devices and electron microscopes, has a single crystal wire of a thin refractory metal whose tip is needle-shaped. , A specific plane orientation where the tip has a low work function, for example,
The (100) plane and the (310) plane are formed, and a strong electric field is applied to the plane to pull out electrons by the tunnel effect. About this, page 141 of the Electron / Ion Beam Handbook
Pp. 159. This field emission cathode consists of a hairpin-shaped filament for heating and a thin single-melting-point metal single-crystal wire with a needle-shaped tip for drawing out electrons, but the junction is a spot. It is done by welding. However, the spot welding causes defects in the crystal arrangement of the single crystal lines.

【0003】電界放射型陰極は常温で使用するものと高
温で使用するものとの二種類あり、前者では針状の先端
に付着した不要なガス分子を取り除くために、1800
℃以上の温度で数秒間加熱するフラッシングを十数時間
〜1日に1回行う。また、後者は1300℃以上の温度
で加熱したまま使用する。これらの加熱により、スポッ
ト溶接時に生じた結晶欠陥が単結晶先端方向に成長して
いく。長時間の使用によりこの欠陥が先端まで達する
と、先端の結晶方位が変化してしまい、電子の放出され
る方向に軸ずれが起きたり、全く電子が放出されなくな
る。
There are two types of field emission cathodes, one that is used at room temperature and one that is used at high temperature. In the former, in order to remove unnecessary gas molecules attached to the needle-shaped tip, 1800
Flushing for heating for several seconds at a temperature of ℃ or more is performed for more than ten hours to once a day. The latter is used while being heated at a temperature of 1300 ° C or higher. By these heatings, crystal defects generated during spot welding grow in the direction of the tip of the single crystal. When this defect reaches the tip due to long-term use, the crystal orientation of the tip changes, causing axial misalignment in the electron emission direction or no electron emission.

【0004】[0004]

【発明が解決しようとする課題】本発明は、長時間の使
用によっても単結晶の結晶配列に欠陥の生じないような
電界放射型陰極の製造方法に関し、それにより長時間安
定に動作する電界放射型陰極を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a field emission type cathode which does not cause a defect in the crystal arrangement of a single crystal even if it is used for a long time. To provide a mold cathode.

【0005】[0005]

【課題を解決するための手段】電界放射型陰極を構成す
る加熱用フィラメントと、電子を引き出すための先端を
針状に尖がらせた細い高融点金属の単結晶線の接合を、
金属粉末またはカーボン材の塗布及び焼結により行うこ
とで上記課題が達成できる。
[Means for Solving the Problems] A heating filament constituting a field emission type cathode and a single crystal wire of a thin refractory metal having a needle-like tip for drawing out an electron are joined.
The above problems can be achieved by applying and sintering a metal powder or a carbon material.

【0006】[0006]

【作用】本発明の電界放射型陰極の説明図を図1(a)
に示す。1が高融点金属単結晶線。2が高融点金属の多
結晶線からなるヘアピン状のフィラメント。4はステン
レス等の端子でフィラメント2がスポット溶接されてい
る。5はセラミック碍子である。高融点金属単結晶線1
とフィラメント2の接合部には、高融点金属単結晶線1
とフィラメント2より融点の低い金属粉末またはカーボ
ン材3が塗布されている。これを加熱し焼結することに
より、金属粉末またはカーボン材3が硬化する。これに
より高融点金属単結晶線1とフィラメント2が接合さ
れ、導電性も得られる。ここで従来のスポット溶接接合
と異なる点は、高融点金属単結晶線1とフィラメント2
の結晶構造に何ら負担をかけていないということであ
る。したがって、高融点金属単結晶線1には欠陥が生じ
ないので、上記問題が解決でき、陰極の電流安定性,寿
命、および信頼性を格段に上げることができる。
FIG. 1 (a) is an explanatory view of the field emission type cathode of the present invention.
Shown in. 1 is a refractory metal single crystal line. 2 is a hairpin-shaped filament composed of a polycrystalline wire of a refractory metal. 4 is a terminal made of stainless steel or the like, and the filament 2 is spot-welded. 5 is a ceramic insulator. Refractory metal single crystal wire 1
The refractory metal single crystal wire 1
A metal powder or a carbon material 3 having a lower melting point than the filament 2 is applied. By heating and sintering this, the metal powder or the carbon material 3 is hardened. As a result, the high melting point metal single crystal wire 1 and the filament 2 are joined, and conductivity is also obtained. Here, the difference from the conventional spot welding is that the single crystal wire 1 of high melting point metal and the filament 2
It means that the crystal structure of is not burdened at all. Therefore, no defects occur in the refractory metal single crystal wire 1, so that the above problems can be solved, and the current stability, life, and reliability of the cathode can be significantly improved.

【0007】[0007]

【実施例】本発明による電界放射型陰極の構造及び製造
方法を図1(a)により説明する。第一の実施例とし
て、電界放射型陰極を構成する材料にタングステンを用
いたものについて述べる。直径0.15mm のタングステ
ン多結晶線を加熱用のヘアピン型に成型してフィラメン
ト2とし、フィラメント2の先端中心部に面方位(10
0)のタングステン単結晶1をジルコニウム粉末を用い
て接合した。ジルコニウム粉末を接合に用いるには、ま
ず、ニトロセルロースを酢酸ブチルに溶解させた粘性の
液体にジルコニウム粉末(粒径0.1μm程度)を溶い
て、タングステン単結晶1とフィラメント2の接合部に
塗布する。これを自然乾燥で硬化させた後、真空中で加
熱焼結させる。このとき加熱温度を放射温度計で確認し
ながら、ゆっくり時間をかけてジルコニウムの融点より
100℃程度低い1700℃まで加熱する。この焼結を
行うことでタングステン単結晶1とフィラメント2が接
合され、導電性が得られる。
EXAMPLE The structure and manufacturing method of the field emission type cathode according to the present invention will be described with reference to FIG. As a first embodiment, a material using tungsten as a material for forming a field emission cathode will be described. A tungsten polycrystal wire having a diameter of 0.15 mm was molded into a hairpin shape for heating to form a filament 2, and the plane orientation (10
The tungsten single crystal 1 of 0) was joined using zirconium powder. In order to use zirconium powder for joining, first, zirconium powder (particle size: about 0.1 μm) is dissolved in a viscous liquid obtained by dissolving nitrocellulose in butyl acetate, and applied to the joint between the tungsten single crystal 1 and the filament 2. To do. After this is naturally dried and cured, it is heated and sintered in a vacuum. At this time, while confirming the heating temperature with a radiation thermometer, the temperature is slowly increased to 1700 ° C., which is about 100 ° C. lower than the melting point of zirconium. By performing this sintering, the tungsten single crystal 1 and the filament 2 are joined, and conductivity is obtained.

【0008】次に、この導電性を利用してタングステン
単結晶1の先端を針状に尖らせるための電界研磨を行
う。この電界研磨は、NaOH水溶液にタングステン単
結晶1を浸し、直流電圧を印加することで、タングステ
ン単結晶1を徐々に細らせながら切断することを目的と
しており、これを施すことにより、タングステン単結晶
1の先端曲率半径が0.1μm 程度のものが出来上が
る。こうして出来上がった電界放射型陰極に、タングス
テン単結晶1の先端の仕事関数を下げるための拡散剤6
として、酸化ジルコニウム粉末を純水で溶いて図1
(b)に示すようにジルコニウム粉末3上に塗布する。
Next, by utilizing this conductivity, electric field polishing for sharpening the tip of the tungsten single crystal 1 into a needle shape is performed. The purpose of this electric field polishing is to dip the tungsten single crystal 1 in an aqueous NaOH solution and apply a direct current voltage to gradually cut the tungsten single crystal 1 so that the tungsten single crystal 1 is cut. Crystal 1 with a tip radius of curvature of about 0.1 μm is completed. A diffusion agent 6 for lowering the work function of the tip of the tungsten single crystal 1 is added to the field emission type cathode thus produced.
As shown in FIG.
It is applied onto the zirconium powder 3 as shown in (b).

【0009】図2はこのように製作した電界放射型陰極
を真空容器に入れ、電子を引きだすための配置を示す。
電界放射型陰極12を加熱するための加熱電源7と、引
き出し電極9−電界放射型陰極12間に強電界を印加す
るための高圧電源8と、電界放射型陰極12から取り出
したビーム電流を検出するためのファラデーゲージ10
と、その電流を測定するための電流計11で構成されて
いる。この装置を用いて今回発明した電界放射型陰極と
従来型の電子放出特性を比較した。
FIG. 2 shows an arrangement for putting the thus-fabricated field emission type cathode into a vacuum container and drawing out electrons.
A heating power supply 7 for heating the field emission type cathode 12, a high voltage power supply 8 for applying a strong electric field between the extraction electrode 9 and the field emission type cathode 12, and a beam current extracted from the field emission type cathode 12 are detected. Faraday gauge 10 to do
And an ammeter 11 for measuring the current. Using this device, the electron emission characteristics of the field emission type cathode invented this time and the conventional type were compared.

【0010】以下に評価実験手順を示す。まず、加熱電
源7によりフィラメント2を通電加熱して酸化ジルコニ
ウム粉末を焼結させた。この時、30分程度かけて温度
を1430℃までゆっくりと上昇させた。その後、引き
出し電源8により高電圧を徐々に印加し、4kV程度の
ときに、蛍光体を塗布した引き出し電極9に電子放出パ
ターンが現れた。この時の引き出し電極9の小孔を抜け
てファラデーゲージ10に検出された電流を測定したと
ころ、従来型と同等の電子放出特性を得ることができ、
5000時間以上電子放出面の軸がずれることなく安定
であることも確認した。また、拡散剤を用いずにタング
ステン単結晶1の面方位(310)を用いた電界放射型
陰極を、常温で使用しながら1800℃以上のフラッシ
ングを1000回以上施したが、電子放出の軸ずれは起
こらなかった。
The evaluation experiment procedure is shown below. First, the filament 2 was electrically heated by the heating power source 7 to sinter the zirconium oxide powder. At this time, the temperature was slowly raised to 1430 ° C. over about 30 minutes. After that, a high voltage was gradually applied by the extraction power source 8, and at about 4 kV, an electron emission pattern appeared on the extraction electrode 9 coated with the phosphor. When the current detected by the Faraday gauge 10 through the small hole of the extraction electrode 9 at this time was measured, it was possible to obtain an electron emission characteristic equivalent to that of the conventional type.
It was also confirmed that the axis of the electron emission surface was stable for not less than 5000 hours and was stable. Further, the field emission cathode using the plane orientation (310) of the tungsten single crystal 1 without using a diffusing agent was subjected to flashing at 1800 ° C. or more 1000 times or more while being used at room temperature. Did not happen.

【0011】以上はタングステン単結晶1とフィラメン
ト2を接合する金属に、ジルコニウムを用いた場合につ
いて述べたが、チタニウム,ハフニウム,イットリウ
ム,スカンジウム,トリウム,ベリリウム等の金属粉末
を用いても同様の結果が得られた。また、その溶解にニ
トロセルロースを酢酸ブチルに溶解させた液体を使用し
たが、これに限らず有機溶剤または純水でも良い。
Although the case where zirconium is used as the metal for joining the tungsten single crystal 1 and the filament 2 has been described above, the same result can be obtained by using a metal powder such as titanium, hafnium, yttrium, scandium, thorium or beryllium. was gotten. Further, although a liquid prepared by dissolving nitrocellulose in butyl acetate was used for the dissolution, the present invention is not limited to this, and an organic solvent or pure water may be used.

【0012】次に第二の実施例としてタングステン単結
晶1とフィラメント2の接合に金属粉末ではなく、グラ
ッシィカーボンを用いたものについて述べる。この時使
用したグラッシィカーボンは、フルフリルアルコールと
P−トルエンスルホン酸エチルを調合し、恒温槽で2日
間撹拌してできるフラン樹脂を加熱し、炭化させたもの
である。グラッシィカーボンによる接合は粘液状態にあ
るフラン樹脂を、図1(a)に示すようにタングステン
単結晶1とフィラメント2の接合部に塗布し、真空中で
1200℃まで加熱する。この加熱でフラン樹脂が炭化
してグラッシィカーボンとなり、導電性が得られる。こ
うして製作した電界放射型陰極に、図1(b)に示すよ
うな塗布方法で拡散剤を塗布したところ、やはり従来型
と同等の電子放出特性を得ることができ、5000時間
以上電子放出面の軸がずれることなく安定であることも
確認した。また、第一の実施例で述べたように、拡散剤
を用いないタングステン単結晶1の面方位(310)の
電界放射型陰極を製作し、1800℃以上のフラッシン
グを1000回以上施したが、電子放出の軸ずれは起こ
らなかった。
Next, as a second embodiment, a description will be given of using glassy carbon instead of metal powder for joining the tungsten single crystal 1 and the filament 2. The glassy carbon used at this time was prepared by mixing furfuryl alcohol and ethyl P-toluenesulfonate, and heating the furan resin obtained by stirring in a constant temperature bath for 2 days to carbonize it. In the case of joining by means of glassy carbon, a furan resin in a mucous state is applied to the joint between the tungsten single crystal 1 and the filament 2 as shown in FIG. 1 (a), and heated to 1200 ° C. in vacuum. By this heating, the furan resin is carbonized to form glassy carbon and conductivity is obtained. When a diffusing agent was applied to the thus-fabricated field emission type cathode by a coating method as shown in FIG. 1 (b), the same electron emission characteristics as those of the conventional type could be obtained, and the electron emission surface of the electron emission surface of 5000 hours or more It was also confirmed that the axis was stable without shifting. Further, as described in the first embodiment, a field emission type cathode having a plane orientation (310) of the tungsten single crystal 1 which does not use a diffusing agent was manufactured, and flushing at 1800 ° C. or more was performed 1000 times or more. No axis deviation of electron emission occurred.

【0013】以上、本実施例で述べた加熱温度や引き出
し電圧はごく一例であって、接合部の塗布材やその他の
条件に応じてこれらの数値に限ることなく使用できる。
As described above, the heating temperature and the extraction voltage described in the present embodiment are merely examples, and they can be used without being limited to these numerical values depending on the coating material of the joint and other conditions.

【0014】また、以上の実施例では電界放射型陰極を
構成する材料にタングステンを用いたが、これは単結
晶,多結晶ともに高融点の金属であれば良い。タングス
テンと同様に、融点が2500℃以上であるモリブデ
ン,タンタル,レニウムでもタングステンを用いた場合
と同様な結果が得られた。したがって、融点が2500
℃以上の金属材料であれば、これらにこだわることなく
用いることができる。また、拡散剤も酸化ジルコニウム
に限らず、チタニウム,ハフニウム,イットリウム,ス
カンジウム,トリウム,ベリリウム等の酸化物でも同様
の結果が得られた。また、拡散剤の塗布場所もタングス
テン単結晶1とフィラメント2の接合部ではなく、図1
(c)に示すように、タングステン単結晶1の中腹部に
塗布しても同様である。
Further, although tungsten is used as the material of the field emission type cathode in the above embodiments, both single crystal and polycrystal may be high melting point metals. Similar to tungsten, molybdenum, tantalum, and rhenium having a melting point of 2500 ° C. or higher gave the same results as when tungsten was used. Therefore, the melting point is 2500
Any metal material having a temperature of ℃ or more can be used without being particular about these. Similar results were obtained with oxides of titanium, hafnium, yttrium, scandium, thorium, beryllium, etc. as well as zirconium oxide as the diffusing agent. In addition, the application place of the diffusing agent is not at the joint between the tungsten single crystal 1 and the filament 2, but as shown in FIG.
As shown in (c), the same applies when applied to the middle part of the tungsten single crystal 1.

【0015】[0015]

【発明の効果】本発明によれば、スポット溶接を用いず
に電界放射型陰極が製作でき、単結晶に結晶欠陥が生じ
ない。そのため、高温域でも安定で長寿命な電界放射型
陰極が実現できる。
According to the present invention, a field emission type cathode can be manufactured without using spot welding, and a crystal defect does not occur in a single crystal. Therefore, it is possible to realize a field emission cathode that is stable and has a long life even in a high temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電界放射型陰極の説明図。FIG. 1 is an explanatory view of a field emission type cathode of the present invention.

【図2】本電界放射型陰極の特性評価系の回路図。FIG. 2 is a circuit diagram of a characteristic evaluation system of the present field emission cathode.

【符号の説明】[Explanation of symbols]

1…単結晶、2…フィラメント、3…高融点金属粉末ま
たはカーボン材、4…端子、5…セラミック碍子又はガ
ラスベース、6…拡散剤。
1 ... Single crystal, 2 ... Filament, 3 ... Refractory metal powder or carbon material, 4 ... Terminal, 5 ... Ceramic insulator or glass base, 6 ... Diffusing agent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 勝広 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiro Kuroda 1-280, Higashi Koikekubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】先端が針状に尖った高融点金属の単結晶線
と、高融点金属の多結晶細線をヘアピン状に形成した加
熱用フィラメントとからなる電界放射型陰極において、
上記単結晶線と上記加熱用フィラメントとの接合部分に
1800K以上の融点を持つ金属粉末を塗布し、前記金
属粉末の焼結により上記単結晶線と上記加熱用フィラメ
ントとの接合部分を支持する構造を特徴とする電界放射
型陰極。
1. A field emission type cathode comprising a single crystal wire of a high melting point metal having a pointed needle-like tip and a heating filament in which a polycrystalline thin wire of a high melting point metal is formed in a hairpin shape.
A structure in which a metal powder having a melting point of 1800 K or more is applied to a joint portion between the single crystal wire and the heating filament, and the joint portion between the single crystal wire and the heating filament is supported by sintering the metal powder. A field emission cathode.
【請求項2】先端が針状に尖った高融点金属の単結晶線
と、高融点金属の多結晶細線をヘアピン状に形成した加
熱用フィラメントとからなる電界放射型陰極において、
上記単結晶線と上記加熱用フィラメントとの接合部分に
カーボン材を塗布し、その焼結により上記単結晶線と上
記加熱用フィラメントとの接合部分を支持する構造を特
徴とする電界放射型陰極。
2. A field emission type cathode comprising a single crystal wire of a high melting point metal having a pointed needle-like tip and a heating filament in which a polycrystalline thin wire of a high melting point metal is formed in a hairpin shape.
A field emission type cathode characterized in that a carbon material is applied to a joint portion between the single crystal wire and the heating filament, and the joint portion between the single crystal wire and the heating filament is supported by sintering thereof.
【請求項3】請求項1において、上記単結晶線と上記加
熱用フィラメントとの接合部分に塗布する金属粉末を、
純水または有機溶剤によりペースト状にして塗布する電
界放射型陰極の製造方法。
3. The metal powder according to claim 1, which is applied to a joint portion between the single crystal wire and the heating filament,
A method for producing a field emission cathode, which is applied as a paste with pure water or an organic solvent.
【請求項4】請求項1,2または3において、上記単結
晶線と上記加熱用フィラメントとの金属粉末焼結接合部
分に、仕事関数または電気陰性度の小さい金属の酸化物
を純水または有機溶剤によりペースト状にして塗布する
電界放射型陰極の製造方法。
4. The oxide of a metal having a low work function or electronegativity is added to pure metal or organic at the metal powder sintered joint between the single crystal wire and the heating filament according to claim 1, 2, or 3. A method for producing a field emission cathode, which is applied as a paste with a solvent.
JP22417693A 1993-09-09 1993-09-09 Field emission type cathode and manufacture thereof Pending JPH0778552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22417693A JPH0778552A (en) 1993-09-09 1993-09-09 Field emission type cathode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22417693A JPH0778552A (en) 1993-09-09 1993-09-09 Field emission type cathode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0778552A true JPH0778552A (en) 1995-03-20

Family

ID=16809720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22417693A Pending JPH0778552A (en) 1993-09-09 1993-09-09 Field emission type cathode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0778552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507872A (en) * 1999-08-20 2003-02-25 フェイ カンパニ Schottky emitter with extended life
JP2010271158A (en) * 2009-05-21 2010-12-02 Japan Ae Power Systems Corp Filament structure for electron beam source
WO2011142054A1 (en) * 2010-05-10 2011-11-17 電気化学工業株式会社 Electron source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507872A (en) * 1999-08-20 2003-02-25 フェイ カンパニ Schottky emitter with extended life
JP4656790B2 (en) * 1999-08-20 2011-03-23 エフ イー アイ カンパニ Schottky emitter with extended life
JP2010271158A (en) * 2009-05-21 2010-12-02 Japan Ae Power Systems Corp Filament structure for electron beam source
WO2011142054A1 (en) * 2010-05-10 2011-11-17 電気化学工業株式会社 Electron source
JP2011238459A (en) * 2010-05-10 2011-11-24 Denki Kagaku Kogyo Kk Electron source
US8593048B2 (en) 2010-05-10 2013-11-26 Denki Kagaku Kogyo Kabushiki Kaisha Electron source having a tungsten single crystal electrode

Similar Documents

Publication Publication Date Title
US5838096A (en) Cathode having a reservoir and method of manufacturing the same
Schmidt et al. Design and optimization of directly heated LaB6 cathode assemblies for electron‐beam instruments
JP2001325910A (en) Electron gun and its method of use
WO2006075715A1 (en) Electron source manufacturing method
US2438732A (en) Electron tube cathode
JPH0778552A (en) Field emission type cathode and manufacture thereof
EP2242084B1 (en) Method of manufacturing an electron source
JP2005190758A (en) Electron source
JP5363413B2 (en) Electron source
WO2011040326A1 (en) Rod for electron source, electron source, and electronic appliance
JPH0684450A (en) Thermoelectric field emission cathode
JPH0684452A (en) Thermoelectric field emission cathode
JP4040531B2 (en) Diffusion-supplemented electron source and electronic application device
JPS6084744A (en) Hot cathode
JPH0363169B2 (en)
JPWO2004073010A1 (en) Electron gun
KR100205414B1 (en) Method of cathode-ray tube heater
JPS5842141A (en) Pierce type electron gun
JPH1131453A (en) Manufacture of needle-like electrode
JPH06243776A (en) Thermal electric field radiation electron gun
JPH0737484A (en) Thermionic radiation negative electrode
JP3322465B2 (en) Cathode assembly and method of manufacturing the same
KR100234040B1 (en) Manufacture of cathode-ray tube
JPH10289645A (en) Cathode heater and cathode-ray tube using the same
JP2001338571A (en) Method for manufacturing thermal field emission cathode