JPH0778442B2 - Flow rate measuring device - Google Patents

Flow rate measuring device

Info

Publication number
JPH0778442B2
JPH0778442B2 JP1275389A JP27538989A JPH0778442B2 JP H0778442 B2 JPH0778442 B2 JP H0778442B2 JP 1275389 A JP1275389 A JP 1275389A JP 27538989 A JP27538989 A JP 27538989A JP H0778442 B2 JPH0778442 B2 JP H0778442B2
Authority
JP
Japan
Prior art keywords
flow rate
throttle mechanism
differential pressure
variable throttle
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1275389A
Other languages
Japanese (ja)
Other versions
JPH03137418A (en
Inventor
鉄夫 秋山
弘司 中垣
斌 中安
秀昭 楢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP1275389A priority Critical patent/JPH0778442B2/en
Publication of JPH03137418A publication Critical patent/JPH03137418A/en
Publication of JPH0778442B2 publication Critical patent/JPH0778442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Flow Control (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば加熱炉に供給する燃料、或は空気の管
路に適用する流量計測装置に関するものである。
TECHNICAL FIELD The present invention relates to a flow rate measuring device applied to, for example, a pipeline for fuel or air supplied to a heating furnace.

(従来の技術) 従来、この種の計測装置の計測法はオリフィスやベンチ
ュリ等の固定絞り機構と、この絞り機構前後の圧力差を
測定する差圧計や差圧変換器等の差圧センサとを組合わ
せたものを単独で用いるのが通常である。
(Prior Art) Conventionally, the measuring method of this kind of measuring device is to use a fixed throttle mechanism such as an orifice or a venturi and a differential pressure sensor such as a differential pressure gauge or a differential pressure converter for measuring the pressure difference before and after the throttle mechanism. It is usual to use the combination alone.

(発明が解決しようとする課題) ところで、固定絞り機構の差圧は周知の通り流量の自乗
に比例し、流量の低下につれて急激に低下するので、差
圧センサのゼロドリフト(全測定範囲にわたって一定の
差圧値が加わる、または減ずる誤差)による流量計測誤
差は第2図(差圧センサのゼロドリフトが最大差圧の±
1%の場合)に示すように、流量の低下につれて急激に
増大する。
(Problems to be Solved by the Invention) By the way, as is well known, the differential pressure of the fixed throttle mechanism is proportional to the square of the flow rate and sharply decreases as the flow rate decreases. Therefore, the zero drift of the differential pressure sensor (constant over the entire measurement range is constant. The flow rate measurement error due to the error that the differential pressure value of is added or reduced is shown in Fig. 2 (zero drift of the differential pressure sensor is ± ± of the maximum differential pressure).
As shown in (1%), the flow rate rapidly increases as the flow rate decreases.

一方、低流量領域における誤差の増大を回避する方法と
して可変絞り機構による流量計測法があるが、この流量
計測誤差は次に列挙するような要因によって異なるの
で、各要因が( )内の状態の場合を一例として第3図
に示す。
On the other hand, as a method for avoiding an increase in error in the low flow rate region, there is a flow rate measurement method using a variable throttle mechanism. Since this flow rate measurement error depends on the factors listed below, each factor is A case is shown as an example in FIG.

差圧センサのゼロドリフト(±1%) 可変絞り機構の開度に関するゼロドリフト(±0.5
%) (開度センサの誤差および開度検出位置から可変絞り機
構の終端までの機械的誤差等) 変絞り機構の制御方法 (調節弁としても兼用) 可変絞り機構の開度に対する流量係数の関係(指数
関数特性) 可変絞り機構の流量係数のターンダウンレシオ(2
5) 最大流量時の可変絞り機構の差圧に対する他の全圧
損の比(4) 可変絞り機構による流量計測法の流量計測誤差は、第3
図のように固定絞り機構による流量計測法の流量計測誤
差(第2図)とは逆に、高流量領域において誤差が増大
するという問題がある。この種の計測装置が数多く使用
される燃焼制御や混合制御等における、計測制御誤差に
よる原単位の悪化や製品品質の低下等の損失は高流量領
域の方が大きいのが通常であるので、高流量領域の計測
精度をより高精度化する必要性は大きい。
Zero drift of the differential pressure sensor (± 1%) Zero drift related to the opening of the variable throttle mechanism (± 0.5%)
%) (Error of opening sensor and mechanical error from opening detection position to end of variable throttle mechanism, etc.) Control method of variable throttle mechanism (also used as control valve) Relationship of flow coefficient to opening of variable throttle mechanism (Characteristic of exponential function) Turn-down ratio (2
5) Ratio of other total pressure loss to the differential pressure of the variable throttle mechanism at the maximum flow rate (4) The flow rate measurement error of the flow rate measuring method using the variable throttle mechanism is
Contrary to the flow rate measurement error (FIG. 2) of the flow rate measurement method using the fixed throttle mechanism as shown in the figure, there is a problem that the error increases in the high flow rate region. In combustion control, mixing control, etc., where many types of measuring devices of this type are used, the loss due to measurement control error such as deterioration of the basic unit and deterioration of product quality is usually higher in the high flow rate region. There is a great need to improve the measurement accuracy in the flow rate region.

本発明は、斯る従来の問題点を課題としてなされたもの
で、固定絞り系により得られた流量値を高流量領域用と
し、可変絞り系により得られた流量値を低流量領域用と
して使い分けることによって、汎用の圧力センサを用い
ながら全流量領域において高精度で、単純な流量計測装
置を提供しようとするものである。
The present invention has been made to solve the above-mentioned conventional problems. The flow rate value obtained by the fixed throttle system is used for the high flow rate range, and the flow rate value obtained by the variable throttle system is used for the low flow rate range. Therefore, it is intended to provide a simple flow rate measuring device with high accuracy in the entire flow rate region while using a general-purpose pressure sensor.

(課題を解決するための手段) 上記課題を解決するために、本発明は、計測対象である
流体管路に設けた固定絞り機構と、上記流体管路に設け
た開度に対する流量係数の関係が既知である可変絞り機
構と、この可変絞り機構に取付けた開度センサと、上記
固定絞り機構および可変絞り機構のおのおのの前後の差
圧を検出する第1差圧センサ,第2差圧センサと、予め
上記固定絞り機構の流量係数、および上記可変絞り機構
の開度に対する流量係数の関係を記憶させておき、この
関係,上記固定絞り機構の流量係数および第1差圧セン
サ,第2差圧センサ,開度センサからの信号に基づい
て、固定絞り系と可変絞り系とによる両流量値を時々刻
々算出し、固定絞り系により得られた流量値を高流量領
域用とする一方、可変絞り系により得られた流量値を低
流量領域用として出力するか、固定絞り系により得られ
た流量値と高流量時程増大する係数との積と可変絞り系
により得られた流量値と高流量時程減少する係数との積
とを加え合わせた流量を出力する演算制御器とから形成
した。
(Means for Solving the Problem) In order to solve the above problems, the present invention relates to a relationship between a fixed throttle mechanism provided in a fluid pipeline to be measured and a flow coefficient with respect to an opening provided in the fluid pipeline. , A first differential pressure sensor and a second differential pressure sensor for detecting a differential pressure before and after each of the fixed throttle mechanism and the variable throttle mechanism. And the relationship between the flow coefficient of the fixed throttle mechanism and the flow coefficient with respect to the opening of the variable throttle mechanism are stored in advance, and this relationship, the flow coefficient of the fixed throttle mechanism, the first differential pressure sensor, and the second differential pressure sensor are stored. Based on the signals from the pressure sensor and the opening sensor, the flow rate values of the fixed throttle system and the variable throttle system are calculated moment by moment, and the flow rate value obtained by the fixed throttle system is used for the high flow rate range, while it is variable. Obtained by the diaphragm system Either output the flow rate value for the low flow rate range, or multiply the product of the flow rate value obtained by the fixed throttle system and the coefficient that increases with high flow rate, and the flow rate value obtained with the variable throttle system and the coefficient that decreases with high flow rate. And the arithmetic controller that outputs the combined flow rate.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Embodiment) Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係る流量計測装置を示し、計測対象
である流体管路1に固定絞り機構2と、開度に対する流
量係数の関係が既知で、かつ開度センサ3および可変絞
り駆動機構4を取付けた可変絞り機構5とを設けるとと
もに、固定絞り機構2および可変絞り機構5のおのおの
の前後の差圧を検出する第1,第2差圧センサ6,7が設け
てある。
FIG. 1 shows a flow rate measuring device according to the present invention, in which a fixed throttle mechanism 2 is provided in a fluid pipeline 1 to be measured, a relationship of a flow rate coefficient with respect to an opening is known, and an opening sensor 3 and a variable throttle drive are provided. The variable throttle mechanism 5 to which the mechanism 4 is attached is provided, and the first and second differential pressure sensors 6 and 7 for detecting the differential pressure before and after the fixed throttle mechanism 2 and the variable throttle mechanism 5 are provided.

また、第1,第2差圧センサ6,7からの信号および、開度
センサ3からの信号を入力する演算制御器8が設けてあ
る。この演算制御器8は、マイクロプロセッサ等を利用
して形成したもので、予め記憶させた固定絞り機構2の
流量係数、および可変絞り機構5の開度に対する流量係
数の数式、またはテーブルの形で表わした関係と、上記
の各センサ信号とに基づいて固定絞り系と可変絞り系と
による両流量値を時々刻々算出する。
Further, an arithmetic controller 8 for inputting the signals from the first and second differential pressure sensors 6 and 7 and the signal from the opening sensor 3 is provided. This arithmetic controller 8 is formed by using a microprocessor or the like, and is stored in advance in the form of a mathematical expression of the flow coefficient of the fixed throttle mechanism 2 and the flow coefficient with respect to the opening of the variable throttle mechanism 5, or in the form of a table. Both the flow rate values of the fixed throttle system and the variable throttle system are calculated moment by moment based on the above-described relationship and the above sensor signals.

さらに、この演算制御器8は流量領域によって、固定絞
り機構2により得られた流量値と可変絞り機構5により
得られた流量値の切替え、或は重み付け平均化した流量
値信号6の出力を行う他に、流量または可変絞り機構の
差圧或は開度を所定の値にするための制御機能も備え、
開度制御信号を可変絞り駆動機構4に送り、可変絞り機
構5の開度操作を行うように形成してある。
Further, the arithmetic controller 8 switches the flow rate value obtained by the fixed throttle mechanism 2 and the flow rate value obtained by the variable throttle mechanism 5 or outputs the weighted averaged flow rate value signal 6 depending on the flow rate region. In addition, it has a control function to set the flow rate or the differential pressure or the opening of the variable throttle mechanism to a predetermined value.
An opening control signal is sent to the variable aperture drive mechanism 4 to operate the opening of the variable aperture mechanism 5.

そこで、まず演算制御器8における固定絞り系による流
量値と可変絞り系による流量値の使い分けの実施例の第
1として、流量計測値を主として指示(監視等)に用い
る場合の切替え方式について説明する。
Therefore, first, as a first embodiment of the usage of the flow rate value by the fixed throttle system and the flow rate value by the variable throttle system in the arithmetic and control unit 8, a switching method when the flow rate measurement value is mainly used for an instruction (monitoring etc.) will be described. .

この方式は固定絞り系の流量値が予め定めた値、例えば
50%になった時点において切替えるものであり、その値
以上の場合には固定絞り系流量値を用い、その値以下の
場合には可変絞り系の流量値を用いるものである。
In this method, the flow rate value of the fixed throttle system is a predetermined value, for example,
It is switched at the time when it reaches 50%, and if it is more than that value, the fixed throttle system flow rate value is used, and if it is less than that value, the variable throttle system flow rate value is used.

なお、切替え時点を定める信号として、固定絞り系の流
量値に替えて、可変絞り系流量値、或は可変絞り機構の
開度を用いても同様の効果となることはいうまでもな
い。
Needless to say, the same effect can be obtained by using the variable throttle system flow rate value or the opening of the variable throttle mechanism instead of the fixed throttle system flow rate value as the signal for determining the switching time point.

また、この方式は簡単ではあるが、切替え点において両
流量値に差を生じる確率が高く、切替え時の流量値の急
変により制御の乱れを生じる確率が高いので制御用には
不具合な場合が多い。
Although this method is simple, there is a high probability that a difference will occur between the two flow rate values at the switching point, and there is a high probability that control disturbance will occur due to a sudden change in the flow rate value at the time of switching. .

次に、演算制御器8における固定絞り系の流量値と可変
絞り系の流量値の使い分けの実施例の第2として、流量
計測値を主として制御に用いるために上記のような切替
えによる流量値の急変を解消した、重み付け平均化方式
について説明する。
Next, as a second embodiment of selectively using the flow rate value of the fixed throttle system and the flow rate value of the variable throttle system in the arithmetic and control unit 8, since the flow rate measurement value is mainly used for control, the flow rate value by the above switching is changed. A weighted averaging method that eliminates sudden changes will be described.

次式のように、固定絞り系の流量値Qsとその最大流量値
Qsmとの比の冪乗を重み付け関数値Gとし、その冪乗を
Wとする。
As shown in the following equation, the flow rate value Qs of the fixed throttle system and its maximum flow rate value
Let the power of the ratio with Qsm be the weighting function value G, and let that power be W.

G=(Qs/Qsm)W …(1) それから、固定絞り系の流量値にはこの重み付け関数値
をそのまま乗じ、可変絞り系の流量値Qdにはこの重み付
け関数値の1の補数を乗じて、両者を次式のように加え
たものを重み付け平均化流量値Qeとする。
G = (Qs / Qsm) W (1) Then, the flow rate value of the fixed throttle system is directly multiplied by this weighting function value, and the flow rate value Qd of the variable throttle system is multiplied by 1's complement of this weighting function value. , And the addition of both as in the following equation is the weighted averaged flow rate value Qe.

Qe=G・Qs+(1−G)・Qd …(2) 第4図は固定絞り系および可変絞り系の各センサの誤
差、つまり両流量値の誤差が第2および第3図と同じ
で、かつ(1)式の冪数Wが3の場合のこの重み付け平
均化流量値の誤差を示したものであり、高流量領域にお
いては第2図の固定絞り系に近く、低流量領域において
は第3図の可変絞り系に近い誤差特性となる。
Qe = G · Qs + (1-G) · Qd (2) Fig. 4 shows the error of each sensor of the fixed throttle system and the variable throttle system, that is, the error of both flow rate values is the same as in Fig. 2 and 3, In addition, the error of this weighted averaged flow rate value when the power W of the equation (1) is 3 is shown. In the high flow rate region, it is close to the fixed throttle system of FIG. The error characteristic is close to that of the variable aperture system shown in FIG.

なお、重み付け関数の変数信号として、固定絞り系の流
量値に替えて、可変絞り系の流量値、或は可変絞り機構
の開度を用いても同様の効果となることはいうまでもな
い。
Needless to say, the same effect can be obtained by using the variable throttle system flow rate value or the variable throttle mechanism opening degree as the variable signal of the weighting function instead of the fixed throttle system flow rate value.

また、(1)式の冪数は3に限定されるものではなく、
これを小さくすれば固定絞り系の流量値,つまり誤差特
性に近づき、大きくすれば可変絞り系の流量値,つまり
誤差特性に近づく。
Also, the power of equation (1) is not limited to 3,
If this value is made small, it approaches the flow rate value of the fixed throttle system, that is, the error characteristic, and if it is made large, it approaches the flow rate value of the variable throttle system, that is, the error characteristic.

さらに、重み付け関数は(1)式に限られるものではな
く、例えば三角関数や指数関数等を応用したものでもよ
く、関数の複雑化が問題でなければ、高流量領域におい
て、より固定絞り系の流量値つまり誤差特性に近付けな
がら、低流量領域においては、より可変絞り系の流量値
つまり誤差特性に近付けるものとすることもできる。
Furthermore, the weighting function is not limited to the equation (1), and may be, for example, an application of a trigonometric function or an exponential function. It is also possible to make the flow rate value, that is, the error characteristic, closer to the flow rate value, that is, the error characteristic of the variable throttle system, in the low flow rate region.

なお、可変絞り機構5を調節弁として兼用しない場合に
は可変絞り機構5の差圧を任意に選ぶことができる。例
えば、可変絞り機構5の開度に対する流量係数の関係が
指数関数特性で、その差圧を一定に制御した場合にはそ
の流量計測誤差は全流量領域においてほぼ一定となる
が、可変絞り機構5の開度に関する誤差が加わるため、
高流量領域においては固定絞り機構2による流量計測誤
差よりも大きくなるので、このような場合にも流量領域
による両者の使い分けは有効である。
When the variable throttle mechanism 5 is not also used as a control valve, the differential pressure of the variable throttle mechanism 5 can be arbitrarily selected. For example, the relationship between the flow rate coefficient and the opening degree of the variable throttle mechanism 5 is an exponential function characteristic, and when the differential pressure is controlled to be constant, the flow rate measurement error is almost constant in the entire flow rate region. Since an error related to the opening degree of
In the high flow rate region, the error becomes larger than the flow rate measurement error by the fixed throttle mechanism 2. Therefore, even in such a case, it is effective to properly use both depending on the flow rate region.

(発明の効果) 以上の説明より明らかなように、本発明によれば、計測
対象である流体管路に設けた固定絞り機構と、上記流体
管路に設けた開度に対する流量係数の関係が既知である
可変絞り機構と、この可変絞り機構に取付けた開度セン
サと、上記固定絞り機構および可変絞り機構のおのおの
の前後の差圧を検出する第1差圧センサ,第2差圧セン
サと、予め上記固定絞り機構の流量係数、および上記可
変絞り機構の開度に対する流量係数の関係を記憶させて
おき、この関係,上記固定絞り機構の流量係数および第
1差圧センサ,第2差圧センサ,開度センサからの信号
に基づいて、固定絞り系と可変絞り系とによる両流量値
を時々刻々算出し、固定絞り系により得られた流量値を
高流量領域用とする一方、可変絞り系により得られた流
量値を低流量領域用として出力するか、固定絞り系によ
り得られた流量値と高流量時程増大する係数との積と可
変絞り系により得られた流量値と高流量時程減少する係
数との積とを加え合わせた流量を出力する演算制御器と
から形成してある。
(Effects of the Invention) As is apparent from the above description, according to the present invention, the relationship between the fixed throttle mechanism provided in the fluid pipeline to be measured and the flow coefficient with respect to the opening provided in the fluid pipeline is shown. A known variable throttle mechanism, an opening sensor attached to the variable throttle mechanism, a first differential pressure sensor and a second differential pressure sensor for detecting a differential pressure before and after each of the fixed throttle mechanism and the variable throttle mechanism. The relationship between the flow coefficient of the fixed throttle mechanism and the flow coefficient with respect to the opening of the variable throttle mechanism is stored in advance, and this relationship, the flow coefficient of the fixed throttle mechanism, the first differential pressure sensor, and the second differential pressure are stored. The flow rate values of the fixed throttle system and the variable throttle system are calculated from time to time based on the signals from the sensor and the opening sensor, and the flow rate values obtained by the fixed throttle system are used for the high flow rate region, while the variable throttle system is used. Flow rate obtained by the system The value is output for the low flow rate region, or the product of the flow rate value obtained by the fixed throttle system and the coefficient increasing at high flow rate and the flow rate value obtained by the variable throttle system and the coefficient decreasing at high flow rate And the arithmetic controller that outputs the combined flow rate.

このように、固定絞り系により得られた流量値を高流量
領域用とし、可変絞り系により得られた流量値を低流量
領域用として使い分けることにより、差圧センサの誤差
による流量計測誤差を軽減することができるため、一般
的な汎用差圧センサを用いて高精度の流量計測がてき、
計測対象流量を所要の精度で計測する装置を容易に得る
ことができるという効果を奏する。
In this way, the flow rate value obtained by the fixed throttle system is used for the high flow rate range, and the flow rate value obtained by the variable throttle system is used for the low flow rate range, thereby reducing the flow rate measurement error due to the error of the differential pressure sensor. Therefore, it is possible to measure flow rate with high accuracy using a general-purpose differential pressure sensor.
It is possible to easily obtain a device that measures the flow rate to be measured with required accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る流量計測装置の系統図、第2図,
第3図,第4図は流量と流量計測誤差との関係を示す図
である。 1……流体管路、2……固定絞り機構、3……開度セン
サ、4……可変絞り駆動機構、5……可変絞り機構、6,
7……差圧センサ、8……演算制御器。
FIG. 1 is a system diagram of a flow rate measuring device according to the present invention, FIG.
3 and 4 are diagrams showing the relationship between the flow rate and the flow rate measurement error. 1 ... Fluid line, 2 ... Fixed throttle mechanism, 3 ... Openness sensor, 4 ... Variable throttle drive mechanism, 5 ... Variable throttle mechanism, 6,
7 ... Differential pressure sensor, 8 ... Arithmetic controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中安 斌 大阪府大阪市西区京町堀2丁目4番7号 中外プロックス株式会社内 (72)発明者 楢原 秀昭 大阪府大阪市西区京町堀2丁目4番7号 中外プロックス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Nakayasu 2-4-7 Kyomachibori, Nishi-ku, Osaka City, Osaka Prefecture Chugai Prox Co., Ltd. (72) Hideaki Narahara 2-4-4 Kyomachibori, Nishi-ku, Osaka City, Osaka Prefecture No. 7 inside Chugai Prox Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】計測対象である流体管路に設けた固定絞り
機構と、上記流体管路に設けた開度に対する流量係数の
関係が既知である可変絞り機構と、この可変絞り機構に
取付けた開度センサと、上記固定絞り機構および可変絞
り機構のおのおのの前後の差圧を検出する第1差圧セン
サ,第2差圧センサと、予め上記固定絞り機構の流量係
数、および上記可変絞り機構の開度に対する流量係数の
関係を記憶させておき、この関係,上記固定絞り機構の
流量係数および第1差圧センサ,第2差圧センサ,開度
センサからの信号に基づいて、固定絞り系と可変絞り系
とによる両流量値を時々刻々算出し、固定絞り系により
得られた流量値を高流量領域用とする一方、可変絞り系
により得られた流量値を低流量領域用として出力する
か、固定絞り系により得られた流量値と高流量時程増大
する係数との積と可変絞り系により得られた流量値と高
流量時程減少する係数との積とを加え合わせた流量を出
力する演算制御器とからなることを特徴とする流量計測
装置。
1. A fixed throttle mechanism provided in a fluid pipeline to be measured, a variable throttle mechanism provided in the fluid pipeline with a known relationship of a flow coefficient with respect to an opening degree, and a variable throttle mechanism attached to the variable throttle mechanism. An opening sensor, a first differential pressure sensor and a second differential pressure sensor that detect a differential pressure before and after each of the fixed throttle mechanism and the variable throttle mechanism, a flow coefficient of the fixed throttle mechanism in advance, and the variable throttle mechanism. The relationship of the flow coefficient with respect to the opening of the fixed throttle system is stored, and based on this relationship, the flow coefficient of the fixed throttle mechanism, and the signals from the first differential pressure sensor, the second differential pressure sensor, and the opening sensor. The flow rate values obtained by the fixed throttle system are output for the high flow rate region, while the flow rate values obtained by the fixed throttle system are output for the low flow rate region. Or by fixed aperture system An arithmetic controller that outputs a flow rate that is the sum of the product of the obtained flow rate value and the coefficient that increases at high flow rates and the product of the flow rate value obtained by the variable throttle system and the coefficient that decreases at high flow rates. A flow rate measuring device comprising:
JP1275389A 1989-10-23 1989-10-23 Flow rate measuring device Expired - Fee Related JPH0778442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275389A JPH0778442B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275389A JPH0778442B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Publications (2)

Publication Number Publication Date
JPH03137418A JPH03137418A (en) 1991-06-12
JPH0778442B2 true JPH0778442B2 (en) 1995-08-23

Family

ID=17554815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275389A Expired - Fee Related JPH0778442B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Country Status (1)

Country Link
JP (1) JPH0778442B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7245600B2 (en) * 2016-12-15 2023-03-24 株式会社堀場エステック Flow control device and program for flow control device
JP2020021176A (en) * 2018-07-30 2020-02-06 株式会社堀場エステック Flow controller

Also Published As

Publication number Publication date
JPH03137418A (en) 1991-06-12

Similar Documents

Publication Publication Date Title
JP2695929B2 (en) How to determine surge condition
AU626114B2 (en) Gas meter
JP3516772B2 (en) Steam dryness control device
JPH0421809B2 (en)
JPH0778442B2 (en) Flow rate measuring device
US5125753A (en) Device to measure flow-through and/or quantity of heat
JP3225691B2 (en) Open channel flow meter
JPH0682282A (en) Measuring equipment for flow rate
JP3607041B2 (en) Flow control valve device
JPS637861Y2 (en)
JP3121735B2 (en) Bidirectional flow measurement method and device
JP3517070B2 (en) Flow meter utilizing differential pressure
JP2000304578A (en) Flow rate measuring instrument and valve device with flow rate measuring function
JP3408341B2 (en) Flow meter
JP3381122B2 (en) Steam dryness measuring device
JPH0618244Y2 (en) Fluid vibration type flow meter
JPH0227220A (en) Differential pressure type steam flowmeter
JPH04109060A (en) Vehicular shift position specifying method
RU1795287C (en) Method of measuring gas mass flow rate
JPS61202120A (en) Flow rate measuring apparatus
JPH07151326A (en) Combustion device
JPH08327527A (en) Capillary type viscometer
JP2735678B2 (en) Flow sensor type flow meter
JPS58219418A (en) Vortex flowmeter
JP3488026B2 (en) Flow meter utilizing differential pressure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees