JPH08327527A - Capillary type viscometer - Google Patents

Capillary type viscometer

Info

Publication number
JPH08327527A
JPH08327527A JP13456695A JP13456695A JPH08327527A JP H08327527 A JPH08327527 A JP H08327527A JP 13456695 A JP13456695 A JP 13456695A JP 13456695 A JP13456695 A JP 13456695A JP H08327527 A JPH08327527 A JP H08327527A
Authority
JP
Japan
Prior art keywords
differential pressure
viscosity
constant
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13456695A
Other languages
Japanese (ja)
Inventor
Sumihiko Kawashima
純彦 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP13456695A priority Critical patent/JPH08327527A/en
Publication of JPH08327527A publication Critical patent/JPH08327527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To measure viscosity a wide range with high accuracy by applying a constant differential pressure system when the viscosity of liquid specimen is equal to or above a preset value, and adopting a constant flowrate system when the viscosity is less than the preset value. CONSTITUTION: Measurement fluid is sent to a measurement capillary on the operation of a determination pump. The pressure drop of the liquid at both ends of the capillary in this case is sent to a differential pressure sensor 1 through a pressure transmission tube via a pressure receiving diaphragm for measuring differential pressure across the capillary. Also, a differential pressure signal from the sensor 1 is transmitted to a differential pressure control device 8, and the speed of a servo motor 6 is determined, so as to keep the differential pressure at the preset value. In addition, a signal selector 9 determines whether a signal from the device 8 or from speed setting unit 10 are transmitted to a servo motor speed control device 11. When a signal set in the device 11 is selected, the servo motor 6 begins to rotate at constant speed, and thereby, the viscometer becomes a viscometer of constant flowrate system. Also, differential pressure measurement value and speed measurement value are transmitted to a viscosity calculation circuit 13 for conversion into a viscosity value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体の粘度を広い測定レ
ンジにわたり高い精度で測定出来る粘度計に関するもの
で、本発明により、広い測定レンジにわたり高い精度の
粘度測定を必要とする高分子の重合制御の自動化等が可
能になり、今まで製造出来なかったポリマーの製造が可
能になった。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a viscometer capable of measuring the viscosity of a fluid with high accuracy over a wide measuring range. The present invention provides a polymer of a polymer which requires highly accurate viscosity measurement over a wide measuring range. It became possible to manufacture polymers that could not be manufactured until now, such as automation of control.

【0002】[0002]

【従来の技術】従来の細管式粘度計は、細管の両端部に
おける細管に流れる流体の差圧を一定にして該流体の流
量を測定することにより粘度を測定する差圧一定方式
と、細管に流れる流体の流量を一定にして細管両端部の
差圧を測定することにより、流体の粘度を測定する流量
一定方式がある。これ等の粘度計の精度は、制御系の精
度を無視すれば、差圧センサーあるいは流量センサーの
精度で決まる。流量一定方式の場合、差圧センサーの誤
差が流体粘度の測定誤差に直接影響を及ぼす。現在の差
圧センサーの測定再現誤差は0.2%FS程度であるた
め、誤差が測定値の2%まで許容するとしても、測定レ
ンジは1:10となる。
2. Description of the Related Art A conventional thin tube viscometer has a constant pressure difference method in which the differential pressure of a fluid flowing through the thin tubes at both ends of the thin tube is fixed and the viscosity is measured by measuring the flow rate of the fluid. There is a constant flow rate method in which the viscosity of the fluid is measured by measuring the differential pressure between both ends of the thin tube while keeping the flow rate of the flowing fluid constant. The accuracy of these viscometers is determined by the accuracy of the differential pressure sensor or the flow rate sensor, ignoring the accuracy of the control system. In the case of the constant flow rate method, the error of the differential pressure sensor directly affects the measurement error of the fluid viscosity. Since the measurement reproduction error of the current differential pressure sensor is about 0.2% FS, even if the error is allowed up to 2% of the measured value, the measurement range is 1:10.

【0003】差圧一定方式の場合、差圧を一定に制御す
る制御系の制御誤差と流量センサーの誤差が流体粘度の
測定誤差に影響を及ぼす。差圧を一定に制御するために
は、流体の流量を制御する必要があり、このための方法
として制御弁による方法と定量ポンプの回転数を制御す
る方法がある。制御弁による流体流量の制御レンジは
1:5程度で、回転数制御の場合は1:20程度である
が、流量が少なくなると測定時間がかかるため、現実的
には測定レンジは1:10程度が限界となる。
In the constant differential pressure system, the control error of the control system for controlling the constant differential pressure and the error of the flow rate sensor influence the measurement error of the fluid viscosity. In order to control the differential pressure to be constant, it is necessary to control the flow rate of the fluid, and as a method for this, there are a method using a control valve and a method controlling the rotation speed of the metering pump. The control range of the fluid flow rate by the control valve is about 1: 5, and in the case of the rotational speed control it is about 1: 20, but it takes a measurement time when the flow rate decreases, so the measurement range is realistically about 1: 10. Is the limit.

【0004】このように、差圧一定方式も流量一定方式
も測定レンジは1:10が実用的な限界である。しか
し、ポリマーの重合制御に利用するためには、1:50
程度の測定レンジが必要で、従来の粘度計では重合制御
が出来ない。
As described above, the practical limit of the measurement range is 1:10 in both the constant differential pressure method and the constant flow rate method. However, in order to use it for controlling the polymerization of the polymer, 1:50
It requires a certain measuring range, and conventional viscometers cannot control polymerization.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたものであって、幅広い測定レンジと、高
い測定精度を実現できる細管式粘度計を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a capillary viscometer capable of realizing a wide measurement range and high measurement accuracy.

【0006】[0006]

【課題を解決するための手段】本発明の細管式粘度計
は、測定細管の両端部における該測定細管に流れる流体
の差圧を一定にする差圧一定制御系と、該測定細管に流
れる流体の流量を一定にする流量一定制御系と、測定細
管内における流体がある所定の粘度に達した際に該差圧
一定制御系と該流量一定制御系とを自動的に切り替える
手段と、該測定細管に流体を送る定量ポンプと、該定量
ポンプの回転数を測定する手段と、該回転数から測定細
管に流れる流体の流量を測定する手段と、測定細管の両
端部における該測定細管に流れる流体の差圧を測定する
手段と、を有し、そのことにより上記目的が達成され
る。本発明の細管式粘度計は、該測定細管の差圧を測定
細管に流れる流体の流量で割り、ある係数を掛けて粘度
を求める手段をさらに有することができる。
The capillary viscometer of the present invention comprises a differential pressure constant control system for making constant the differential pressure of the fluid flowing through the measuring capillary at both ends of the measuring capillary, and the fluid flowing through the measuring capillary. Constant flow rate control system for making the flow rate constant, means for automatically switching between the constant differential pressure control system and the constant flow rate control system when the fluid in the measurement thin tube reaches a predetermined viscosity, and the measurement A metering pump for sending a fluid to a thin tube, a means for measuring the number of revolutions of the metering pump, a means for measuring the flow rate of the fluid flowing into the measuring tube from the number of revolutions, a fluid flowing through the measuring tube at both ends of the measuring tube And a means for measuring the differential pressure of, thereby achieving the above object. The capillary viscometer of the present invention may further include means for dividing the differential pressure of the measuring capillary by the flow rate of the fluid flowing through the measuring capillary and multiplying it by a coefficient to obtain the viscosity.

【0007】本発明について、以下に詳しく述べる。The present invention will be described in detail below.

【0008】ある流体の粘度と、測定細管の両端部にお
ける該細管内に流れる流体の差圧(以下、測定細管前後
差圧という)と、測定細管に流れる流体の流量と、の関
係は、ハーゲンポアズイユの式より(1)式で表され
る。
The relationship between the viscosity of a certain fluid, the differential pressure of the fluid flowing in the capillary at both ends of the measuring capillary (hereinafter referred to as the differential pressure across the measuring capillary), and the flow rate of the fluid flowing in the measuring capillary is Hagen. It is expressed by the formula (1) from the Poiseuille's formula.

【0009】 m=k・dp/q ・・・・・・(1) m;粘度 k;定数 dp;測定細管前後差圧 q;測定細管に流れる流体の流量 本発明では、ギヤーポンプ等の定量ポンプの回転数から
液体の流量を求める為、定量ポンプの一回転あたりの吐
出量をf、回転数をnとすると、(1)式は m=k・dp/f・n =kl・dp/n ・・・・・・(2) kl;定数 となる。
M = k · dp / q (1) m; viscosity k; constant dp; differential pressure before and after the measuring thin tube q; flow rate of fluid flowing through the measuring thin tube In the present invention, a constant pump such as a gear pump. In order to obtain the flow rate of the liquid from the number of revolutions of, when the discharge amount per revolution of the metering pump is f and the number of revolutions is n, equation (1) is m = k · dp / f · n = kl · dp / n (2) kl; becomes a constant.

【0010】本発明では、測定しようとする流体の粘度
が所定値以上の場合には、差圧一定方式を用いてその粘
度を測定し、それ未満の粘度の場合には、流量一定方式
を用いて粘度の測定を行うものである。この場合の精度
について以下に説明する。
In the present invention, when the viscosity of the fluid to be measured is a predetermined value or more, the constant differential pressure method is used to measure the viscosity, and when the viscosity is less than that, the constant flow rate method is used. To measure the viscosity. The accuracy in this case will be described below.

【0011】差圧一定方式の場合、上記(2)式より、
測定粘度の精度は、差圧センサーの再現性と定量ポンプ
における回転数の測定精度により決まる。差圧センサー
の再現性は通常±0.2%FS程度である。差圧のバラ
ンス点は、精度の関係上、測定レンジの上限付近にとら
れるため、差圧センサーの測定再現誤差は、±0.2%
程度となる。
In the case of the constant differential pressure system, from the above formula (2),
The accuracy of the measured viscosity is determined by the reproducibility of the differential pressure sensor and the measurement accuracy of the rotation speed of the metering pump. The reproducibility of the differential pressure sensor is usually about ± 0.2% FS. Since the balance point of the differential pressure is taken near the upper limit of the measurement range for accuracy, the measurement error of the differential pressure sensor is ± 0.2%.
About.

【0012】また、定量ポンプの回転数の測定精度は、
ロータリーエンコーダー等により非常に高い精度で測定
できるため、±0.2%の誤差を問題にする限り、無視
しても差し支えない。
Further, the measurement accuracy of the rotation speed of the metering pump is
Since it can be measured with extremely high accuracy by a rotary encoder or the like, it can be ignored as long as an error of ± 0.2% is a problem.

【0013】従って、差圧一定方式を用いると、測定誤
差は測定粘度の±0.2%と非常に高い精度の測定が可
能になる。しかし、差圧を一定に制御するためには、流
体の粘度の低下に伴い定量ポンプの回転数を上げていく
必要があるが、それには当然限界があり、サーボモータ
等で制御できる実用的な限界は、最大回転数に対する最
小回転数の比で1:10から1:20程度である。
Therefore, when the constant differential pressure method is used, the measurement error is ± 0.2% of the measured viscosity, which enables measurement with extremely high accuracy. However, in order to control the differential pressure to be constant, it is necessary to increase the rotation speed of the metering pump as the viscosity of the fluid decreases, but of course there is a limit, and it is practical to control with a servomotor or the like. The limit is a ratio of the minimum rotation speed to the maximum rotation speed of about 1:10 to 1:20.

【0014】そして、差圧一定方式のもう一つの重要な
問題点は、流体流量が低下すると測定細管に流体を送り
込むための時間がかかり、このため、流体の粘度が高く
なるにつれて測定時間がかかるという欠点をもってい
る。従って、測定時間遅れと制御限界を総合的に判断し
て、差圧一定方式の実用的な測定レンジは1:10程度
である。
Another important problem of the constant differential pressure system is that it takes time to feed the fluid into the measuring thin tube when the flow rate of the fluid decreases, so that the measuring time increases as the viscosity of the fluid increases. It has the drawback. Therefore, the practical measurement range of the constant differential pressure system is about 1:10 by comprehensively judging the measurement time delay and the control limit.

【0015】流量一定方式の場合、測定粘度の精度は差
圧センサーの精度で決まる。差圧センサーの再現精度
は、±0.2%FS程度である。流量一定方式の場合、
測定誤差をその時の粘度値の±2%まで許容できるとす
ると、測定レンジは1:10程度となる。流量一定方式
の場合その精度は、差圧一定方式に比べかなり悪くなる
が、差圧一定方式の様に、測定しようとする流体の粘度
が高いときに測定時間が長くなるという欠点はない。
In the case of the constant flow rate system, the accuracy of the measured viscosity is determined by the accuracy of the differential pressure sensor. The reproducibility of the differential pressure sensor is about ± 0.2% FS. In case of constant flow rate method,
Assuming that the measurement error is within ± 2% of the viscosity value at that time, the measurement range is about 1:10. The accuracy of the constant flow rate method is considerably worse than that of the constant differential pressure method, but unlike the constant differential pressure method, there is no drawback that the measurement time becomes long when the viscosity of the fluid to be measured is high.

【0016】本発明は、差圧一定方式と流量一定方式と
組み合わせ、測定しようとする流体の粘度が所定以上の
場合では差圧一定方式を採用し、それ未満の場合では流
量一定方式を採用して流体の粘度を測定するものであ
る。
In the present invention, the constant differential pressure method and the constant flow rate method are combined, and the constant differential pressure method is adopted when the viscosity of the fluid to be measured is more than a predetermined value, and the constant flow rate method is adopted when the viscosity is less than that. To measure the viscosity of the fluid.

【0017】具体的には、最大測定粘度mxの粘度計を
考えた場合、mxのp%までの粘度に対しては差圧一定
方式、それ未満の粘度に対しては流量一定方式をとる。
Specifically, when considering a viscometer having a maximum measured viscosity mx, a constant differential pressure method is used for viscosities up to p% of mx, and a constant flow rate method is used for viscosities less than that.

【0018】 xp=mx・p/100 m≧xp の時 差圧一定方式 m<xp の時 流量一定方式 ・・・・・・(3) pの値としては、通常10%から20%程度が選ばれ
る。
Xp = mx · p / 100 m ≧ xp constant pressure differential method m <xp constant flow rate method (3) The value of p is usually about 10% to 20%. To be elected.

【0019】この様にする事の利点を図1、図2を用い
て説明する。
The advantage of doing so will be described with reference to FIGS.

【0020】図1、図2においては、pの値は10%と
して計算している。図1に於いて、本発明の粘度計は、
粘度mxから0.1mxまでは差圧一定方式、粘度0.
1mxから0.01mxまでは流量一定方式をとる(線
(a)で示す。)。このため、粘度mxから粘度0.1
mxまでの測定再現誤差は測定粘度の0.2%と高い精
度が得られる。粘度0.1mx以下の測定再現誤差は
0.2%FSで粘度の低下に伴い測定再現誤差はリニア
に増加し、粘度0.01mxで測定粘度の2%となる。
従来の流量一定方式の粘度計の測定再現誤差は、0.2
%FSで表され(線(b)で示す。)、図1に示すよう
に、粘度mxの誤差0.2%から粘度の低下に伴いリニ
アに増加し、0.1mxで2%、0.01mxで20%
と悪化する。このため、従来の流量一定方式の場合の測
定レンジは、誤差2%を許容するとして、1:10とな
る。これに対し、本発明の粘度計は、粘度0.01mx
までは誤差は2%以下に保たれるため、測定レンジは
1:100となる。
In FIGS. 1 and 2, the value of p is calculated as 10%. In FIG. 1, the viscometer of the present invention is
From the viscosity mx to 0.1 mx, the constant differential pressure method, the viscosity 0.
A constant flow rate method is used from 1 mx to 0.01 mx (shown by line (a)). Therefore, from the viscosity mx to the viscosity of 0.1
The measurement reproduction error up to mx is as high as 0.2% of the measured viscosity. When the viscosity is 0.1 mx or less, the measurement reproduction error is 0.2% FS, and the measurement reproduction error linearly increases as the viscosity decreases, and when the viscosity is 0.01 mx, it becomes 2% of the measured viscosity.
The measurement repeatability error of the conventional constant flow rate viscometer is 0.2
% FS (shown by the line (b)), and as shown in FIG. 1, the error of the viscosity mx increases linearly from 0.2% to 2% at 0.1 mx 0. 20% at 01mx
Becomes worse. For this reason, the measurement range in the case of the conventional constant flow rate method is 1:10, while allowing an error of 2%. On the other hand, the viscometer of the present invention has a viscosity of 0.01 mx
Until then, the error is kept below 2%, so the measurement range is 1: 100.

【0021】従来の差圧一定方式の場合、図2の線(c)
で示す様に、粘度mxから0.1mxまで測定再現誤差
は0.2%となり、本発明と同じく高い精度が得られ
る。しかし、制御系の制御レンジが、前述した様に、
1:10程度であるので、これ以上のレンジの測定は出
来ない。従って、差圧一定方式も測定レンジは1:10
程度である。
In the case of the conventional constant pressure differential system, the line (c) in FIG.
As shown by, the measurement reproduction error from the viscosity mx to 0.1 mx is 0.2%, and the same high accuracy as in the present invention can be obtained. However, the control range of the control system is, as described above,
Since it is about 1:10, it is impossible to measure in a range further than this. Therefore, the measurement range is 1:10 even with the constant differential pressure method.
It is a degree.

【0022】以上より、本発明によれば、1:100の
非常に広いレンジにわたり高い精度の粘度計が可能にな
る。この様な広いレンジの粘度の測定を、従来の粘度計
で実施しようとすると、それぞれの粘度に応じた10台
の粘度計が必要となり、それに要する工事費も莫大なも
のとなり、また、10台の粘度計をどの様に据え付ける
のかという問題もあり、実質上不可能となる。このこと
からも、本発明の効果は絶大であることが判る。
From the above, according to the present invention, a highly accurate viscometer can be realized over a very wide range of 1: 100. If a conventional viscometer is used to measure viscosity in such a wide range, 10 viscometers are required for each viscosity, and the construction cost required for that is enormous, and 10 viscometers are required. There is also the problem of how to install this viscometer, which is virtually impossible. This also shows that the effect of the present invention is great.

【0023】[0023]

【作用】本発明は、差圧一定方式と流量一定方式とを組
み合わせ、測定しようとする流体の粘度が所定以上の場
合では差圧一定方式を採用し、それ未満の場合では流量
一定方式を採用して流体の粘度を測定するものである。
従って、測定流体の粘度に応じて差圧一定方式または流
量一定方式で該流体粘度を測定することにより、比較的
測定精度に優れた流量一定方式の利点と、高粘度液体の
測定においても測定時間が比較的短いという差圧一定方
式の利点を合わせもつことで、測定レンジを上げること
ができる。
The present invention combines the constant differential pressure method and the constant flow rate method, adopts the constant differential pressure method when the viscosity of the fluid to be measured is more than a predetermined value, and adopts the constant flow rate method when the viscosity is less than that. Then, the viscosity of the fluid is measured.
Therefore, by measuring the fluid viscosity by the constant differential pressure method or the constant flow rate method according to the viscosity of the measured fluid, the advantage of the constant flow rate method, which is relatively excellent in measurement accuracy, and the measurement time even in the measurement of high viscosity liquids. The measurement range can be increased by combining the advantage of the constant differential pressure method that is relatively short.

【0024】なお、粘度は、上記で得られた測定細管前
後の差圧を測定細管に流れる流体流量で割り、ある係数
を掛けて求められる。
The viscosity is obtained by dividing the differential pressure before and after the measurement thin tube obtained above by the flow rate of the fluid flowing through the measurement thin tube and multiplying it by a certain coefficient.

【0025】[0025]

【実施例】本発明の実施例を図3、図4を用いて説明す
る。
Embodiments of the present invention will be described with reference to FIGS.

【0026】図3において、ギヤーポンプ等の定量ポン
プ5により測定流体は測定細管4に送られる。このとき
の測定細管の両端部における液体の圧力降下は、受圧ダ
イアフラム2を通じ圧力伝送管3により差圧センサー1
に送られ、ここで測定細管前後の差圧が測定される。
In FIG. 3, the measuring fluid is sent to the measuring thin tube 4 by a metering pump 5 such as a gear pump. At this time, the pressure drop of the liquid at both ends of the measurement thin tube is measured by the pressure transmission pipe 3 through the pressure receiving diaphragm 2 and the differential pressure sensor 1
And the differential pressure before and after the measuring capillary is measured.

【0027】図4に於いて、差圧センサー1からの差圧
信号は差圧制御装置8に送られ、差圧が所定値になるよ
うにサーボモータ6の回転数を決める。決められたサー
ボモータ6の回転数信号は信号セレクター9に送られ
る。信号セレクター9では、サーボモータ回転数制御装
置11に差圧制御装置8からの信号を送るのか、回転数
設定器10からの信号を送るのかを決定する。その選択
は、上式(3)により行われる。つまり、測定した流体
の粘度が所定値より大きい場合は、差圧制御装置8から
の信号を通し、それ未満の時は、回転数設定器10から
の信号が選択される。
In FIG. 4, the differential pressure signal from the differential pressure sensor 1 is sent to the differential pressure control device 8 to determine the rotation speed of the servo motor 6 so that the differential pressure becomes a predetermined value. The determined rotation speed signal of the servo motor 6 is sent to the signal selector 9. The signal selector 9 determines whether to send the signal from the differential pressure control device 8 or the signal from the rotation speed setting device 10 to the servo motor rotation speed control device 11. The selection is performed by the above equation (3). That is, when the measured viscosity of the fluid is larger than the predetermined value, the signal from the differential pressure control device 8 is passed, and when it is less than that, the signal from the rotation speed setting device 10 is selected.

【0028】回転数設定器10はサーボモータ回転数制
御装置11に予め設定された一定の信号を送る装置で、
本信号が選択された場合は、サーボモータ6は一定の回
転数となり、流量一定方式の粘度計となる。サーボモー
タ回転数制御装置11は、差圧制御装置8または回転数
設定器10からの回転数指令信号を受け、回転数指令信
号とサーボモータの回転数検出器12からの信号が一致
するように、サーボモータ6を制御する。差圧センサー
1からの差圧測定値と回転数検出器12からの回転数測
定値は、粘度演算回路13に送られ、上式(2)にもと
づき粘度値が演算される。
The rotation speed setting device 10 is a device for sending a predetermined constant signal to the servo motor rotation speed control device 11,
When this signal is selected, the servomotor 6 has a constant rotation speed, and the flowmeter is a constant flow rate type viscometer. The servo motor rotation speed control device 11 receives the rotation speed command signal from the differential pressure control device 8 or the rotation speed setting device 10 so that the rotation speed command signal and the signal from the rotation speed detector 12 of the servo motor coincide with each other. , Control the servo motor 6. The differential pressure measurement value from the differential pressure sensor 1 and the rotation speed measurement value from the rotation speed detector 12 are sent to the viscosity calculation circuit 13, and the viscosity value is calculated based on the above equation (2).

【0029】演算された粘度値は粘度信号として出力さ
れるとともに、信号セレクター9に送られ、信号を選択
するために使われる。
The calculated viscosity value is output as a viscosity signal and is also sent to the signal selector 9 to be used for selecting a signal.

【0030】[0030]

【発明の効果】本発明は、差圧一定方式と流量一定方式
とを組み合わせ、測定しようとする流体の粘度が所定以
上の場合では差圧一定方式を採用し、それ未満の場合で
は流量一定方式を採用して流体の粘度を測定するので、
1:100程度の非常に広いレンジにわたり高い精度の
粘度計ができるようになり、ポリマーの重合制御に有効
に利用することができる。
The present invention combines the constant differential pressure method and the constant flow rate method, adopts the constant differential pressure method when the viscosity of the fluid to be measured is more than a predetermined value, and the constant flow rate method when the viscosity is less than that. Is used to measure the viscosity of the fluid,
A highly accurate viscometer over a very wide range of about 1: 100 can be obtained, and it can be effectively used for polymer polymerization control.

【図面の簡単な説明】[Brief description of drawings]

【図1】粘度mxから0.1mxまでは差圧一定方式、
粘度0.1mxから0.01mxまでは流量一定方式を
とった粘度計で流体粘度を測定した場合の測定再現誤差
を示す図である。
FIG. 1 is a constant differential pressure method from viscosity mx to 0.1 mx,
It is a figure which shows a measurement reproduction error at the time of viscosity 0.1mx to 0.01mx when measuring a fluid viscosity with the viscometer which took the constant flow rate system.

【図2】従来の差圧一定方式の粘度計で流体粘度を測定
した場合の測定再現誤差を示す図である。
FIG. 2 is a diagram showing a measurement reproduction error when fluid viscosity is measured by a conventional viscometer of a constant differential pressure type.

【図3】測定細管内の液体の差圧を測定してサーボモー
タによる定量ポンプの回転数を制御する機構を示す模式
図である。
FIG. 3 is a schematic view showing a mechanism for measuring the differential pressure of the liquid in the measuring thin tube and controlling the rotation speed of the metering pump by the servo motor.

【図4】サーボモータの制御システムを示すブロック図
である。
FIG. 4 is a block diagram showing a control system of a servo motor.

【符号の説明】[Explanation of symbols]

1 差圧センサー 2 受圧ダイアフラム 3 圧力伝送管 4 測定細管 5 定量ポンプ 6 サーボモータ 7 制御系 8 差圧制御装置 9 信号セレクター 10 回転数設定器 11 サーボモータ回転数制御装置 12 回転数検出器 13 粘度演算回路 1 Differential Pressure Sensor 2 Pressure Receiving Diaphragm 3 Pressure Transmission Pipe 4 Measuring Capillary 5 Metering Pump 6 Servo Motor 7 Control System 8 Differential Pressure Control Device 9 Signal Selector 10 Rotation Speed Setting Device 11 Servo Motor Rotation Speed Control Device 12 Rotation Speed Detector 13 Viscosity Arithmetic circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 細管式粘度計に於いて、測定細管の両端
部における該測定細管に流れる流体の差圧を一定にする
差圧一定制御系と、該測定細管に流れる流体の流量を一
定にする流量一定制御系と、測定細管内における流体が
ある所定の粘度に達した際に該差圧一定制御系と該流量
一定制御系とを自動的に切り替える手段と、該測定細管
に流体を送る定量ポンプと、該定量ポンプの回転数を測
定する手段と、該回転数から測定細管に流れる流体の流
量を測定する手段と、測定細管の両端部における該測定
細管に流れる流体の差圧を測定する手段と、を有する細
管式粘度計。
1. In a thin-tube viscometer, a differential pressure constant control system for making constant a differential pressure of a fluid flowing through the measuring thin tube at both ends of the measuring thin tube, and a constant flow rate of the fluid flowing through the measuring thin tube. A constant flow rate control system, a means for automatically switching between the constant differential pressure control system and the constant flow rate control system when the fluid in the measuring capillary reaches a predetermined viscosity, and the fluid is sent to the measuring capillary. A metering pump, a means for measuring the number of revolutions of the metering pump, a means for measuring the flow rate of the fluid flowing through the measuring capillary from the number of revolutions, and a differential pressure of the fluid flowing through the measuring capillary at both ends of the measuring capillary. And a capillary tube viscometer.
JP13456695A 1995-05-31 1995-05-31 Capillary type viscometer Pending JPH08327527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13456695A JPH08327527A (en) 1995-05-31 1995-05-31 Capillary type viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13456695A JPH08327527A (en) 1995-05-31 1995-05-31 Capillary type viscometer

Publications (1)

Publication Number Publication Date
JPH08327527A true JPH08327527A (en) 1996-12-13

Family

ID=15131339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13456695A Pending JPH08327527A (en) 1995-05-31 1995-05-31 Capillary type viscometer

Country Status (1)

Country Link
JP (1) JPH08327527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096178A (en) * 2006-10-10 2008-04-24 National Institute Of Advanced Industrial & Technology Simultaneous measuring method of surface potential and rheology, and measuring device
CN104303040A (en) * 2012-05-14 2015-01-21 雪佛龙美国公司 Apparatus and method for measuring viscosity of fluid
WO2019234167A1 (en) * 2018-06-06 2019-12-12 Kardion Gmbh Determination appliance and method for determining a viscosity of a fluid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096178A (en) * 2006-10-10 2008-04-24 National Institute Of Advanced Industrial & Technology Simultaneous measuring method of surface potential and rheology, and measuring device
CN104303040A (en) * 2012-05-14 2015-01-21 雪佛龙美国公司 Apparatus and method for measuring viscosity of fluid
WO2019234167A1 (en) * 2018-06-06 2019-12-12 Kardion Gmbh Determination appliance and method for determining a viscosity of a fluid
CN112584759A (en) * 2018-06-06 2021-03-30 开迪恩有限公司 Determining device and method for determining the viscosity of a fluid
CN112584759B (en) * 2018-06-06 2024-03-29 开迪恩有限公司 Determining device and method for determining the viscosity of a fluid

Similar Documents

Publication Publication Date Title
US5172585A (en) Continuously operating capillary rheometer apparatus with minimized response-time lag
EP0052623B1 (en) Microprocessor controlled valve
US6609431B1 (en) Flow measuring device based on predetermine class of liquid
US6591697B2 (en) Method for determining pump flow rates using motor torque measurements
US6907361B2 (en) Ultrasonic flow-measuring method
KR940701535A (en) How to Eliminate Errors Associated with Coriolis Meters and their Temperatures
JPH05288737A (en) Gas chromatograph apparatus
US6244097B1 (en) Method for measuring without combustion the heat value of fuel gas
JPH0630763B2 (en) Desalination device using reverse osmosis membrane module
CN100350223C (en) Thermal flowmeter
AU626114B2 (en) Gas meter
JPH08327527A (en) Capillary type viscometer
JPH1183761A (en) Microwave concentration measuring device
JP2007515642A (en) Method and apparatus for supplying a defined fluid flow, particularly for liquid chromatography
CN107764350A (en) Mass flow measurement methods and mass flowmenter
JPH1164066A (en) Flow meter for multi-phase flow
CN111780835A (en) Calibration method for high-efficiency liquid phase transfer liquid flowmeter
US20230266219A1 (en) Capillary Viscometer
JPH0148975B2 (en)
RU1795287C (en) Method of measuring gas mass flow rate
JPH0148974B2 (en)
JPS6175217A (en) Instrumental errors corrector for flowmeter
JP2004077327A (en) Flowmeter
JPS6319805B2 (en)
RU1789859C (en) Method of determining medium mass flow rate in pipeline

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A02