JPH0777969B2 - Optical fiber preform base material manufacturing equipment - Google Patents

Optical fiber preform base material manufacturing equipment

Info

Publication number
JPH0777969B2
JPH0777969B2 JP1241471A JP24147189A JPH0777969B2 JP H0777969 B2 JPH0777969 B2 JP H0777969B2 JP 1241471 A JP1241471 A JP 1241471A JP 24147189 A JP24147189 A JP 24147189A JP H0777969 B2 JPH0777969 B2 JP H0777969B2
Authority
JP
Japan
Prior art keywords
glass
optical fiber
rod
core
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1241471A
Other languages
Japanese (ja)
Other versions
JPH03103333A (en
Inventor
弘一 塩本
均 飯沼
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1241471A priority Critical patent/JPH0777969B2/en
Publication of JPH03103333A publication Critical patent/JPH03103333A/en
Publication of JPH0777969B2 publication Critical patent/JPH0777969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバプリフォーム製造装置、特には大形
で構造特性のバラツキが小さく、かつ低損失で断線の少
ない、シングルモード型の光ファイバプリフォームを安
定的にかつ容易に製造する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an optical fiber preform manufacturing apparatus, and in particular to a large-sized single-mode optical fiber with a small variation in structural characteristics, low loss, and few disconnections. The present invention relates to a device for stably and easily manufacturing a preform.

[従来の技術] 従来、光ファイバプリフォームの製造方法には、コアま
たはコアとクラッド層とからなるロッドを水平に設置
し、これを回転させ、気体状ガラス原料を左右に往復運
動している酸水素火炎バーナーに導入し、その火炎加水
分解で生成したガラス微粒子をロッド上に堆積させる、
いわゆる外付法によって多孔質ガラス層とし、これを加
熱溶融して透明ガラス化するという方法で行なわれてい
るが、この方法は作業のし易さ、バーナーの作業性、ガ
ラス微粒子の堆積し易さということから、通常は第4図
に示したように反応容器23の中にロッド21を横型に配置
し、バーナーをロッドに向けて配置し水平方向に反復移
動26している酸水素火炎バーナー24からの火炎をロッド
21に当ててここにガラス微粒子を多孔質ガラス母材22と
して堆積させるという装置で行なわれている。
[Prior Art] Conventionally, in a method of manufacturing an optical fiber preform, a rod composed of a core or a core and a clad layer is horizontally installed, and this is rotated to reciprocate a gaseous glass raw material left and right. Introduced into the oxyhydrogen flame burner, the glass particles produced by the flame hydrolysis are deposited on the rod,
A so-called external method is used to form a porous glass layer, which is then heated and melted to form a transparent glass. This method is easy to work, workability of a burner, and easy to deposit fine glass particles. Therefore, normally, as shown in FIG. 4, the rod 21 is horizontally arranged in the reaction vessel 23, the burner is arranged toward the rod, and the oxyhydrogen flame burner is repeatedly moved in the horizontal direction 26. Rod flame from 24
It is carried out by an apparatus in which fine glass particles are applied to 21 and deposited as a porous glass base material 22 there.

[発明が解決しようとする課題] しかし、このような横型の装置を用いる光ファイバプリ
フォームの製造方法には、目的とするプリフォームが長
尺化し、大形化してくるとあらかじめロッドを真直に加
工しておいても横にするだけで必ずロッドが撓みを起す
ために両端と中央でセンターずれが起り、堆積厚さに差
が生じ、この差はくり返し行なう過程で積算されて大き
な付着量の差となり、長手方向でのクラッド厚さのバラ
ツキになるという問題点がある。また、これにはロッド
上にガラス微粒子を堆積していくうちに繰り返しの曲げ
がかかって多孔質ガラス母材が破壊するという欠点があ
り、さらにこの従来の装置ではバーナーが左右に移動す
るために開口部25を大きく設けてあることから外気が流
入し、ゴミが入り易く、これによってプリフォームが異
物や気泡を含むものになり、ファイバの断線や伝送損失
の原因になるという不利があった。
[Problems to be Solved by the Invention] However, in a method for manufacturing an optical fiber preform using such a horizontal device, when the target preform becomes long and large, the rod is straightened in advance. Even after processing, the rod will always bend when it is laid down so that center deviation occurs at both ends and in the center, resulting in a difference in the deposited thickness. There is a problem that there is a difference in the thickness of the clad in the longitudinal direction. In addition, this has the drawback that the porous glass preform is destroyed by repeated bending while glass particles are deposited on the rod, and in this conventional device, the burner moves left and right. Since the large opening 25 is provided, the outside air flows in easily, and dust easily enters. As a result, the preform contains foreign matter and air bubbles, which has a disadvantage of causing fiber breakage and transmission loss.

そのため、この光ファイバープリフォームの製造装置に
ついては、コア用ガラス棒の外周に気体状ガラス原料の
火炎加水分解で生成したガラス微粒子を外付法で堆積さ
せてクラッド用多孔質ガラス母材を製造し、これを加熱
し、透明ガラス化して光ファイバプリフォームを製造す
る装置において、コア用ガラス棒を垂直方向に設置し、
これを回転させて上下に反復運動させる方法も検討され
ているが、この場合にはコア用ガラス棒の設置を正確に
行なう必要があるのにも抱わらず、この軸合わせが非常
に煩雑で長時間を要するし、通常はコア用ガラスが上端
で一点固定とされているために、多孔質体が大型になる
とこの状態を維持することが困難となり、出来上ったプ
リフォームが偏心し易くなるという問題が生じる。
Therefore, regarding the manufacturing apparatus of this optical fiber preform, the glass microparticles produced by flame hydrolysis of the gaseous glass raw material are deposited on the outer periphery of the glass rod for core by the external method to manufacture the porous glass preform for cladding. , In an apparatus for producing an optical fiber preform by heating it to form a transparent glass, a glass rod for core is installed in a vertical direction,
A method of rotating this and repeating it up and down is also being studied, but in this case, although it is necessary to accurately install the glass rod for the core, this axis alignment is very complicated. It takes a long time, and since the core glass is usually fixed at one point at the upper end, it becomes difficult to maintain this state when the porous body becomes large, and the finished preform tends to be eccentric. The problem arises.

[課題を解決するための手段] 本発明はこのような不利を解決した光ファイバプリフォ
ームの製造装置に関するものであり、これはコア用ガラ
ス棒の外周に気体状ガラス原料の火炎加水分解で生成し
たガラス微粒子を外付法で堆積させてクラッド用多孔質
ガラス母材を製造し、これを加熱し、透明ガラス化して
光ファイバプリフォームを製造する装置において、この
クラッド用多孔質ガラス母材を製造する装置が aコア用ガラス棒を垂直方向に設置し、その両端を固定
する装置および b該コア用ガラス棒を固定する、上下動可能な一体型フ
レーム を有するものであることを特徴とするものである。
[Means for Solving the Problems] The present invention relates to an apparatus for manufacturing an optical fiber preform that solves such disadvantages, which is formed on the outer periphery of a glass rod for core by flame hydrolysis of a gaseous glass raw material. In the device for producing the optical fiber preform by depositing the above glass fine particles by an external method to produce a porous glass preform for clad, and heating it to produce transparent optical fiber preform, the porous glass preform for clad is produced. The manufacturing device is characterized in that it has a device for vertically mounting a glass rod for a core, and a device for fixing both ends thereof, and b a vertically movable integral frame for fixing the glass rod for a core. It is a thing.

すなわち、本発明者らは大形で長手方向に寸法変化がな
いシングルモード型の光ファイバプリフォームを安定的
にかつ容易に得る方法について種々検討した結果、上記
したような本装置を使用すれば上下の両端の固定装置を
正確に設置しておけば、コア用ガラス棒との軸合わせが
容易にできるし、これは上下が固定されており、これを
作業工程中に移動させることもないので出来上がった光
ファイバプリフォーム母材は偏心の殆んどないものにな
るということを確認して本発明を完成させた。
That is, the present inventors have conducted various studies on a method of stably and easily obtaining a single mode optical fiber preform that is large in size and has no dimensional change in the longitudinal direction. If you install the fixing devices at the upper and lower ends correctly, you can easily align the shaft with the glass rod for the core, and since this is fixed at the top and bottom, it will not move during the working process. The present invention has been completed by confirming that the finished optical fiber preform preform has almost no eccentricity.

以下にこれを詳述する。This will be described in detail below.

[作用] 本発明の光ファイバプリフォーム母材製造装置はこの多
孔質ガラス母材製造装置に前記したようなa.コア用ガラ
ス棒固定装置、b.一体型フレームを有するものとされる
が、これについて添付の第1図〜第3図にもとづいて説
明する。
[Operation] The optical fiber preform base material manufacturing apparatus of the present invention is provided with the above-mentioned porous glass base material manufacturing apparatus having the above-mentioned a. Core glass rod fixing device and b. Integrated frame. This will be described with reference to the attached FIGS. 1 to 3.

第1図、第2図は本発明における多孔質ガラス母材製造
装置の縦断面図、第3図はコア用ガラス棒を駆動軸に固
定する装置の縦断面図を示したものであるが、第1図、
第2図に示したように反応容器3の中にはシリカ微粒子
を堆積させるためのコア用ガラス棒1が垂直に、かつ回
転、上下に往復運動できるように設けられており、これ
にシリカ微粒子を堆積させるための酸水素火炎バーナー
6が固定されている。また、この容器3には必要に応じ
て不活性ガスが供給されるが、この不活性ガスはフィル
ターを通した清浄な空気、窒素、ヘリウム、アルゴンな
どとすればよく、この供給は例えば炉の上部および下部
に設けたガス流入口11から行なわれ、排気口12が反応容
器の中央部に設けられている。
1 and 2 are vertical cross-sectional views of a porous glass preform manufacturing apparatus according to the present invention, and FIG. 3 is a vertical cross-sectional view of an apparatus for fixing a core glass rod to a drive shaft. Figure 1,
As shown in FIG. 2, a glass rod 1 for core for depositing silica fine particles is provided in the reaction vessel 3 so as to be vertically, rotatable, and vertically reciprocally movable. The oxyhydrogen flame burner 6 for depositing is fixed. In addition, an inert gas is supplied to the container 3 as needed. The inert gas may be clean air that has passed through a filter, nitrogen, helium, argon, or the like. The gas is introduced from the gas inlets 11 provided at the upper and lower parts, and the exhaust port 12 is provided at the center of the reaction vessel.

本発明の装置は気体状ガラス原料を酸水素火炎バーナー
6の中に導入し、この火炎加水分解によってガラス微粒
子を形成させるが、これは公知の方法で行なえばよい。
したがって、この気体状ガラス原料としては四塩化けい
素、トリクロロシランなどを含むガス化可能なけい素化
合物を使用すればよく、バーナーとしては中心部からこ
の気体状ガラス原料を供給し、その周囲から酸素ガス、
水素ガスを供給するようにした同心円環状のものを使用
すればよい。
In the apparatus of the present invention, the gaseous glass raw material is introduced into the oxyhydrogen flame burner 6 and the glass particles are formed by this flame hydrolysis, which may be performed by a known method.
Therefore, it is sufficient to use a gasifiable silicon compound containing silicon tetrachloride, trichlorosilane, etc. as the gaseous glass raw material, and as the burner, supply the gaseous glass raw material from the center and from its surroundings. Oxygen gas,
It is sufficient to use a concentric ring-shaped one that supplies hydrogen gas.

本発明の装置を用いて得られる光ファイバプリフォーム
が長手方向において寸法が安定するということから、ガ
ラス微粒子を堆積させるコア用ガラス棒1は予めシング
ルモード用光ファイバとして設計されたコア部、または
一部クラッド部からなるガラス棒を出発材とし、真直に
芯出しをしたものを用いる。このコア用ガラス棒1は第
3図に示したように上下動が可能な一体型フレーム4に
垂直に設置したのち、この両端をチャック5により固定
し、操作中はガラス微粉末を均一に堆積させるために、
モーター10を連結したベアリング9を有する駆動軸14に
よって5〜80rpmで回転させ、全長にわたってバウやね
じれ、曲りのないことを確認したのち、ガラス棒1の長
さ方向全体にガラス微粉末を均一に付着させるために上
下可動装置7でフレーム4を上下に繰り返し反復して移
動させる。
Since the optical fiber preform obtained by using the apparatus of the present invention is dimensionally stable in the longitudinal direction, the glass rod 1 for core on which glass particles are deposited is a core portion previously designed as an optical fiber for single mode, or A glass rod consisting of a part of the clad is used as a starting material and straight-centered. As shown in FIG. 3, the glass rod for core 1 was vertically installed on an integral type frame 4 which can be moved up and down, and its both ends were fixed by a chuck 5 to uniformly deposit fine glass powder during operation. To let
It is rotated at 5-80 rpm by a drive shaft 14 having a bearing 9 to which a motor 10 is connected, and after confirming that there is no bowing, twisting or bending over the entire length, glass fine powder is evenly distributed over the entire length of the glass rod 1. The frame 4 is repeatedly moved up and down repeatedly by the vertically movable device 7 for attachment.

また、このガラス棒1に対するガラス微粉末の吹きつけ
はガラス微粉末をガラス棒全長に対して一層づつ均一に
また正確に堆積させるということから、このガラス棒を
前記したように上下に反復移動させながら、このガラス
棒の真横からガラス微粉末が吹きつけられるように、こ
のガラス棒と直角の位置に水平に酸水素火炎バーナー6
を固定するのであるが、これは補助バーナー13を2本上
下に配置したものとすることができる。
Moreover, since the fine glass powder is sprayed onto the glass rod 1 more uniformly and accurately over the entire length of the glass rod, the fine glass powder is repeatedly moved up and down as described above. However, the oxyhydrogen flame burner 6 was placed horizontally at a right angle to the glass rod so that the fine glass powder could be blown directly from the side of the glass rod.
Is fixed, which may be two auxiliary burners 13 arranged one above the other.

このガラス微粒子の吹きつけによってコア用ガラス棒1
はクラッド用多孔質ガラス母材2とされるが、この多孔
質ガラス母材2における、堆積量の制御はフレーム4に
固定したロードセル8で行なうようにすればよい。
The glass rod for core 1 is produced by spraying the glass particles.
Is used as the clad porous glass base material 2, and the amount of deposition in the porous glass base material 2 may be controlled by the load cell 8 fixed to the frame 4.

このようにして得られたクラッド用多孔質ガラス母材は
ついでこれを加熱脱水し、透明ガラス化することによっ
て光ファイバプリフォームとされるのであるが、この加
熱透明ガラス化は公知の方法で行なえばよく、これによ
れば多孔質ガラス母材がセンターずれもなく、堆積厚さ
が均一で異物や気泡を含んでいないので、これから作ら
れる光ファイバプリフォームは構造特性のバラツキが小
さく、低損失で断線の少ないものになるという有利性が
与えられる。
The clad porous glass preform thus obtained is then heated and dehydrated to obtain an optical fiber preform by vitrification, which can be performed by a known method. According to this, since the porous glass base material has no center deviation, the deposition thickness is uniform, and no foreign matter or bubbles are contained, the optical fiber preform produced from this has little variation in structural characteristics and low loss. This gives the advantage of less breaking.

[実施例] つぎに本発明の実施例をあげる。[Examples] Next, examples of the present invention will be described.

実施例 第1図に示した反応容器3として反応部の内径が280mm
φのパイレックスチャンバーを準備し、このパイレック
スチャンバーの中央部側面には4重管石英バーナー6を
水平に固定し、その対向部には内径100mmφの排気口12
を作り、この中に外径98mmφの石英管を挿入し、外気排
気ダクトに接いだ。
Example As the reaction vessel 3 shown in FIG. 1, the inner diameter of the reaction part is 280 mm.
Prepare a φ Pyrex chamber, horizontally fix the quadruple quartz burner 6 on the side of the center of the Pyrex chamber, and at the opposite part, exhaust port with an inner diameter of 100 mm φ 12
A quartz tube with an outside diameter of 98 mmφ was inserted into this, and it was in contact with the outside air exhaust duct.

コア用ガラス棒1は外径17.7mmφ、長さ620mmであり、
この両端に17mmφ×200mmLの石英ダミーガラスを溶着
し、さらに上部には15mmφ×800mmLの石英棒を固定し、
これを垂直にしたまま反応容器3の中心に貫通させ、こ
の上、下部を駆動軸14にチャック5で固定した。このコ
ア用ガラス棒1は1.3μ帯でのシングルモード用光ファ
イバコアとして設計されており、ゲルマニウムドープに
より屈折率差が0.34%で、コア径とシリカガラスからな
るクラッド層の比が0.205、ガラスロッド外径を±100μ
m以下に仕上げてある。また、このガラス棒1は重量秤
量機能を有するタテ型引上機の回転部に石英ガラスダミ
ーを介して装着されており、このものは50rpmで回転さ
せながらロッドの偏心と上下移動による中心軸の移動が
±0.5mm以内となるようにされている。
The glass rod 1 for core has an outer diameter of 17.7 mmφ and a length of 620 mm,
17mmφ × 200mmL quartz dummy glass is welded to both ends, and 15mmφ × 800mmL quartz rod is fixed on the upper part.
This was pierced through the center of the reaction vessel 3 while keeping it vertical, and the upper and lower parts were fixed to the drive shaft 14 by the chuck 5. This core glass rod 1 is designed as an optical fiber core for single mode in the 1.3μ band, has a refractive index difference of 0.34% due to germanium doping, and the ratio of the core diameter to the clad layer made of silica glass is 0.205. Rod outer diameter ± 100μ
It is finished to m or less. Further, this glass rod 1 is mounted on the rotating part of a vertical pulling machine having a weight weighing function through a quartz glass dummy, which is rotated at 50 rpm and the central axis of the rod is eccentric and vertically moved. It is designed to move within ± 0.5 mm.

このコア用ガラス棒1を反応容器3に装着後、上下開孔
部の近くから清浄な空気を吹き込んで外気の流入を防い
だのち、ガラス棒1の全長を補助バーナー13からの酸水
素火炎でファイヤーポリッシュした。
After this glass rod for core 1 was attached to the reaction vessel 3, clean air was blown from near the upper and lower openings to prevent the inflow of outside air, and then the entire length of the glass rod 1 was exposed to the oxyhydrogen flame from the auxiliary burner 13. Fire-polished.

つぎに4重管バーナー6から酸水素火炎と共に四塩化け
い素を酸素ガスをキャリヤーとして送り込み、ガラス棒
1にシリカガラス微粒子を吹きつけ、この際ガラス棒1
は50rpmで回転させると共に上下に150mm/分の速度で反
復移動させ、ロードセル8により堆積量をコントロール
しながらシリカガラス微粒子を一層づつ堆積させた。こ
のときの酸水素量と四塩化けい素量はSiCl420g/分、H2
50l/分、O2 25l/分となるようにした。この反応を12時
間継続させ、全長を約130回繰り返して付着させてシリ
カ微粒子の堆積量をロードセル8で測定し、これが目標
値に達したのちに反応と止め、得られた多孔質ガラス体
をしらべたところ、このものは外径が109.0mmφ、総重
量4,114gであり、スートの平均密度は0.496g/ccであっ
た。
Next, silicon tetrachloride is fed from the quadruple burner 6 together with the oxyhydrogen flame using oxygen gas as a carrier, and silica glass fine particles are blown onto the glass rod 1 at this time.
Was rotated at 50 rpm and repeatedly moved up and down at a speed of 150 mm / min, and silica glass fine particles were deposited one by one while controlling the deposition amount by the load cell 8. At this time, the amount of oxyhydrogen and the amount of silicon tetrachloride are 20 g / min of SiCl 4 and H 2
It was set to 50 l / min and O 2 25 l / min. This reaction is continued for 12 hours, the total length is repeated about 130 times to adhere the particles, and the deposited amount of silica fine particles is measured by the load cell 8. After this reaches a target value, the reaction is stopped and the obtained porous glass body is removed. When examined, this product had an outer diameter of 109.0 mmφ, a total weight of 4,114 g, and an average density of soot was 0.496 g / cc.

ついで、この多孔質ガラス体をヘリウム、塩素混合ガス
を通した1,500℃に加熱されている電気炉体でゾーンメ
ルトしたところ、外径が58.1mmφで透明であり、気泡、
異物のないガラスインゴットが得られたので、これを外
径30mmφに熱加工し、定常部を線引機を用いて直径125
μmのガラスファイバとしてその全長での構造変動をし
らべた。クラッド部の変動は設計したカットオフ波長
(λc)の変動、モードフィールド径(ω)、偏心量
(ε)の変動を調べるために、120kmのファイバを約10k
mに切断し、その10点をしらべたところ、このものは平
均λc=1.215μ、偏差(最大、最小値差)は30nmであ
り、また偏心は平均0.25μmというすぐれたものであっ
た。
Then, when this porous glass body was zone-melted with an electric furnace body heated to 1,500 ° C. through which a mixed gas of helium and chlorine was passed, it was transparent with an outer diameter of 58.1 mmφ and had bubbles,
Since a glass ingot free of foreign matter was obtained, it was heat-processed to an outer diameter of 30 mmφ, and the steady part was drawn with a wire drawing machine to a diameter of 125 mm.
As a glass fiber of μm, we investigated the structural variation over its entire length. The fluctuation of the clad part was measured by changing the designed cutoff wavelength (λ c ), mode field diameter (ω), and eccentricity (ε) with a fiber of 120 km for about 10 k.
When cut into m and examined 10 points, the average was λ c = 1.215μ, the deviation (difference between maximum and minimum values) was 30 nm, and the eccentricity was 0.25 μm on average.

比較例 第4図に示した横型外付装置を使用し、ここに実施例で
用いたコア用石英ロッドにシリカガラス微粒子を堆積さ
せて多孔質ガラス体を作り、これを実施例と同様に処理
してガラスインゴットとし、光ファイバを作ったとこ
ろ、このもののカットオフ波長の平均値λcは1.177μ
m、偏差は154nmであり、偏心は平均0.62μm、最大1.7
μmであった。
Comparative Example Using the horizontal external device shown in FIG. 4, silica glass fine particles were deposited on the quartz rod for core used in the example to form a porous glass body, which was treated in the same manner as in the example. and a glass ingot, was prepared an optical fiber, the average value lambda c of the cut-off wavelength of this compound 1.177μ
m, deviation 154 nm, eccentricity average 0.62 μm, maximum 1.7
was μm.

また、この横型外付装置ではバーナー24の移動に要する
開口部25が巾40mm、長さ800mmであり、内部の塩酸ガス
が外部に流出して臭気が部屋内に漂ったので、これを抑
えるために排気を強くしたところ、バーナーの炎が大き
くゆれ、スートの堆積時間が15時間以上かかり、ガラス
化後の透明ガラスインゴットには多数の気泡が発生して
いた。
In addition, in this horizontal external device, the opening 25 required for moving the burner 24 has a width of 40 mm and a length of 800 mm, and the hydrochloric acid gas inside leaked out and the odor drifted inside the room. When the exhaust gas was intensified, the burner flame fluctuated greatly, the soot deposition time took more than 15 hours, and many bubbles were generated in the transparent glass ingot after vitrification.

[発明の効果] 本発明は光ファイバプリフォーム母材製造装置、特には
光ファイバプリフォームを製造するための多孔質ガラス
母材の製造装置に関するもので、これは前記したように
a.コア用ガラス棒を垂直方向に両端を固定する装置、b.
コア用ガラス棒を固定する、上下動可能な一体型フレー
ムを有することを特徴とするものであり、これによれば
煩雑な工程を経ないでコア用ガラス棒に重力によるたわ
みや曲がりのない状態でガラス微粒子を均一な厚さで堆
積できるので、構造特性のバラツキが小さく、低損失で
断線の少ないシングルモード型の光ファイバプリフォー
ム母材を安定的に容易に得ることができるという有利性
が与えられる。
[Effects of the Invention] The present invention relates to an optical fiber preform base material manufacturing apparatus, and more particularly to a porous glass base material manufacturing apparatus for manufacturing an optical fiber preform.
A device for vertically fixing the core glass rod at both ends, b.
It is characterized by having an integrally movable frame that fixes the glass rod for core and can move up and down, according to which there is no bending or bending due to gravity on the glass rod for core without complicated processes. Since glass particles can be deposited with a uniform thickness, the advantage of being able to stably and easily obtain a single-mode type optical fiber preform preform with little variation in structural characteristics, low loss, and minimal disconnection. Given.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の光ファイバプリフォーム母材
製造装置の縦断面図、第3図はコア用ガラス棒を駆動軸
に固定する装置の縦断面図、第4図は従来公知の光ファ
イバプリフォーム母材製造装置の縦断面図を示したもの
である。 1,21…コア用ガラス棒、2,22…多孔質ガラス母材、3,23
…反応容器、4…一体型フレーム、5…チャック、6,24
…酸水素火炎バーナー、7…上下可動装置、8…ロード
セル、9…ベアリング、10…モーター、11…ガス流入
口、12,25…排気口、13…補助バーナー、14…駆動軸。
1 and 2 are longitudinal sectional views of an optical fiber preform preform manufacturing apparatus of the present invention, FIG. 3 is a longitudinal sectional view of an apparatus for fixing a glass rod for a core to a drive shaft, and FIG. 2 is a vertical sectional view of the optical fiber preform base material manufacturing apparatus of FIG. 1,21… glass rod for core, 2,22… porous glass base material, 3,23
… Reaction vessel, 4… Integrated frame, 5… Chuck, 6,24
... oxyhydrogen flame burner, 7 ... vertical moving device, 8 ... load cell, 9 ... bearing, 10 ... motor, 11 ... gas inlet, 12, 25 ... exhaust outlet, 13 ... auxiliary burner, 14 ... drive shaft.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コア用ガラス棒の外周に気体状ガラス原料
の火炎加水分解で生成したガラス微粒子を外付法で堆積
させてクラッド用多孔質ガラス母材を製造し、これを加
熱し、透明ガラス化して光ファイバプリフォームを製造
する装置において、このクラッド用多孔質ガラス母材を
製造する装置が aコア用ガラス棒を垂直方向に設置し、その両端を固定
する装置および b該コア用ガラス棒を固定する、上下動可能な一体型フ
レーム を有するものであることを特徴とする光ファイバプリフ
ォーム母材の製造装置。
1. A porous glass base material for a clad is manufactured by depositing glass fine particles produced by flame hydrolysis of a gaseous glass raw material on the outer periphery of a glass rod for a core by an external addition method. In an apparatus for producing an optical fiber preform by vitrification, an apparatus for producing the porous glass preform for clad is a device for vertically installing a glass rod for a core and fixing both ends of the glass rod, and b. An apparatus for manufacturing an optical fiber preform preform, which has an integrally movable frame for fixing a rod.
JP1241471A 1989-09-18 1989-09-18 Optical fiber preform base material manufacturing equipment Expired - Lifetime JPH0777969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1241471A JPH0777969B2 (en) 1989-09-18 1989-09-18 Optical fiber preform base material manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241471A JPH0777969B2 (en) 1989-09-18 1989-09-18 Optical fiber preform base material manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH03103333A JPH03103333A (en) 1991-04-30
JPH0777969B2 true JPH0777969B2 (en) 1995-08-23

Family

ID=17074810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241471A Expired - Lifetime JPH0777969B2 (en) 1989-09-18 1989-09-18 Optical fiber preform base material manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0777969B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2099942C (en) * 1992-07-09 2004-10-26 Sumio Hoshino Method and apparatus for drawing glass preform for optical fiber
KR100348970B1 (en) * 1998-12-31 2002-12-26 주식회사 머큐리 Fiber Optic Substrate Deposition Device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202832A (en) * 1986-03-03 1987-09-07 Sumitomo Electric Ind Ltd Production device for optical fiber parent material
JPS62223037A (en) * 1986-03-24 1987-10-01 Furukawa Electric Co Ltd:The Formation of porous glass layer

Also Published As

Publication number Publication date
JPH03103333A (en) 1991-04-30

Similar Documents

Publication Publication Date Title
TW476738B (en) Large MCVD preform for singlemode fiber and method for making same
EP0578244B1 (en) Method for drawing glass preform for optical fiber
RU2217391C2 (en) Method of forming tubular element for production of optical fiber by means of external plasma precipitation from vapor phase
EP0231022B1 (en) Apparatus for the production of porous preform of optical fiber
US4874416A (en) Base material of optical fibers and a method for the preparation thereof
CN1472150A (en) Method for producing fibre-optical precast stick
US20070137256A1 (en) Methods for optical fiber manufacture
JPH0777969B2 (en) Optical fiber preform base material manufacturing equipment
JPH0761831A (en) Production of porous glass preform for optical fiber
JP2604454B2 (en) Manufacturing method of single mode optical fiber preform
JP2793617B2 (en) Manufacturing method of optical fiber preform
WO2000027767A1 (en) Quartz glass tube for use in the production of optical fiber preforms
JP4057304B2 (en) Manufacturing method of optical fiber preform
JPS6143290B2 (en)
JPH0239458B2 (en)
JPH0460930B2 (en)
JP2517095B2 (en) Optical fiber preform manufacturing method
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JPS581051B2 (en) Manufacturing method for optical transmission materials
GB2351287A (en) Making optical fibre preforms using plasma outside vapour deposition
JPS59137333A (en) Manufacture of base material for optical fiber
Schultz Vapor phase materials and processes for glass optical waveguides
JPH0535691B2 (en)
JP2004224649A (en) Porous glass body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 15