JPH0777188A - Scroll compressor - Google Patents
Scroll compressorInfo
- Publication number
- JPH0777188A JPH0777188A JP22165593A JP22165593A JPH0777188A JP H0777188 A JPH0777188 A JP H0777188A JP 22165593 A JP22165593 A JP 22165593A JP 22165593 A JP22165593 A JP 22165593A JP H0777188 A JPH0777188 A JP H0777188A
- Authority
- JP
- Japan
- Prior art keywords
- pressure chamber
- high pressure
- oil return
- return passage
- low pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、主として油戻し通路を
有するスクロール圧縮機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a scroll compressor having an oil return passage.
【0002】[0002]
【従来の技術】一般に、スクロール圧縮機は、例えば特
開昭63−167084号公報に記載されているよう
に、高圧室と低圧室との間に、高圧室の油を低圧室に戻
す油戻し通路を設けたものが提案されている。この圧縮
機は冷凍機用圧縮機であって、図11に示したように、
密閉ケーシングA内に固定スクロールBと可動スクロー
ルCとをもつ圧縮要素Dを内装し、この圧縮要素Dを架
構Eを介してケーシングA内に配設すると共に、前記固
定スクロールBの上部側に、仕切体Fを配設し、該仕切
体Fの上部側に吐出口G及び吐出管Hが開口する高圧室
Iを、また、前記仕切体Fの下部側に、吸入管Jが開口
する低圧室Kを設けて、この低圧室KにモータMを内装
し、そして、前記仕切体Fと固定スクロールB、及び、
架構Eに、前記高圧室Iと低圧室Kとを連通する連通路
Lを形成し、この連通路LにキャピラリーチューブNを
挿通させて、該キャピラリーチューブNを保持具Oを介
して前記仕切体Fにおける連通路Lに保持し、前記キャ
ピラリーチューブNにより、前記高圧室I内に溜る油を
前記低圧室Kに回収する油戻し通路Pを形成している。2. Description of the Related Art Generally, a scroll compressor has an oil return for returning the oil in the high pressure chamber to the low pressure chamber between the high pressure chamber and the low pressure chamber, as described in, for example, Japanese Patent Application Laid-Open No. 63-167084. It is proposed that a passage is provided. This compressor is a compressor for a refrigerator, and as shown in FIG.
A compression element D having a fixed scroll B and a movable scroll C is internally provided in the closed casing A, the compression element D is arranged in the casing A through a frame E, and at the upper side of the fixed scroll B, A partition body F is provided, a high pressure chamber I having a discharge port G and a discharge pipe H opened on the upper side of the partition body F, and a low pressure chamber having a suction pipe J opened on the lower side of the partition body F. K is provided, the motor M is installed in the low pressure chamber K, and the partition body F, the fixed scroll B, and
A communication passage L that connects the high pressure chamber I and the low pressure chamber K is formed in the frame E, a capillary tube N is inserted through the communication passage L, and the capillary tube N is inserted through the holder O into the partition body. An oil return passage P, which is held in the communication passage L in F and collects the oil accumulated in the high pressure chamber I into the low pressure chamber K, is formed by the capillary tube N.
【0003】[0003]
【発明が解決しようとする課題】前記した従来のスクロ
ール圧縮機において、前記高圧室Iに溜る油は、前記高
圧室Iと低圧室Kとの高低差圧により前記油戻し通路P
を経て低圧室Kに戻されるが、この油戻し通路Pを介し
て低圧室Kに戻される油量は、前記高低差圧及び前記高
圧室I内の油の粘度により変化することになる。即ち、
前記油戻し通路P、換言すると前記キャピラリーチュー
ブNを流れる流体の流量Qは、In the conventional scroll compressor described above, the oil accumulated in the high-pressure chamber I is caused by the differential pressure between the high-pressure chamber I and the low-pressure chamber K to cause the oil return passage P to flow.
The amount of oil returned to the low pressure chamber K through the oil return passage P varies depending on the high / low differential pressure and the viscosity of the oil in the high pressure chamber I. That is,
The flow rate Q of the fluid flowing through the oil return passage P, in other words, the capillary tube N is
【0004】[0004]
【数1】 Q=(ΔP・π・r2 )/(8μl) 但し、ΔP:高低圧差圧、r:キャピラリーチューブ内
径 μ:油粘度、l:キャピラリーチューブの長さ で示されるのであるが、数1から明らかなように、前記
高圧室Iと低圧室Kとの差圧(ΔP)が大きいとき、及
び、前記高圧室I内の温度が高く油の粘度(μ)が低い
ときに流量(Q)が多くなるのであり、また一方、図1
0の実線で示した枠のように、圧縮機の運転による空調
運転範囲内においては、図10aで示す運転領域のと
き、即ち、蒸発温度が所定温度より低く、凝縮温度が所
定温度より高い運転領域においては、前記高圧室Kと低
圧室Kとの差圧が大きくなり、吐出ガス冷媒の温度も高
くなり、この吐出ガス冷媒に含まれる冷凍機の油の粘度
(μ)が低くなるのであって、前記キャピラリーチュー
ブNから低圧室Kに流れる流体流量(Q)が大きくなる
のである。## EQU1 ## Q = (ΔPπr 2 ) / (8 μl) where ΔP: high / low pressure differential pressure, r: capillary tube inner diameter μ: oil viscosity, l: capillary tube length As is clear from Equation 1, when the pressure difference (ΔP) between the high pressure chamber I and the low pressure chamber K is large, and when the temperature inside the high pressure chamber I is high and the viscosity (μ) of oil is low, the flow rate ( Q) is increased, and on the other hand, in FIG.
As indicated by the solid line 0, in the air-conditioning operation range by the operation of the compressor, in the operation region shown in FIG. 10a, that is, the operation in which the evaporation temperature is lower than the predetermined temperature and the condensation temperature is higher than the predetermined temperature. In the region, the pressure difference between the high pressure chamber K and the low pressure chamber K becomes large, the temperature of the discharged gas refrigerant also becomes high, and the viscosity (μ) of the oil of the refrigerator contained in this discharged gas refrigerant becomes low. Thus, the flow rate (Q) of the fluid flowing from the capillary tube N to the low pressure chamber K becomes large.
【0005】しかも、この運転領域のときにおいては、
冷媒循環量が少なくなり、このため前記圧縮要素Dに持
ち運ばれる油量も少なくなるのである。従って、前記運
転領域においては、前記圧縮要素Dから吐出される吐出
ガス冷媒と共に前記高圧室I内に持ち運ばれる冷凍機油
の量が少ないにもかかわらず、前記キャピラリーチュー
ブNを流れる流体の流量は計算上かなり多くなるのであ
るから、前記油戻し通路Pから冷凍機油のみならず、こ
の油と共に多くの吐出ガス冷媒が前記低圧室Kに戻され
てしまうことになる。この結果、前記低圧室Kへの吐出
ガス冷媒の流入により、この低圧室K内の温度が高くな
り、吸入過熱を招き、容積効率を悪くして性能低下が生
ずるだけでなく、吐出ガス温度の上昇を招き、冷凍機油
が劣化したりして、信頼性の低下に至ってしまう問題が
あった。Moreover, in this operating range,
The circulation amount of the refrigerant is reduced, so that the amount of oil carried to the compression element D is also reduced. Therefore, in the operating region, the flow rate of the fluid flowing through the capillary tube N is small even though the amount of the refrigerating machine oil carried into the high pressure chamber I together with the discharge gas refrigerant discharged from the compression element D is small. Since it is considerably large in the calculation, not only the refrigerating machine oil but also a large amount of the discharged gas refrigerant is returned to the low pressure chamber K from the oil return passage P together with this oil. As a result, the flow of the discharged gas refrigerant into the low pressure chamber K raises the temperature in the low pressure chamber K, which causes suction overheating, which deteriorates the volumetric efficiency and deteriorates the performance. There is a problem that the temperature rises and the refrigerating machine oil deteriorates, leading to a decrease in reliability.
【0006】この現象は、冷凍機において、現在用いら
れている現行冷媒(例えばR22)でも生ずるのである
が、差圧が大きく吐出ガス温度が高くなるR32系の代
替冷媒においては、より顕著に現れるのである。This phenomenon occurs even in the current refrigerant (for example, R22) currently used in the refrigerator, but it becomes more remarkable in the alternative refrigerant of R32 system, which has a large differential pressure and a high discharge gas temperature. Of.
【0007】本発明は、以上の問題に鑑みて成したもの
で、その目的は、圧縮機の運転中に高圧室と低圧室との
差圧が大きくなったり、または、高圧室の温度が高くな
ったときには、油戻し通路を閉鎖して前記高圧室から低
圧室への吐出ガス流体の戻りを阻止して、吐出ガス流体
の温度上昇による油の劣化を防止して、圧縮機の信頼性
を向上できるスクロール圧縮機を提供することにある。The present invention has been made in view of the above problems, and an object thereof is to increase the differential pressure between the high pressure chamber and the low pressure chamber during operation of the compressor, or to increase the temperature of the high pressure chamber. When this happens, the oil return passage is closed to prevent the discharge gas fluid from returning from the high pressure chamber to the low pressure chamber, preventing the oil from deteriorating due to the rise in the temperature of the discharge gas fluid, and improving the reliability of the compressor. It is to provide a scroll compressor that can be improved.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、ケーシング1に第1及び第
2スクロール3,4をもつ圧縮要素2を内装し、この圧
縮要素2の一側方に、前記圧縮要素2の吐出口31及び
吐出管11が開口する高圧室12を、他方側に、吸入管
13が開口する低圧室14を形成し、前記高圧室12と
低圧室14との間に、前記高圧室12に溜る油を前記低
圧室14に回収する油戻し通路7を設けたスクロール圧
縮機において、前記油戻し通路7に、前記高圧室12と
低圧室14との高低差圧が所定値以下のとき開動作して
前記油戻し通路7を開路し、前記高低差圧が前記所定値
より大きくなったときに閉動作して前記油戻し通路7を
閉路する差圧動作弁8を設けたのである。In order to achieve the above-mentioned object, the invention according to claim 1 is such that a casing 1 is internally provided with a compression element 2 having first and second scrolls 3 and 4, and this compression element 2 is provided. A high pressure chamber 12 in which the discharge port 31 and the discharge pipe 11 of the compression element 2 are opened is formed on one side, and a low pressure chamber 14 in which the suction pipe 13 is opened is formed on the other side. In the scroll compressor, which is provided with an oil return passage 7 for recovering the oil accumulated in the high pressure chamber 12 to the low pressure chamber 14 between the high pressure chamber 12 and the low pressure chamber 14, A differential pressure that opens to open the oil return passage 7 when the height differential pressure is less than or equal to a predetermined value, and closes to close the oil return passage 7 when the height differential pressure exceeds the predetermined value. The operation valve 8 is provided.
【0009】また、請求項2記載の発明は、差圧動作弁
8を、高圧室12と低圧室14との連通路81に摺動可
能に内装され、一端側が高圧室12に開口し、他端側が
低圧室14に開口する油戻し通路7を有するプランジャ
ー83と、このプランジャー83を高圧室12側に付勢
するバネ84とにより構成し、前記プランジャー83に
おける油戻し通路7の低圧室14側に、該油戻し通路7
を前記低圧室14に開口する開口部72a,72b,7
2cを前記プランジャー83の摺動方向にそって複数形
成して、前記プランジャー83の摺動に伴って前記開口
部72a,72b,72cを順次開閉するごとく成した
のである。According to the second aspect of the present invention, the differential pressure operation valve 8 is slidably installed in the communication passage 81 between the high pressure chamber 12 and the low pressure chamber 14, one end of which opens to the high pressure chamber 12, A plunger 83 having an oil return passage 7 whose end opens into the low pressure chamber 14 and a spring 84 for urging the plunger 83 toward the high pressure chamber 12 are used to reduce the low pressure of the oil return passage 7 in the plunger 83. The oil return passage 7 is provided on the chamber 14 side.
Opening 72a, 72b, 7 for opening the low pressure chamber 14
A plurality of 2c are formed along the sliding direction of the plunger 83, and the openings 72a, 72b, 72c are sequentially opened and closed as the plunger 83 slides.
【0010】また、請求項3記載の発明は、ケーシング
1に第1及び第2スクロール3,4をもつ圧縮要素2を
内装し、この圧縮要素2の一側方に、前記圧縮要素2の
吐出口31及び吐出管11が開口する高圧室12を、他
方側に、吸入管13が開口する低圧室14を形成し、前
記高圧室12と低圧室14との間に、前記高圧室12に
溜る油を前記低圧室14に回収する油戻し通路7を設け
たスクロール圧縮機において、前記油戻し通路7に、前
記高圧室12の温度が所定値以下のとき開動作して前記
油戻し通路7を開路し、前記温度が前記所定値より大き
くなったときに閉動作して前記油戻し通路7を閉路する
熱応力弁9を設けたのである。According to the third aspect of the present invention, a casing 1 is internally provided with a compression element 2 having first and second scrolls 3 and 4, and one side of the compression element 2 discharges the compression element 2. A high-pressure chamber 12 with an outlet 31 and a discharge pipe 11 is formed, and a low-pressure chamber 14 with an intake pipe 13 is formed on the other side, and is stored in the high-pressure chamber 12 between the high-pressure chamber 12 and the low-pressure chamber 14. In a scroll compressor provided with an oil return passage 7 for collecting oil in the low pressure chamber 14, the oil return passage 7 is opened to open the oil return passage 7 when the temperature of the high pressure chamber 12 is below a predetermined value. A thermal stress valve 9 is provided which opens the circuit and closes the oil return passage 7 when the temperature becomes higher than the predetermined value.
【0011】[0011]
【作用】請求項1記載の発明では、前記油戻し通路7に
前記差圧動作弁8を設けるから、前記高圧室12と低圧
室14の差圧が所定値以下のときには、前記油戻し通路
7を開路して、前記高圧室12内に溜る油を前記低圧室
14に回収し、該低圧室14内の油の減少を防止できな
がら、前記高圧室12と低圧室14の差圧が所定値より
大きくなったときには、前記油戻し通路7を閉鎖し、前
記高圧室12から前記低圧室14へ吐出ガス流体が流入
するのを阻止することができる。従って、前記差圧が大
きくなる運転領域においても、吐出ガス流体が前記低圧
室14に流れ込むことがないので、吸入ガスが過熱され
て容積効率が低下するのを回避できるし、また、前記高
圧室12へ吐出される吐出ガス流体の温度が異常に高く
なるのを防止でき、吐出ガス温度上昇による油の劣化も
防げるのであって、圧縮機の運転条件のいかんに拘ら
ず、圧縮機の信頼性を向上できるのである。According to the first aspect of the invention, since the differential pressure operating valve 8 is provided in the oil return passage 7, when the differential pressure between the high pressure chamber 12 and the low pressure chamber 14 is less than a predetermined value, the oil return passage 7 Is opened to collect the oil accumulated in the high pressure chamber 12 in the low pressure chamber 14 and prevent the oil in the low pressure chamber 14 from decreasing, while the differential pressure between the high pressure chamber 12 and the low pressure chamber 14 is a predetermined value. When it becomes larger, the oil return passage 7 can be closed to prevent the discharge gas fluid from flowing from the high pressure chamber 12 to the low pressure chamber 14. Therefore, even in the operating region where the differential pressure becomes large, the discharge gas fluid does not flow into the low pressure chamber 14, so that it is possible to avoid the intake gas from being overheated and the volumetric efficiency lowering. It is possible to prevent the temperature of the discharge gas fluid discharged to 12 from becoming abnormally high, and to prevent the deterioration of oil due to the rise in the discharge gas temperature. Therefore, regardless of the operating conditions of the compressor, the reliability of the compressor is improved. Can be improved.
【0012】また、請求項2記載の発明では、差圧動作
弁8を、前記プランジャー83と、このプランジャー8
3を高圧室12側に付勢するバネ84とにより構成し、
前記プランジャー83における油戻し通路7の低圧室1
4側に、該油戻し通路7を前記低圧室14に開口する開
口部72a,72b,72cを前記プランジャー83の
摺動方向にそって複数形成して、前記プランジャー83
の摺動に伴って前記開口部72a,72b,72cを順
次開閉するごとく成したから、前記差圧動作弁8を、前
記プランジャー83とバネ84から構成する簡単な構造
にできながら、高低差圧が所定値に至る過程において、
高低差圧の増加に応じた前記油戻し通路7の流量制御を
行えるのであって、性能低下及び油の劣化の問題をより
高精度に解消できる。According to the second aspect of the present invention, the differential pressure operation valve 8 is provided with the plunger 83 and the plunger 8
3 by a spring 84 that biases the high pressure chamber 12 side,
Low pressure chamber 1 of oil return passage 7 in the plunger 83
On the fourth side, a plurality of openings 72a, 72b, 72c that open the oil return passage 7 to the low pressure chamber 14 are formed along the sliding direction of the plunger 83, and the plunger 83
Since the opening portions 72a, 72b, 72c are sequentially opened and closed in accordance with the sliding of the differential pressure operation valve 8, the differential pressure operation valve 8 can be formed into a simple structure including the plunger 83 and the spring 84, and the height difference can be increased. In the process of pressure reaching a predetermined value,
Since the flow rate of the oil return passage 7 can be controlled according to the increase of the high and low differential pressure, the problems of performance deterioration and oil deterioration can be solved with higher accuracy.
【0013】また、請求項3記載の発明では、前記高圧
室12内の温度が所定値以下のときには、前記油戻し通
路7を開路して、前記高圧室12内に溜る油を前記低圧
室14に回収し、該低圧室14内の油の減少を防止でき
ながら、前記高圧室12の温度が所定値より高くなった
ときには、前記油戻し通路7を閉鎖して、前記高圧室1
2から前記低圧室14へ吐出ガス流体が流れ込むのを阻
止することができる。従って、前記高圧室12の温度に
反応して動作する前記熱応力弁9を前記油戻し通路7に
配設するだけで、前記高圧室12内の温度が高くなる運
転領域において、吐出ガスが前記低圧室14へ流れ込む
のを防止できるので、吸入ガスが過熱されて容積効率が
低下するのを回避できるし、前記高圧室12へ吐出され
る吐出ガスの温度が異常に高くなるのを防止でき、吐出
ガス温度上昇による油の劣化も防げるのである。Further, according to the third aspect of the invention, when the temperature in the high pressure chamber 12 is below a predetermined value, the oil return passage 7 is opened to collect the oil accumulated in the high pressure chamber 12 from the low pressure chamber 14. When the temperature of the high-pressure chamber 12 becomes higher than a predetermined value while the oil in the low-pressure chamber 14 is prevented from decreasing, the oil return passage 7 is closed to close the high-pressure chamber 1.
It is possible to prevent the discharge gas fluid from flowing into the low pressure chamber 14 from 2. Therefore, by merely disposing the thermal stress valve 9 which operates in response to the temperature of the high pressure chamber 12 in the oil return passage 7, the discharge gas is discharged in the operating region where the temperature in the high pressure chamber 12 becomes high. Since it can be prevented from flowing into the low pressure chamber 14, it is possible to prevent the intake gas from being overheated and the volumetric efficiency being lowered, and to prevent the temperature of the discharge gas discharged to the high pressure chamber 12 from becoming abnormally high. It is also possible to prevent the deterioration of oil due to the rise in discharge gas temperature.
【0014】[0014]
【実施例】第1実施例を図1乃至図5に基づいて説明す
る。図1に示すスクロール圧縮機は、底部に油溜めを備
える密閉ケーシング1の内部上部側に圧縮要素2を、ケ
ーシング1内下部側にモータMを内装しており、前記圧
縮要素2は、固定スクロールとなる第1スクロール3
と、可動スクロールとなる第2スクロール4とから成
り、これらスクロール3,4を架構5を介して上下対向
状に配設すると共に、前記第2スクロール4を前記モー
タMの駆動軸15に連動させる一方、前記ケーシング1
の内部で前記第1スクロール3の上部側に仕切体6を配
設して、該仕切体6の上部側に前記第1スクロール3の
吐出口31が開放し、かつ、吐出冷媒を外部に吐出する
吐出管11を開口する高圧室12と、吸入管13が開口
する低圧室14とに区画し、この低圧室14に前記モー
タMを配設したものである。EXAMPLE A first example will be described with reference to FIGS. 1 to 5. The scroll compressor shown in FIG. 1 has a hermetic casing 1 having an oil sump at the bottom and a compression element 2 on the upper inner side and a motor M on the lower inner side of the casing 1. The compression element 2 is a fixed scroll. First scroll 3
And a second scroll 4 serving as a movable scroll. The scrolls 3 and 4 are arranged vertically opposite to each other via a frame 5, and the second scroll 4 is interlocked with the drive shaft 15 of the motor M. On the other hand, the casing 1
The partition 6 is disposed inside the first scroll 3 on the upper side thereof, the discharge port 31 of the first scroll 3 is opened on the upper side of the partition 6, and the discharge refrigerant is discharged to the outside. The discharge pipe 11 is opened into a high pressure chamber 12 and the suction pipe 13 is opened into a low pressure chamber 14, and the low pressure chamber 14 is provided with the motor M.
【0015】従って、前記モータMの駆動に伴う前記駆
動軸15の回転により前記第2スクロール4が前記第1
スクロール3に対して公転駆動し、この公転駆動で前記
低圧室14内の低圧ガスがこれら各スクロール3,4で
形成される圧縮室内に吸入され、この吸入されたガスが
圧縮されて、この圧縮ガスが前記吐出口31から前記高
圧室12に吐出され、前記吐出管11から外部に吐出さ
れるのである。Therefore, the rotation of the drive shaft 15 accompanying the drive of the motor M causes the second scroll 4 to move to the first scroll.
The scroll 3 is revolved and driven, and by this revolving drive, the low-pressure gas in the low-pressure chamber 14 is sucked into the compression chamber formed by these scrolls 3 and 4, and the sucked gas is compressed and compressed. The gas is discharged from the discharge port 31 to the high pressure chamber 12, and is discharged to the outside from the discharge pipe 11.
【0016】しかして、第1実施例では、以上のスクロ
ール圧縮機において、前記高圧室12と低圧室14との
間に、前記高圧室12に溜る油を前記低圧室14に回収
する油戻し通路7を形成し、この油戻し通路7に、前記
高圧室12と低圧室14との高低差圧が所定値以下のと
き開動作して前記油戻し通路7を開路し、前記高低差圧
が前記所定値より大きくなったときに閉動作して前記油
戻し通路7を閉路する差圧動作弁8を設けたのである。In the scroll compressor of the first embodiment, however, the oil return passage for recovering the oil accumulated in the high pressure chamber 12 to the low pressure chamber 14 is provided between the high pressure chamber 12 and the low pressure chamber 14. 7, the oil return passage 7 is opened to open the oil return passage 7 when the pressure difference between the high pressure chamber 12 and the low pressure chamber 14 is equal to or lower than a predetermined value. The differential pressure operating valve 8 is provided which closes the oil return passage 7 when it becomes larger than a predetermined value.
【0017】即ち、具体的には、図1に示すように、前
記仕切体6、第1スクロール3、及び、架構5に、前記
高圧室12と低圧室14とを連通する連通路81を連続
的に上下方向に形成するのであって、該連通路81の上
端部を前記高圧室12に開口させる一方、下端部は閉鎖
し、前記架構5における側面に、前記連通路81の下部
を前記低圧室14に開放する開放部82を形成するので
ある。そして、前記連通路81内に、軸方向に延びる油
戻し通路7を有するプランジャー83を摺動可能に内装
すると共に、該プランジャー83の下端部に、このプラ
ンジャー83を高圧室12側に付勢するバネ84を内装
して、前記プランジャー83とバネ84とにより前記差
圧動作弁8を構成するのである。さらに、前記プランジ
ャー83に形成した前記油戻し通路7は、その上端開口
部を前記高圧室12に開口させると共に、前記油戻し通
路7の下端側を、該プランジャー83の側面に向かって
複数本に分岐して、これら分岐路71a,71b,71
cを前記プランジャー83の側面に摺動方向にそって開
口させ、前記プランジャー83を前記連通路81に内装
したときに、前記開口部72a,72b,72cが前記
架構5に形成する連通路81の開放部82から前記低圧
室14内に開口するようにしており、前記各開口部72
a,72b,72cは、前記プランジャー83の下方へ
の摺動に伴って、前記開放部82から下方に向かって移
動することにより、下部側開口部72cから順次閉鎖さ
れ、また、全ての開口部72a,72b,72cが閉鎖
された状態のときに、プランジャー83の上方への摺動
に伴って、上部側開口部72aから順次開放するごとく
成している。That is, specifically, as shown in FIG. 1, the partition body 6, the first scroll 3, and the frame 5 are connected to each other through a communication passage 81 for communicating the high pressure chamber 12 and the low pressure chamber 14. The upper end portion of the communication passage 81 is opened to the high-pressure chamber 12 while the lower end portion is closed, and the lower portion of the communication passage 81 is formed on the side surface of the frame 5 by the low pressure. The opening portion 82 that opens to the chamber 14 is formed. A plunger 83 having an oil return passage 7 extending in the axial direction is slidably provided in the communication passage 81, and the plunger 83 is provided at the lower end of the plunger 83 toward the high pressure chamber 12 side. The biasing spring 84 is built in, and the differential pressure operating valve 8 is configured by the plunger 83 and the spring 84. Further, the oil return passage 7 formed in the plunger 83 has an upper end opening to the high pressure chamber 12, and a plurality of lower ends of the oil return passage 7 are directed toward the side surface of the plunger 83. Branch into a book and branch these branches 71a, 71b, 71
When c is opened along the sliding direction on the side surface of the plunger 83 and the plunger 83 is installed in the communication passage 81, the communication passage formed by the openings 72a, 72b, 72c in the frame 5. The open portion 82 of the opening 81 opens into the low pressure chamber 14, and each of the opening portions 72
The a, 72b, and 72c move downward from the opening portion 82 in accordance with the downward sliding of the plunger 83, so that they are sequentially closed from the lower side opening portion 72c, and all the opening portions are closed. When the portions 72a, 72b, 72c are closed, the upper opening 72a is sequentially opened as the plunger 83 slides upward.
【0018】次に、第1実施例の作用について説明する
と、まず、前記高圧室12と前記低圧室14との差圧が
小さく、該差圧が所定値以下のときには、図2に示すよ
うに、前記プランジャー83は、前記バネ84の付勢力
で高圧室12側に移動し、前記油戻し通路7の各分岐路
71a,71b,71cが、前記連通路81の開放部8
2から全て前記低圧室14内に開口するのであり、この
とき、前記高圧室12内の油が前記油戻し通路7から前
記低圧室14内に回収されるのであって、前記油戻し通
路7からの戻し量は100%となる。Next, the operation of the first embodiment will be described. First, when the differential pressure between the high pressure chamber 12 and the low pressure chamber 14 is small and the differential pressure is below a predetermined value, as shown in FIG. The plunger 83 moves to the high pressure chamber 12 side by the urging force of the spring 84, and the branch passages 71a, 71b, 71c of the oil return passage 7 are connected to the open portion 8 of the communication passage 81.
The oil in the high pressure chamber 12 is recovered from the oil return passage 7 into the low pressure chamber 14, and the oil in the high pressure chamber 12 is recovered from the oil return passage 7. The amount returned is 100%.
【0019】次に、前記差圧が所定値よりやや大きくな
ってきたときには、図3に示すように、前記プランジャ
ー83は、前記高圧室12内の圧力が吐出ガスにより前
記バネ84の付勢力よりやや大きくなって、前記低圧室
14側に押されて下方に摺動し、前記油戻し通路7の各
分岐路71a,71b,71cの下方側が閉鎖されて、
前記油戻し通路7から前記低圧室14に回収される量が
減少するのであって、前記油戻し通路7からの戻し量を
30〜60%にできるのである。Next, when the differential pressure becomes slightly larger than a predetermined value, as shown in FIG. 3, the plunger 83 causes the pressure in the high pressure chamber 12 to urge the spring 84 by the discharge gas. It becomes slightly larger, is pushed to the side of the low pressure chamber 14 and slides downward, and the lower side of each branch passage 71a, 71b, 71c of the oil return passage 7 is closed,
Since the amount recovered from the oil return passage 7 to the low pressure chamber 14 is reduced, the return amount from the oil return passage 7 can be set to 30 to 60%.
【0020】さらに、前記差圧がさらに大きくなって、
所定値より大きくなったときには、図4に示すように、
前記プランジャー83は、前記高圧室12内の圧力がさ
らに大きくなって前記バネ84の付勢力より大きくな
り、前記低圧室14側にさらに押されて下方に摺動し、
前記油戻し通路7の各分岐路71a,71b,71cの
全てが閉鎖されて、前記油戻し通路7から前記低圧室1
4への油の回収ができなくなり、前記油戻し通路7から
の戻し量を0%にできるのである。Further, the differential pressure is further increased,
When it becomes larger than the predetermined value, as shown in FIG.
The pressure in the high-pressure chamber 12 becomes larger and the plunger 83 becomes larger than the biasing force of the spring 84, and the plunger 83 is further pushed by the low-pressure chamber 14 side and slides downward.
All of the respective branch passages 71a, 71b, 71c of the oil return passage 7 are closed, and the low pressure chamber 1 passes through the oil return passage 7 from the oil return passage 7.
The oil cannot be recovered to 4 and the return amount from the oil return passage 7 can be set to 0%.
【0021】ところで、第1実施例の圧縮機を冷凍装置
に適用する場合、図9に示した運転範囲において、前記
高圧室12と低圧室14の差圧が所定値以下となる運転
領域では、前記油戻し通路7を流れる流量は前記した数
1から明らかな通り理論上少なく、また、冷媒循環量も
多いため前記高圧室12に持ち運ばれる油の量も比較的
多くなるのであるが、このとき、前記差圧動作弁8は開
放され、前記油戻し通路7を流れる油戻し量が100%
となって、前記高圧室12内に溜る油を前記低圧室14
に回収することができるから、低圧室14内の油の減少
を防止できるのである。また、前記高圧室12と低圧室
14の差圧が所定値より大きくなる運転領域では、前記
油戻し通路7を流れる流量が多くなり、また、冷媒循環
量が少なくなって前記高圧室12内に持ち運ばれる油の
量も少なくなるのであるが、このときには、前記差圧動
作弁8が閉鎖され、前記油戻し通路7の戻し量を0%に
できるから、前記高圧室12から前記低圧室14へ吐出
ガスが流れ込むのを阻止することができるのである。従
って、前記差圧が大きくなっても、吐出ガスが前記低圧
室14に流入することがないので、吸入ガスが過熱され
て容積効率が低下したり、前記高圧室12へ吐出される
吐出ガス温度が異常に高くなるのを防止できるし、吐出
ガス温度上昇による油の劣化も防げるのであり、圧縮機
の運転条件のいかんに拘らず、圧縮機の信頼性を向上で
きるのである。By the way, when the compressor of the first embodiment is applied to the refrigerating apparatus, in the operating range shown in FIG. 9, in the operating region where the differential pressure between the high pressure chamber 12 and the low pressure chamber 14 is below a predetermined value, The flow rate flowing through the oil return passage 7 is theoretically small, as is clear from the above-mentioned equation 1, and the amount of oil carried to the high-pressure chamber 12 is relatively large because the refrigerant circulation amount is large. At this time, the differential pressure operation valve 8 is opened and the oil return amount flowing through the oil return passage 7 is 100%.
Therefore, the oil accumulated in the high pressure chamber 12 is transferred to the low pressure chamber 14
Therefore, the oil in the low-pressure chamber 14 can be prevented from decreasing. Further, in an operating region where the differential pressure between the high pressure chamber 12 and the low pressure chamber 14 is larger than a predetermined value, the flow rate of the oil returning passage 7 increases and the refrigerant circulation amount decreases, so The amount of oil to be carried also decreases, but at this time, the differential pressure operation valve 8 is closed and the return amount of the oil return passage 7 can be set to 0%. Therefore, the high pressure chamber 12 to the low pressure chamber 14 It is possible to prevent the discharge gas from flowing in. Therefore, even if the differential pressure becomes large, the discharge gas does not flow into the low pressure chamber 14, so that the suction gas is overheated and the volumetric efficiency is lowered, or the temperature of the discharge gas discharged to the high pressure chamber 12 is decreased. Can be prevented from becoming abnormally high, and deterioration of oil due to a rise in discharge gas temperature can be prevented, so that the reliability of the compressor can be improved regardless of the operating conditions of the compressor.
【0022】しかも、前記差圧動作弁8は、前記プラン
ジャー83とバネ84から構成する簡単な構造にできな
がら、高低差圧が所定値に至る過程において、高低差圧
の増加に応じた前記油戻し通路7の流量制御が行え、よ
り高精度に性能低下及び油劣化の問題を解消できるので
ある。In addition, the differential pressure operation valve 8 can have a simple structure composed of the plunger 83 and the spring 84, but in the process of reaching the predetermined value, the differential pressure operation valve 8 responds to the increase in the differential pressure. The flow rate of the oil return passage 7 can be controlled, and the problems of performance deterioration and oil deterioration can be solved with higher accuracy.
【0023】また、前記プランジャー83に形成した油
戻し通路7の各分岐路71a,71b,71cは、その
トータル断面積が、図5に示すように、油戻し通路7の
分岐前における断面積と等しくなるようにして、前記各
分岐路71a,71b,71cの全てが前記低圧室14
に開口したときに、油戻し通路7の全量が、前記低圧室
14に流出されるようにするのが好ましい。The total cross-sectional area of each of the branch passages 71a, 71b, 71c of the oil return passage 7 formed in the plunger 83 is as shown in FIG. So that all of the branch passages 71a, 71b, 71c are equal to
It is preferable that the entire amount of the oil return passage 7 is discharged to the low pressure chamber 14 when the oil return passage 7 is opened.
【0024】尚、前記各分岐路71a,71b,71c
は、前記実施例では3本形成したが、油戻し量の制御に
合わせて本数を決めればよく、本数を増やすことによ
り、油戻し量を運転条件に合わせてより細かく制御でき
るのである。Incidentally, each of the branch paths 71a, 71b, 71c
In the above-mentioned embodiment, three oil tanks are formed. However, the number of oil tanks may be determined in accordance with the control of the oil return quantity. By increasing the number of oil tanks, the oil return quantity can be controlled more finely according to the operating conditions.
【0025】次に、第2実施例について図6乃至図8に
基づいて説明する。図6乃至図8に示した第2実施例の
油戻し通路7は、前記仕切体6、第1スクロール3、及
び、架構5に、連続状に設ける連通路81と、この連通
路81に挿通するキャピラリーチューブ73とにより形
成したもので、該キャピラリーチューブ73の上部側
は、前記連通路81における前記高圧室12側に配設し
たシール部材74を介して固定している。そして、以上
のように構成する前記油戻し通路7の前記高圧室12へ
の開口側には、前記高圧室12の温度が所定値以下のと
き、前記キャピラリーチューブ73の上端開口部から離
れて前記油戻し通路7を開路し、前記温度が前記所定値
より高くなったとき、前記キャピラリーチューブ73の
上端開口部に着座して前記油戻し通路7を閉路する熱応
力弁9を設けるのである。第2実施例に用いる前記熱応
力弁9は、線膨張係数の異なる二枚の金属箔を重ね合わ
せて、所定の温度より高くなったときに変形するバイメ
タルから構成したものであって、図7及び図8に示すよ
うに、前記油戻し通路7の高圧室12への開口部81a
の周りに、該開口部81aより径が大きい段部92を形
成して、該段部92に、前記熱応力弁9の外周を複数の
ピン93により前記段部92の上面との間に隙間をおい
て固定するのである。Next, a second embodiment will be described with reference to FIGS. The oil return passage 7 of the second embodiment shown in FIGS. 6 to 8 is connected to the partition body 6, the first scroll 3 and the frame 5 in a continuous manner and is inserted into the communication passage 81. The capillary tube 73 is fixed to the upper side of the capillary tube 73 via a seal member 74 arranged on the high pressure chamber 12 side of the communication passage 81. Then, on the opening side of the oil return passage 7 configured as described above to the high pressure chamber 12, when the temperature of the high pressure chamber 12 is a predetermined value or less, the distance from the upper end opening of the capillary tube 73 is increased. A thermal stress valve 9 is provided which opens the oil return passage 7 and sits at the upper end opening of the capillary tube 73 to close the oil return passage 7 when the temperature becomes higher than the predetermined value. The thermal stress valve 9 used in the second embodiment is composed of two metal foils having different linear expansion coefficients, and is made of a bimetal that deforms when the temperature exceeds a predetermined temperature. And as shown in FIG. 8, the opening 81a of the oil return passage 7 to the high pressure chamber 12
A step portion 92 having a diameter larger than that of the opening 81a is formed around, and a gap between the step stress 92 and the upper surface of the step portion 92 is formed on the outer circumference of the thermal stress valve 9 by a plurality of pins 93. It is fixed by setting.
【0026】次に、第2実施例の作用について説明する
と、まず、前記高圧室12の温度が所定値以下のときに
は、図7に示すように、前記熱応力弁9は、変形するこ
となく水平状に維持され、前記キャピラリーチューブ7
3の上端開口部から離反するのであって、前記キャピラ
リーチューブ73の開口部は、前記隙間を介して前記高
圧室12に開口することになる。従って、前記高圧室1
2に溜る油は、前記隙間を通って、前記シール部材74
の上部に導入され、斯く導入された油が前記キャピラリ
ーチューブ73に流入して前記低圧室14へと回収され
るのであって、前記熱応力弁9の開放時、前記油戻し通
路7からの戻し量を100%にできるのである。このと
き、前記キャピラリーチューブ73の開口部の上方にバ
イメタルから成る熱応力弁9が配設されているので、前
記高圧室12が吐出ガスで掻き乱された状態となって、
油に吐出ガスが混入されやすくなっていても、前記キャ
ピラリーチューブ73へは、前記熱応力弁9と前記段部
92との間の隙間を通過した後、流入することになるの
で、吐出ガスが混入した油が直接前記キャピラリーチュ
ーブ73へ流入するのを有効に防止できるのである。Next, the operation of the second embodiment will be described. First, when the temperature of the high pressure chamber 12 is below a predetermined value, as shown in FIG. 7, the thermal stress valve 9 is horizontal without deformation. The capillary tube 7
3, the opening of the capillary tube 73 opens into the high pressure chamber 12 through the gap. Therefore, the high pressure chamber 1
The oil collected in 2 passes through the gap and passes through the seal member 74.
The oil introduced into the upper part of the oil return passage 7 flows into the capillary tube 73 and is recovered into the low pressure chamber 14. When the thermal stress valve 9 is opened, the oil is returned from the oil return passage 7. The amount can be 100%. At this time, since the thermal stress valve 9 made of bimetal is arranged above the opening of the capillary tube 73, the high pressure chamber 12 is disturbed by the discharge gas,
Even if the discharge gas is easily mixed in the oil, the discharge gas will flow into the capillary tube 73 after passing through the gap between the thermal stress valve 9 and the step portion 92. It is possible to effectively prevent the mixed oil from directly flowing into the capillary tube 73.
【0027】また、前記高圧室12の温度が所定値より
高くなったときには、図8に示すように、前記熱応力弁
9の中央部が下方へ向かって突出変形して、前記キャピ
ラリーチューブ73の上端開口部を閉鎖するので、該キ
ャピラリーチューブ73から前記低圧室14への流れが
阻止され、前記油戻し通路7からの戻し量を0%にでき
るのである。When the temperature of the high pressure chamber 12 becomes higher than a predetermined value, as shown in FIG. 8, the central portion of the thermal stress valve 9 is deformed so as to project downward and the capillary tube 73 of the capillary tube 73 is deformed. Since the upper end opening is closed, the flow from the capillary tube 73 to the low pressure chamber 14 is blocked, and the return amount from the oil return passage 7 can be made 0%.
【0028】以上説明したように、第2実施例において
は、前記高圧室12の温度に基づいて、前記油戻し通路
7の開閉を行うようにしているのであって、前記高圧室
12内の温度が所定値以下のときには、前記熱応力弁9
を開放して、前記油戻し通路7を流れる油戻し量を10
0%にし、前記高圧室12内に溜る油を前記低圧室14
に回収することができ、低圧室14内の油の減少を防止
できるし、また、前記高圧室12の温度が所定値より高
くなったときには、前記熱応力弁9を閉鎖して、前記油
戻し通路7の戻し量を0%にし、前記高圧室12から前
記低圧室14への吐出ガスの戻りを阻止することができ
るのである。従って、前記高圧室12の温度に反応して
動作する前記熱応力弁9を前記油戻し通路7の前記高圧
室12側開口部に配設するだけで、前記高圧室12内の
温度が高くなったとき、吐出ガスが前記低圧室14へ流
れ込むのを防止できるのであって、第1実施例と同様、
吸入ガス過熱を抑制して容積効率の低下を防止できる
し、前記高圧室12へ吐出される吐出ガス温度の上昇を
防止でき、吐出ガス温度上昇による油の劣化も防げるの
である。As described above, in the second embodiment, the oil return passage 7 is opened and closed based on the temperature of the high pressure chamber 12, and the temperature inside the high pressure chamber 12 is increased. Is less than a predetermined value, the thermal stress valve 9
Is opened to reduce the amount of oil returned to the oil return passage 7 to 10
The oil accumulated in the high pressure chamber 12 is set to 0% and the low pressure chamber 14
It is possible to prevent the oil in the low pressure chamber 14 from decreasing, and when the temperature of the high pressure chamber 12 becomes higher than a predetermined value, the thermal stress valve 9 is closed to return the oil. The return amount of the passage 7 can be set to 0% to prevent the return of the discharge gas from the high pressure chamber 12 to the low pressure chamber 14. Therefore, only by disposing the thermal stress valve 9 that operates in response to the temperature of the high pressure chamber 12 at the opening of the oil return passage 7 on the high pressure chamber 12 side, the temperature inside the high pressure chamber 12 becomes high. At this time, the discharge gas can be prevented from flowing into the low-pressure chamber 14, and like the first embodiment,
It is possible to prevent the intake gas from overheating and prevent a decrease in volumetric efficiency, to prevent the temperature of the discharge gas discharged to the high-pressure chamber 12 from rising, and to prevent the deterioration of oil due to the rise in the discharge gas temperature.
【0029】尚、前記第2実施例では、前記熱応力弁9
としてバイメタルを使用したが、形状記憶合金により形
成してもよい。In the second embodiment, the thermal stress valve 9 is used.
Although a bimetal is used as the above, it may be formed of a shape memory alloy.
【0030】[0030]
【発明の効果】以上説明したように、請求項1記載の発
明によれば、前記油戻し通路7に、前記高圧室12と低
圧室14との高低差圧が所定値以下のとき開動作して前
記油戻し通路7を開路し、前記高低差圧が前記所定値よ
り大きくなったときに閉動作して前記油戻し通路7を閉
路する差圧動作弁8を設けたから、前記高圧室12と低
圧室14の差圧が所定値以下のときには、前記油戻し通
路7を開路して、前記高圧室12内に溜る油を前記低圧
室14に回収し、該低圧室14内の油の減少を防止でき
ながら、前記高圧室12と低圧室14の差圧が所定値よ
り大きくなったときには、前記油戻し通路7を閉路し
て、前記高圧室12から前記低圧室14へ吐出ガスが流
れ込むのを阻止することができるのである。従って、前
記差圧が大きくなる運転領域においても、吐出ガス流体
が前記低圧室14に流れ込むことがないので、吸入ガス
が過熱されて容積効率が低下するのを回避できるし、ま
た、前記高圧室12へ吐出される吐出ガス流体の温度が
異常に高くなるのを防止でき、吐出ガス温度上昇による
油の劣化も防げるのであって、圧縮機の運転条件のいか
んに拘らず、圧縮機の信頼性を向上できるのである。As described above, according to the first aspect of the invention, the oil return passage 7 is opened when the pressure difference between the high pressure chamber 12 and the low pressure chamber 14 is less than a predetermined value. Since the oil return passage 7 is opened, the differential pressure operating valve 8 that closes and closes the oil return passage 7 when the height differential pressure becomes larger than the predetermined value is provided. When the differential pressure in the low pressure chamber 14 is equal to or lower than a predetermined value, the oil return passage 7 is opened to collect the oil accumulated in the high pressure chamber 12 in the low pressure chamber 14 to reduce the oil in the low pressure chamber 14. While preventing, when the differential pressure between the high pressure chamber 12 and the low pressure chamber 14 becomes larger than a predetermined value, the oil return passage 7 is closed to prevent discharge gas from flowing from the high pressure chamber 12 to the low pressure chamber 14. It can be stopped. Therefore, even in the operating region where the differential pressure becomes large, the discharge gas fluid does not flow into the low pressure chamber 14, so that it is possible to avoid the intake gas from being overheated and the volumetric efficiency lowering. It is possible to prevent the temperature of the discharge gas fluid discharged to 12 from becoming abnormally high, and to prevent the deterioration of oil due to the rise in the discharge gas temperature. Therefore, regardless of the operating conditions of the compressor, the reliability of the compressor is improved. Can be improved.
【0031】また、請求項2記載の発明によれば、差圧
動作弁8を、前記プランジャー83と、このプランジャ
ー83を高圧室12側に付勢するバネ84とにより構成
し、前記プランジャー83における油戻し通路7の低圧
室14側に、該油戻し通路7を前記低圧室14に開口す
る開口部72a,72b,72cを前記プランジャー8
3の摺動方向にそって複数形成して、前記プランジャー
83の摺動に伴って前記開口部72a,72b,72c
を順次開閉するごとく成したから、前記差圧動作弁8
を、前記プランジャー83とバネ84から構成する簡単
な構造にできながら、高低差圧が所定値に至る過程にお
いて、高低差圧の増加に応じた前記油戻し通路7の流量
制御を行えるのであって、性能低下及び油の劣化の問題
をより高精度に解消できる。According to the second aspect of the present invention, the differential pressure operation valve 8 is constituted by the plunger 83 and the spring 84 for urging the plunger 83 toward the high pressure chamber 12, and the plan On the side of the low pressure chamber 14 of the oil return passage 7 in the jar 83, openings 72 a, 72 b, 72 c for opening the oil return passage 7 to the low pressure chamber 14 are provided on the plunger 8.
3 are formed along the sliding direction of No. 3, and the openings 72a, 72b, 72c are formed as the plunger 83 slides.
The differential pressure operation valve 8
Although a simple structure including the plunger 83 and the spring 84 can be realized, the flow rate of the oil return passage 7 can be controlled according to the increase in the height differential pressure in the process in which the height differential pressure reaches a predetermined value. As a result, the problems of performance deterioration and oil deterioration can be solved with higher accuracy.
【0032】また、請求項3記載の発明によれば、前記
高圧室12内の温度が所定値以下のときには、前記油戻
し通路7を開路して、前記高圧室12内に溜る油を前記
低圧室14に回収し、該低圧室14内の油の減少を防止
できながら、前記高圧室12の温度が所定値より高くな
ったときには、前記油戻し通路7を閉鎖して、前記高圧
室12から前記低圧室14へ吐出ガス流体が流れ込むの
を阻止することができる。従って、前記高圧室12の温
度に反応して動作する前記熱応力弁9を前記油戻し通路
7に配設するだけで、前記高圧室12内の温度が高くな
る運転領域において、吐出ガスが前記低圧室14へ流れ
込むのを防止できるので、吸入ガスが過熱されて容積効
率が低下するのを回避できるし、前記高圧室12へ吐出
される吐出ガスの温度が異常に高くなるのを防止でき、
吐出ガス温度上昇による油の劣化も防げるのである。According to the third aspect of the present invention, when the temperature in the high pressure chamber 12 is lower than a predetermined value, the oil return passage 7 is opened so that the oil accumulated in the high pressure chamber 12 is kept at the low pressure. When the temperature of the high pressure chamber 12 becomes higher than a predetermined value while the oil in the low pressure chamber 14 is prevented from being reduced while being collected in the chamber 14, the oil return passage 7 is closed to remove the oil from the high pressure chamber 12. It is possible to prevent the discharge gas fluid from flowing into the low pressure chamber 14. Therefore, by merely disposing the thermal stress valve 9 which operates in response to the temperature of the high pressure chamber 12 in the oil return passage 7, the discharge gas is discharged in the operating region where the temperature in the high pressure chamber 12 becomes high. Since it can be prevented from flowing into the low pressure chamber 14, it is possible to prevent the intake gas from being overheated and the volumetric efficiency being lowered, and to prevent the temperature of the discharge gas discharged to the high pressure chamber 12 from becoming abnormally high.
It is also possible to prevent the deterioration of oil due to the rise in discharge gas temperature.
【図1】本発明の第1実施例を示す一部切欠断面図。FIG. 1 is a partially cutaway sectional view showing a first embodiment of the present invention.
【図2】第1実施例における油戻し通路の流量を100
%にしたときの作用説明図。FIG. 2 shows a flow rate of 100 in the oil return passage in the first embodiment.
The action explanatory view when it sets to%.
【図3】第1実施例における油戻し通路の流量を30〜
60%にしたときの作用説明図。FIG. 3 shows a flow rate of the oil return passage of 30 to 30 in the first embodiment.
The action explanatory view when it is set to 60%.
【図4】第1実施例における油戻し通路の流量を0%に
したときの作用説明図。FIG. 4 is an operation explanatory view when the flow rate of the oil return passage in the first embodiment is set to 0%.
【図5】第1実施例における油戻し通路の分岐路の作用
説明図。FIG. 5 is an operation explanatory view of the branch passage of the oil return passage in the first embodiment.
【図6】本発明の第2実施例を示す一部切欠断面図。FIG. 6 is a partially cutaway sectional view showing a second embodiment of the present invention.
【図7】第2実施例における油戻し通路の流量を100
%にしたときの作用説明図。FIG. 7 shows a flow rate of 100 in the oil return passage in the second embodiment.
The action explanatory view when it sets to%.
【図8】第2実施例における油戻し通路の流量を0%に
したときの作用説明図。FIG. 8 is an operation explanatory view when the flow rate of the oil return passage in the second embodiment is set to 0%.
【図9】本発明の圧縮機を適用する冷凍装置の運転範囲
を示す説明図。FIG. 9 is an explanatory diagram showing an operating range of a refrigeration system to which the compressor of the present invention is applied.
【図10】従来の油戻しによる問題点を説明する冷凍装
置の運転範囲を示す説明図。FIG. 10 is an explanatory view showing an operating range of a refrigeration system for explaining problems caused by conventional oil return.
【図11】従来のスクロール圧縮機の断面図。FIG. 11 is a sectional view of a conventional scroll compressor.
1 密閉ケーシング 2 圧縮要素 3 第1スクロール 4 第2スクロール 31 吐出口 11 吐出管 12 高圧室 13 吸入管 14 低圧室 7 油戻し通路 72a,72b,72c 開口部 8 差圧動作弁 81 連通路 83 プランジャー 84 バネ 9 熱応力弁 DESCRIPTION OF SYMBOLS 1 Closed casing 2 Compression element 3 1st scroll 4 2nd scroll 31 Discharge port 11 Discharge pipe 12 High pressure chamber 13 Suction pipe 14 Low pressure chamber 7 Oil return passages 72a, 72b, 72c Opening 8 Differential pressure operation valve 81 Communication passage 83 Plan Jar 84 Spring 9 Thermal stress valve
Claims (3)
ル(3)(4)をもつ圧縮要素(2)を内装し、この圧
縮要素(2)の一側方に、該圧縮要素(2)の吐出口
(31)及び吐出管(11)が開口する高圧室(12)
を、他方側に、吸入管(13)が開口する低圧室(1
4)を形成し、前記高圧室(12)と低圧室(14)と
の間に、前記高圧室(12)に溜る油を前記低圧室(1
4)に回収する油戻し通路(7)を設けたスクロール圧
縮機において、前記油戻し通路(7)に、前記高圧室
(12)と低圧室(14)との高低差圧が所定値以下の
とき開動作して前記油戻し通路(7)を開路し、前記高
低差圧が前記所定値より大きくなったときに閉動作して
前記油戻し通路(7)を閉路する差圧動作弁(8)を設
けていることを特徴とするスクロール圧縮機。1. A casing (1) is internally provided with a compression element (2) having first and second scrolls (3) and (4), and the compression element (2) is provided on one side of the compression element (2). ) Discharge port (31) and discharge pipe (11) open high pressure chamber (12)
On the other side, the low pressure chamber (1
4) is formed, and oil accumulated in the high pressure chamber (12) is formed between the high pressure chamber (12) and the low pressure chamber (14).
In the scroll compressor provided with the oil return passage (7) for collecting in 4), the height difference between the high pressure chamber (12) and the low pressure chamber (14) is below a predetermined value in the oil return passage (7). The differential pressure operating valve (8) that opens to open the oil return passage (7) and closes to open the oil return passage (7) when the high and low differential pressure exceeds the predetermined value. ) Is provided, the scroll compressor.
圧室(14)との連通路(81)に摺動可能に内装さ
れ、一端側が高圧室(12)に開口し、他端側が低圧室
(14)に開口する油戻し通路(7)を有するプランジ
ャー(83)と、このプランジャー(83)を高圧室
(12)側に付勢するバネ(84)とにより構成し、前
記プランジャー(83)における油戻し通路(7)の低
圧室(14)側に、該油戻し通路(7)を前記低圧室
(14)に開口する開口部(72a,72b,72c)
を前記プランジャー(83)の摺動方向にそって複数形
成して、前記プランジャー(83)の摺動に伴って前記
開口部(72a,72b,72c)を順次開閉するごと
く成している請求項1記載のスクロール圧縮機。2. A differential pressure operation valve (8) is slidably installed in a communication passage (81) between a high pressure chamber (12) and a low pressure chamber (14), and one end side is opened to the high pressure chamber (12). , A plunger (83) having an oil return passage (7) having the other end opening to the low pressure chamber (14) and a spring (84) for biasing the plunger (83) toward the high pressure chamber (12). And an opening (72a, 72b, 72c) that opens the oil return passage (7) to the low pressure chamber (14) on the low pressure chamber (14) side of the oil return passage (7) in the plunger (83). )
Are formed along the sliding direction of the plunger (83), and the openings (72a, 72b, 72c) are sequentially opened and closed as the plunger (83) slides. The scroll compressor according to claim 1.
ル(3)(4)をもつ圧縮要素(2)を内装し、この圧
縮要素(2)の一側方に、該圧縮要素(2)の吐出口
(31)及び吐出管(11)が開口する高圧室(12)
を、他方側に、吸入管(13)が開口する低圧室(1
4)を形成し、前記高圧室(12)と低圧室(14)と
の間に、前記高圧室(12)に溜る油を前記低圧室(1
4)に回収する油戻し通路(7)を設けたスクロール圧
縮機において、前記油戻し通路(7)に、前記高圧室
(12)の温度が所定値以下のとき開動作して前記油戻
し通路(7)を開路し、前記温度が前記所定値より高く
なったときに閉動作して前記油戻し通路(7)を閉路す
る熱応力弁(9)を設けていることを特徴とするスクロ
ール圧縮機。3. A casing (1) is internally provided with a compression element (2) having first and second scrolls (3) and (4), and the compression element (2) is provided on one side of the compression element (2). ) Discharge port (31) and discharge pipe (11) open high pressure chamber (12)
On the other side, the low pressure chamber (1
4) is formed, and oil accumulated in the high pressure chamber (12) is formed between the high pressure chamber (12) and the low pressure chamber (14).
4) In a scroll compressor provided with an oil return passage (7) for recovery, the oil return passage (7) is opened when the temperature of the high pressure chamber (12) is below a predetermined value. A scroll compression valve characterized in that a thermal stress valve (9) is provided which opens (7) and closes the oil return passage (7) when the temperature becomes higher than the predetermined value. Machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22165593A JPH0777188A (en) | 1993-09-07 | 1993-09-07 | Scroll compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22165593A JPH0777188A (en) | 1993-09-07 | 1993-09-07 | Scroll compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0777188A true JPH0777188A (en) | 1995-03-20 |
Family
ID=16770183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22165593A Withdrawn JPH0777188A (en) | 1993-09-07 | 1993-09-07 | Scroll compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0777188A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7288466B2 (en) | 2002-05-14 | 2007-10-30 | Kabushiki Kaisha Toshiba | Processing method, manufacturing method of semiconductor device, and processing apparatus |
CN101865132A (en) * | 2009-02-20 | 2010-10-20 | 三洋电机株式会社 | Scroll compressor |
JP2017527738A (en) * | 2015-05-26 | 2017-09-21 | ハンオン システムズ | Compressor having oil recovery means |
CN108131292A (en) * | 2013-11-27 | 2018-06-08 | 艾默生环境优化技术有限公司 | Compressor with sound-insulating properties |
CN108223381A (en) * | 2018-02-09 | 2018-06-29 | 宁波汇峰聚威科技股份有限公司 | A kind of lubricating system of screw compressor |
CN110360117A (en) * | 2019-08-26 | 2019-10-22 | 珠海格力节能环保制冷技术研究中心有限公司 | A kind of oil-feeding control structure, compressor and air conditioner |
US11353022B2 (en) | 2020-05-28 | 2022-06-07 | Emerson Climate Technologies, Inc. | Compressor having damped scroll |
CN117329128A (en) * | 2023-12-01 | 2024-01-02 | 广东艾高装备科技有限公司 | High-power water-cooled screw compressor exhaust gas high-temperature judging method and high-temperature detecting system |
-
1993
- 1993-09-07 JP JP22165593A patent/JPH0777188A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7288466B2 (en) | 2002-05-14 | 2007-10-30 | Kabushiki Kaisha Toshiba | Processing method, manufacturing method of semiconductor device, and processing apparatus |
US7727853B2 (en) | 2002-05-14 | 2010-06-01 | Kabushiki Kaisha Toshiba | Processing method, manufacturing method of semiconductor device, and processing apparatus |
CN101865132A (en) * | 2009-02-20 | 2010-10-20 | 三洋电机株式会社 | Scroll compressor |
CN108131292A (en) * | 2013-11-27 | 2018-06-08 | 艾默生环境优化技术有限公司 | Compressor with sound-insulating properties |
CN108131292B (en) * | 2013-11-27 | 2020-01-03 | 艾默生环境优化技术有限公司 | Scroll compressor having a discharge port |
JP2017527738A (en) * | 2015-05-26 | 2017-09-21 | ハンオン システムズ | Compressor having oil recovery means |
CN108223381A (en) * | 2018-02-09 | 2018-06-29 | 宁波汇峰聚威科技股份有限公司 | A kind of lubricating system of screw compressor |
CN110360117A (en) * | 2019-08-26 | 2019-10-22 | 珠海格力节能环保制冷技术研究中心有限公司 | A kind of oil-feeding control structure, compressor and air conditioner |
US11353022B2 (en) | 2020-05-28 | 2022-06-07 | Emerson Climate Technologies, Inc. | Compressor having damped scroll |
US11692546B2 (en) | 2020-05-28 | 2023-07-04 | Emerson Climate Technologies, Inc. | Compressor having damped scroll |
CN117329128A (en) * | 2023-12-01 | 2024-01-02 | 广东艾高装备科技有限公司 | High-power water-cooled screw compressor exhaust gas high-temperature judging method and high-temperature detecting system |
CN117329128B (en) * | 2023-12-01 | 2024-02-02 | 广东艾高装备科技有限公司 | High-power water-cooled screw compressor exhaust gas high-temperature judging method and high-temperature detecting system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6273691B1 (en) | Scroll gas compressor having asymmetric bypass holes | |
KR100463283B1 (en) | Scroll Type Compressor | |
KR100511698B1 (en) | Scroll compressor and air conditioner | |
US6883341B1 (en) | Compressor with unloader valve between economizer line and evaporator inlet | |
EP1160453B1 (en) | Scroll type compressor | |
US20050220654A1 (en) | Apparatus for preventing overheating of scroll compressor | |
EP1286052A2 (en) | Scroll compressor | |
EP2015003B1 (en) | Refrigerating apparatus | |
JPH0777188A (en) | Scroll compressor | |
JP4258017B2 (en) | Scroll compressor | |
EP3572671A1 (en) | Compressor with an injection port and check valve. | |
JPH06103039B2 (en) | Scroll gas compressor | |
JP3509196B2 (en) | Scroll compressor | |
AU2005314950A1 (en) | Rotary compressor with reduced refrigeration gas leak during compression while preventing seizure | |
JP3027930B2 (en) | Scroll gas compressor | |
KR101130465B1 (en) | Overheating prevention apparatus for scroll compressor | |
CN112444012B (en) | Liquid storage device, compressor assembly and refrigerating system | |
JPH09217690A (en) | Scroll gas compressor | |
JPH04241702A (en) | Scroll type fluid machine | |
JPH09158856A (en) | Scroll gas compressor | |
JP2518455B2 (en) | Compressor for cryogenic refrigerator | |
JPS63106392A (en) | Scroll type gas compressor | |
JPH03185293A (en) | Displacement compressor rotating screw | |
US11493041B2 (en) | Scroll compressor | |
JP3114232B2 (en) | Scroll compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001107 |