JPS63106392A - Scroll type gas compressor - Google Patents

Scroll type gas compressor

Info

Publication number
JPS63106392A
JPS63106392A JP25220486A JP25220486A JPS63106392A JP S63106392 A JPS63106392 A JP S63106392A JP 25220486 A JP25220486 A JP 25220486A JP 25220486 A JP25220486 A JP 25220486A JP S63106392 A JPS63106392 A JP S63106392A
Authority
JP
Japan
Prior art keywords
oil
lubricating oil
compressor
temperature sensor
return passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25220486A
Other languages
Japanese (ja)
Other versions
JPH06103038B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25220486A priority Critical patent/JPH06103038B2/en
Publication of JPS63106392A publication Critical patent/JPS63106392A/en
Publication of JPH06103038B2 publication Critical patent/JPH06103038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent the reduction of the compressor efficiency by forming the downstream side of an oil return passage for returning the lubricating oil separated from the compressed gas on the high pressure side to a driving chamber under a low pressure, into a nozzle form directed towards a temperature sensor. CONSTITUTION:In a sealed case 1, 2, a compression mechanism part consisting of a swirl scroll 10, fixed scroll 11, etc. is installed, and a discharge space 13 is formed in the upper part side, and a driving chamber 15 in the suction pressure environment into which an electric motor 7 is housed is formed on the lower side. Between the discharge space 13 and the driving chamber 15, an oil return hole 19 for returning the lubricating oil which is separated from the discharged gas in the discharge space 13 into the driving chamber 15 is formed, and a nozzle-shaped oil discharge pipe 23 directed towards a temperature sensor 21 is installed on the downstream side. When a large amount of discharge gas is discharged at a high speed from the oil discharge pipe 23, the temperature of the temperature sensor 21 part rises, and the shortage of the lubricating oil can be certainly detected, and the reduction of the compressor efficiency can be coped with.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール気体圧縮機に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a scroll gas compressor.

従来の技術 低振動、低騒音特性を備えたスクロール圧縮機は、吸入
室が外周部にあり吐出ポートがうす巻きの中心部に設け
られ、圧縮流体の流れが一方向で吸入体積効率の高いこ
とがよく知られている。
Conventional technology A scroll compressor with low vibration and noise characteristics has a suction chamber on the outer periphery and a discharge port in the center of a thin spiral, which allows compressed fluid to flow in one direction and has high suction volumetric efficiency. is well known.

しかし、特に気体を圧縮する場合などは圧縮部の漏れ隙
間を小さくするためにうす巻き部の寸法精度を極めて高
くする必要があるが部品形状の複雑さ、寸法バラツキな
どによりスクロール圧縮機のコストが高く性能バラツキ
も大さいという問題があった。
However, especially when compressing gas, the dimensional accuracy of the thinly wound part must be extremely high in order to reduce the leakage gap in the compression part, but the cost of scroll compressors increases due to the complexity of the part shape and dimensional variations. There were problems in that the performance was high and the performance varied greatly.

そこで、この種の問題解決のために特開昭55−107
093号公報で知られるように第4図に示す構成や特開
昭60−75795号公報で知られるように第5図に示
す構成が発明され、摺動部に供給した潤滑油の一部を吸
入気体と共に圧縮室に流入させ、圧縮吐出後、圧縮気体
から潤滑油を分離後再び潤滑油溜に通じる空間に戻すと
いう考え方のもとに、第4図では圧縮流体が圧縮機の外
部に設けられた油分離タンク118に導入された後、油
分離タンク118内で潤滑油が分離され毛細管117b
を通じて吐出圧力と吸入圧力との中間圧力状態の密閉容
器112内に戻される構成であった。
Therefore, in order to solve this kind of problem,
The structure shown in FIG. 4, as known from Japanese Patent Application No. 093, and the structure shown in FIG. Based on the idea that the lubricating oil is caused to flow into the compression chamber together with the suction gas, and after being compressed and discharged, the lubricating oil is separated from the compressed gas and returned to the space leading to the lubricating oil reservoir. After the lubricating oil is introduced into the oil separation tank 118, the lubricating oil is separated in the oil separation tank 118 and transferred to the capillary tube 117b.
It was configured so that the air was returned to the closed container 112 at an intermediate pressure between the discharge pressure and the suction pressure.

また、第5図ではキャップ219内で圧縮気体から分離
された潤滑油が孔222〜孔284を通じて吸入通路を
なす空間280に戻される構成であった。
Further, in FIG. 5, the lubricating oil separated from the compressed gas in the cap 219 is returned to the space 280 forming the suction passage through the holes 222 to 284.

発明が解決しようとする問題点 しかしながら上記のgS4図のような圧縮気体と潤滑油
とを、区別なく毛細管117bを通じて中間圧力状態の
密閉容器112に戻す構成では、潤滑油が不足して圧縮
気体が密閉容器112に戻る場合などは粘性が低いので
通路抵抗が小さく、多量に密閉容@?1112に流入し
て圧縮効率を著るしく低下させ、また、油分離タンク1
18に潤滑油のみを戻す機能を備えさせる場合はコスト
−も高く油分離タンク118自身も大きくなって投首ス
ペースを多く要する一方、潤滑油を戻さないで圧縮機運
転を継続すると潤滑油が不足して圧縮効率の低下や圧縮
機の破損を招くなど複雑多岐な問題があった。
Problems to be Solved by the Invention However, in the configuration in which compressed gas and lubricating oil are returned to the closed container 112 in an intermediate pressure state through the capillary tube 117b without distinction, as shown in Fig. gS4 above, the lubricating oil is insufficient and the compressed gas is When returning to the closed container 112, the passage resistance is low because the viscosity is low, and a large amount is stored in the closed container@? 1112, significantly reducing compression efficiency, and oil separation tank 1.
18 with the function of returning only the lubricating oil, the cost is high and the oil separation tank 118 itself becomes large and requires a lot of space to hang. On the other hand, if the compressor continues to operate without returning the lubricating oil, there will be a shortage of lubricating oil. This caused a variety of complex problems, including a decrease in compression efficiency and damage to the compressor.

また、第5図のような油戻し制御機構を設けない構成で
潤滑油が少ない場合には圧縮気体が孔222.284を
通過し易いので吸入通路の空間280に多量流入して圧
縮効率を著るしく低下させるという問題があった。
Furthermore, when there is little lubricating oil in a configuration without an oil return control mechanism as shown in FIG. There was a problem in that it caused a significant drop in performance.

そこで、本発明は潤滑油戻し状態と圧縮気体戻し状態と
を識別する温度センサーに向けて下流側で開口する油戻
し通路の先端部をノズル形状にして安価で高効率、耐久
性に優れたスクロール気体圧縮機を提供するものである
Therefore, the present invention has developed an inexpensive, highly efficient, and durable scroll in which the tip of the oil return passage that opens on the downstream side toward the temperature sensor that distinguishes between the lubricating oil return state and the compressed gas return state is shaped into a nozzle. The present invention provides a gas compressor.

問題点を解決するための手段 上記問題を解消するために本発明のスクロール・気体圧
縮機は、高圧側で圧縮気体から分離された潤滑油を圧縮
機の駆動源および潤滑油供給装置を配置した低圧側また
は低温雰囲気の中間圧側の駆動室に戻す欄細通路を有し
た油戻し通路を設け、油戻し通路の流量制御または圧縮
機回転速度の制御機能または潤滑油回復制御機能に係わ
る温度センサーを駆動室に設け、油戻し通路の下流側開
口端を温度センサーに対向して配置し、油戻し通路の下
流側開口端部をノズル形状にする構成である。
Means for Solving the Problems In order to solve the above problems, the scroll gas compressor of the present invention has a drive source for the compressor and a lubricating oil supply device arranged to supply the lubricating oil separated from the compressed gas on the high pressure side. An oil return passage with a narrow passage for returning the oil to the drive chamber on the low pressure side or intermediate pressure side in a low-temperature atmosphere is provided, and a temperature sensor related to the flow rate control of the oil return passage, the compressor rotation speed control function, or the lubricating oil recovery control function is installed. The oil return passage is provided in the drive chamber, and the downstream opening end of the oil return passage is arranged to face the temperature sensor, and the downstream opening end of the oil return passage is shaped like a nozzle.

作  用 本発明は上記構成によって、潤滑油が吸入気体と共に圧
縮吐出され圧縮気体から分離された潤滑油または潤滑油
を含んだ圧縮気体が継続的に油戻し通路のノズル先端か
ら低温雰囲気の駆動室に配4された温度センサーの主要
部に向けて放出され、放出された高温の圧縮気体または
潤滑油は駆動室内の気体の拡散による影響を受けること
なく温度センサーに確実に衝突して温度センサーを慨然
するが、潤滑油が油戻し通路を通過する場合は、その流
量が少なく温度センサーの温度上昇が低く圧縮機は継続
的に運転されるが、何らかの原因で圧縮気体が油戻し通
路を通過する場合は、粘性が低くその通路抵抗が少ない
ので圧縮気体の流入量が著るしく多くなって温度センサ
ーを異常温度上昇せしめて油戻し通路の遮断または油戻
し通路の絞り、あるいは圧縮機の停止、または回転速度
の増減などによる潤滑油確保制御を講じて潤滑油不足に
起因する圧縮効率低下や摺動部損傷防止の信頼性が高く
、高効率、耐久性に優れたスクロール気体圧縮機を提供
できるものである。
According to the above structure, the lubricating oil is compressed and discharged together with the suction gas, and the lubricating oil separated from the compressed gas or the compressed gas containing the lubricating oil is continuously delivered from the nozzle tip of the oil return passage to the drive chamber in a low temperature atmosphere. The high temperature compressed gas or lubricating oil is released toward the main part of the temperature sensor located in the drive chamber, and the released high temperature compressed gas or lubricating oil reliably collides with the temperature sensor without being affected by the diffusion of gas in the drive chamber. Unfortunately, when lubricating oil passes through the oil return passage, the flow rate is low and the temperature rise in the temperature sensor is low, allowing the compressor to operate continuously, but for some reason compressed gas passes through the oil return passage. In this case, since the viscosity is low and the passage resistance is low, the amount of compressed gas flowing in increases significantly, causing the temperature sensor to rise to an abnormal temperature, causing the oil return passage to be shut off, the oil return passage to be throttled, or the compressor to be stopped. Alternatively, we can provide a highly reliable, highly efficient, and durable scroll gas compressor that prevents a decrease in compression efficiency and damage to sliding parts due to lack of lubricating oil by controlling lubricating oil by increasing or decreasing the rotational speed, etc. It is something.

実施例 以下本発明の一実施例のスクロール気体圧縮機について
、図面を参照しながら説明する。
EXAMPLE A scroll gas compressor according to an example of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例におけるスクロール気体
圧縮機の縦断面図を示し、第2図は本発明の@2の実施
例におけるスクロール気体圧縮機の縦断面図を示し、第
3図は本発明の第3の実施例におけるスクロール気体圧
縮機の縦断面と油戻し通路制御系統の説明図を示す。
FIG. 1 shows a vertical cross-sectional view of a scroll gas compressor according to a first embodiment of the present invention, FIG. 2 shows a vertical cross-sectional view of a scroll gas compressor according to a second embodiment of the present invention, and FIG. The figure shows a longitudinal section of a scroll gas compressor and an explanatory diagram of an oil return passage control system in a third embodiment of the present invention.

第1図において、1,2は鉄製の密閉ケース、3は鉄製
の7レームでその外接面部で密閉ケース1.2と共に単
一の溶接ビード6によって溶接密封され密閉ケース1,
2内を上側の吐出空間1aと下側の駆動室15(低圧側
)に仕切っている。
In FIG. 1, 1 and 2 are iron sealed cases, 3 is a 7-frame iron frame, and its outer surface is welded and sealed together with the sealed case 1.2 by a single weld bead 6.
2 is partitioned into an upper discharge space 1a and a lower drive chamber 15 (low pressure side).

フレーム3に支承されインバーター電源(図示なし)に
よって運転制御されるモータ7により回転駆動される駆
動軸8の上端部の偏心穴9には旋回スフロー/l/10
が自転阻止部品を係合して装嵌され、これにかみ合う吐
出ボート30を有した固定スフロー/l’11がフレー
ム3にボルト固定されている。
The eccentric hole 9 at the upper end of the drive shaft 8 is supported by the frame 3 and is rotatably driven by a motor 7 whose operation is controlled by an inverter power supply (not shown).
is fitted by engaging the rotation prevention part, and a fixed flow/l'11 having a discharge boat 30 that engages therewith is bolted to the frame 3.

密閉ケース1とフレーム3と固定スフロー/l/11と
で形成された吐出空間13は、密閉ケース1に設けられ
た吐出管14を通じて外部の配管系に連通し、フレーム
3と密閉ケース2とで形成された低圧側の駆動室15は
、密閉ケース2に設けられた吸入管16を通じて外部の
配管系に連通し、駆動室15の底部には油溜17が設け
られ、偏心穴9と油溜17とを連通する偏心油穴18を
有した駆動軸8の下端が油溜17に埋没している。
A discharge space 13 formed by the sealed case 1, the frame 3, and the fixed flow/l/11 communicates with an external piping system through a discharge pipe 14 provided in the sealed case 1, and is The formed low-pressure side drive chamber 15 communicates with an external piping system through a suction pipe 16 provided in the sealed case 2, and an oil sump 17 is provided at the bottom of the drive chamber 15, which connects the eccentric hole 9 and the oil sump. The lower end of the drive shaft 8 has an eccentric oil hole 18 that communicates with the oil sump 17 .

モータ7の上部コイルエンド20にはモータ7の過電流
防止を兼ねた温度センサー21が取付られ、吐出空間1
3とW動室15との間は吐出空間油溜22の底部に開口
しフレーム3に設けられて吐出油戻し用の戻し穴19と
それに接続する極細通路のノズル形状をした油放出管2
3から@成される油戻し通路31によって連通し、油放
出管の先端が温度センサー21の上部で近接対向して設
けられている。
A temperature sensor 21 is attached to the upper coil end 20 of the motor 7, which also serves to prevent overcurrent of the motor 7.
3 and the W moving chamber 15 is an oil discharge pipe 2 which opens at the bottom of the discharge space oil sump 22 and is provided in the frame 3 and has a return hole 19 for returning the discharged oil, and a nozzle-shaped oil discharge pipe 2 with an extremely narrow passage connected thereto.
The oil discharge pipes communicate with each other through an oil return passage 31 formed from the temperature sensor 21, and the tips of the oil discharge pipes are provided above the temperature sensor 21 in close proximity to each other.

圧縮機外部の電源装置とモータ7とを電気的に接続スる
ガラスターミナル24が温度センサー21の近くの密閉
ケース2に設けられている。
A glass terminal 24 for electrically connecting a power supply device outside the compressor and the motor 7 is provided in the sealed case 2 near the temperature sensor 21.

また第2図はフレーム3aに設けられた戻し穴19aと
真直で適当な長さを備えた極細の油放出穴32とからな
る油戻し通路31aが吐出空間油溜22と駆動室15と
の間を連通している。
Further, in FIG. 2, an oil return passage 31a consisting of a return hole 19a provided in the frame 3a and an extremely thin oil discharge hole 32 that is straight and has an appropriate length is located between the discharge space oil sump 22 and the drive chamber 15. are communicating.

また@3図は、吐出空間油溜22と駆動室15との間を
、吐出空間油溜22の底部に開口して密閉ケース1を貫
通した油戻し管25、圧縮機の外部に設けられ温度セン
サー21に連係して作動する外部絞り装置26および密
閉ケース2を貫通して温度センサー210近くの上部に
まで伸ばして設けられたノズル形状の油放出管23aを
経由する油戻し通路31bによって連通し、その途中に
油冷却装置28を設けている。
In addition, Figure @3 shows an oil return pipe 25 that opens at the bottom of the discharge space oil sump 22 and penetrates the sealed case 1 between the discharge space oil sump 22 and the drive chamber 15, and an oil return pipe 25 that is provided outside the compressor and that is connected to the drive chamber 15. It communicates with an external throttle device 26 that operates in conjunction with the sensor 21 and an oil return passage 31b that passes through a nozzle-shaped oil discharge pipe 23a that extends through the sealed case 2 and extends to the upper part near the temperature sensor 210. , an oil cooling device 28 is provided in the middle.

以上のように構成されたスクロール気体圧縮機について
、以下その動作を説明する。
The operation of the scroll gas compressor configured as above will be described below.

第1図において、モータ7によって駆動軸8が回転駆動
されると旋回スフロー/l/10が旋回運動をし、吸入
管16を通して冷媒ガスが駆動室15に流入後、冷媒ガ
ス中に含まれる潤滑油の一部を分離して旋回スクロール
10と固定スフロー/L/11の間に形成された圧縮室
内に閉じ込められ、旋回スフローA/10の旋回運動に
ともなって圧縮され、吐出ポー)30より吐出空間13
へ吐出され、吐出冷媒ガス中に含まれる潤滑油の一部は
その自重などによって吐出冷媒ガスから分離して吐出空
間油溜22に収集され戻し穴19と減圧のための極細の
ノズル形状をした油放出管23を経て真下の低温度雰囲
気内の駆動室15に配置された温度センサー21に向け
て一直線状に放出され、飛散した潤滑油の一部はガラス
ターミナル24の端子にも飛沫し最終的には底部の油溜
17に集収され、駆動軸8の偏心油穴18の遠心ポンプ
作用により軸受摺動面などに給油された後、吸入冷媒ガ
スと共に圧縮吐出される。
In FIG. 1, when the drive shaft 8 is rotationally driven by the motor 7, the rotating flow /l/10 makes a rotating movement, and after the refrigerant gas flows into the drive chamber 15 through the suction pipe 16, the lubricant contained in the refrigerant gas A part of the oil is separated and confined in a compression chamber formed between the orbiting scroll 10 and the fixed flow A/11, compressed by the orbiting movement of the orbiting flow A/10, and discharged from the discharge port 30. space 13
A part of the lubricating oil contained in the discharged refrigerant gas is separated from the discharged refrigerant gas due to its own weight and collected in the discharge space oil sump 22, which has a return hole 19 and an extremely thin nozzle shape for pressure reduction. The lubricating oil is discharged in a straight line through the oil discharge pipe 23 toward the temperature sensor 21 located in the drive chamber 15 in the low-temperature atmosphere directly below, and some of the scattered lubricating oil also splashes on the terminals of the glass terminal 24 and finally Specifically, the oil is collected in an oil reservoir 17 at the bottom, and after being supplied to bearing sliding surfaces and the like by the centrifugal pump action of the eccentric oil hole 18 of the drive shaft 8, it is compressed and discharged together with the sucked refrigerant gas.

一方、吐出空間13で吐出冷媒ガスから分離されなかっ
た潤滑油は外部の冷凍サイクルへ搬出され再び吸入冷媒
ガスと共に吸入管16を通して圧縮機内に帰還する。
On the other hand, the lubricating oil that has not been separated from the discharged refrigerant gas in the discharge space 13 is carried out to the external refrigeration cycle and returns to the compressor through the suction pipe 16 together with the suctioned refrigerant gas.

このような冷媒ガスと潤滑油との循環サイクルの中での
適当な粘性を有する潤滑油は摺動部の潤滑と圧縮室微少
隙間の密閉機能を有し圧縮機の安定運転に寄与するが、
油溜17や吐出空間油溜22に潤滑油が不定した場合(
例えば、冷凍サイクルの配管が非常に長く、しかも圧縮
機低速口伝時などのような配管内冷媒速度が遅い場合は
潤滑油が配管内に滞留して圧縮機内に戻らなくて潤滑油
不足が生じる)は、吐出空間13から極めて粘性が低く
、通路抵抗の少ない高温の冷媒ガスが極細通路でノズル
形状をした油放出管23から温度センサー21に向って
多量噴射され、温度センサ−21が急上昇すると共にモ
ータ室15の雰囲気温度も上昇し、温度センサー21が
設定温度(例えば60°C)を超えるとインバーター電
源回路が制御されてモータ7の停止、あるいはモータ7
の一定時間増速による配管内滞留潤滑油の帰還促進が図
られる。
In this circulation cycle of refrigerant gas and lubricating oil, lubricating oil with an appropriate viscosity has the function of lubricating the sliding parts and sealing small gaps in the compression chamber, and contributes to stable operation of the compressor.
If the lubricating oil becomes unstable in the oil sump 17 or the discharge space oil sump 22 (
For example, if the piping in the refrigeration cycle is very long and the refrigerant speed in the piping is slow, such as when the compressor is running at low speed, lubricating oil will stay in the piping and not return to the compressor, resulting in a lubricant shortage.) A large amount of high-temperature refrigerant gas with extremely low viscosity and low passage resistance is injected from the discharge space 13 toward the temperature sensor 21 from the nozzle-shaped oil discharge pipe 23 with an extremely narrow passage, and the temperature sensor 21 rises rapidly. When the ambient temperature in the motor room 15 also rises and the temperature sensor 21 exceeds the set temperature (for example, 60°C), the inverter power supply circuit is controlled to stop the motor 7 or stop the motor 7.
By increasing the speed for a certain period of time, the return of the lubricating oil remaining in the pipe is promoted.

また′@2図において、吐出空間油溜22の潤滑油は極
細の油放出穴32で減圧され温度センサー21に向って
噴射され、その後は第1図の例と同様にして循環する。
2, the lubricating oil in the discharge space oil sump 22 is depressurized through the extremely thin oil discharge hole 32 and is injected toward the temperature sensor 21, after which it is circulated in the same manner as in the example shown in FIG.

また第3図において、吐出空間油溜22に収集された潤
滑油は油戻し管25と油冷却装置28を通過中に冷却さ
れ外部絞シ装置26で減圧の後、油放出管23aに導か
れて油放出管23aの出口の真下に配置された温度セン
サー2.1に向って噴射され、最終的には底部の油溜1
7に収集され、その後は第1図の例と同様にして循環す
る。
Further, in FIG. 3, the lubricating oil collected in the discharge space oil sump 22 is cooled while passing through the oil return pipe 25 and the oil cooling device 28, and after being depressurized by the external throttling device 26, is led to the oil discharge pipe 23a. The oil is injected toward the temperature sensor 2.1 located directly below the outlet of the oil discharge pipe 23a, and finally reaches the oil sump 1 at the bottom.
7, and thereafter circulated in the same manner as in the example of FIG.

万一、油溜17や吐出空間油溜22に潤滑油が不足した
場合は第1図の例と同様な手順で温度センサー21の温
度が急上昇し、温度センサー21が設定温度(例えば6
0°C)を超えると外部絞り装置26が作動してその通
路を遮断すると共にインバーター電源回路が制御されて
モータ7の一定時間増速による配管内滞留潤滑油の帰還
促進が図られる。外部戻し通路27が遮断された後、温
度センサー21が設定温度以下に回復すると再び外部戻
し通路27が開かれ吐出空間油溜22の潤滑油は再び駆
動室15に戻される。
In the event that there is a shortage of lubricating oil in the oil reservoir 17 or the discharge space oil reservoir 22, the temperature of the temperature sensor 21 will rise rapidly by following the same procedure as in the example shown in FIG.
When the temperature exceeds 0° C., the external throttle device 26 operates to cut off the passage, and the inverter power supply circuit is controlled to increase the speed of the motor 7 for a certain period of time to promote the return of the lubricating oil remaining in the pipe. After the external return passage 27 is shut off, when the temperature sensor 21 returns to the set temperature or lower, the external return passage 27 is opened again and the lubricating oil in the discharge space oil reservoir 22 is returned to the drive chamber 15 again.

なお、上記実施例では温度センサー21が設定温度を超
えると外部絞り装置31bが遮断されたが、完全に遮断
せずその通路を更に絞る制御を行ってもよい。
In the above embodiment, when the temperature sensor 21 exceeds the set temperature, the external throttle device 31b is shut off, but the external throttle device 31b may not be shut off completely, but the passage may be further narrowed.

また、grJ1図、@2図、第3図の実施例では駆動室
15が低圧側で吐出空間油溜22が圧縮機の内部に設け
られた構成であるが、雰囲気温度を比較的低く保持でき
る構成ならば駆動室15は中間圧側となる構成でもよく
、また、吐出空間油溜22を圧縮機外部の吐出側に設け
た簡易構造の油セパレータで代用しても上記実施例同様
の作用が得られる。
In addition, in the embodiments shown in grJ1, @2, and 3, the drive chamber 15 is on the low pressure side and the discharge space oil sump 22 is provided inside the compressor, but the ambient temperature can be kept relatively low. The drive chamber 15 may be configured to be on the intermediate pressure side, and the same effect as in the above embodiment can be obtained even if the discharge space oil reservoir 22 is replaced with an oil separator of a simple structure provided on the discharge side outside the compressor. It will be done.

以上のように上記実施例によれば冷凍サイクルの高圧側
(圧縮機外部の吐出配管系に設けられた油セパレータま
たは圧縮機内部の吐出空回13)で圧縮冷媒ガスから分
離され油セパレータの底部や吐出空間油溜22などで溜
められた潤滑油を、インバーター電源駆動されるモータ
10やモータ10によって駆動され遠心ポンプ給油用の
偏心性穴18を有した駆動軸8を配置して吸入冷媒ガス
通路の一部を構成する低圧側の駆動室15に戻す極細通
路を有した油放出管23と戻し穴19とからなる油戻し
通路19(または極細通路を有した油放出穴32と艮し
穴19aとからなる油戻し通路31aまたは外部絞り装
置26と油放出管23aなどからなる油戻し通路31b
)を設け、油戻し通路31bの流量制御(外部絞シ装置
26による通路の開閉や開度調整)または圧縮機の停止
や再起動または潤滑油回復制御(一定時間モータ10の
回転速度上昇によシ冷凍サイクルを循環する冷媒流量を
増加させて配管系内に滞留している潤滑油を冷媒と共に
圧縮機内に帰還させる)機能に係わる温度センサー21
を駆動室15に設け、油戻し通路31 (”!たは31
aまたは31b)の下流側開口端を温度センサー21に
対向して配置し、油戻し通路31(または31aまたは
31b)の下流側開口端部をノズル状の細径にすること
によ滑油が滞留し圧縮機内部の潤滑油が不足する場合、
あるいは暖房冷凍サイクル運転途中の除霜運転時のよう
に凝縮器のフィン温度が極めて低くて凝縮能力が大きく
蒸発器の吸熱が不十分で潤滑油を含んだ未蒸発冷媒液が
冷凍サイクル低圧側のアキュームレータ内で滞留して圧
縮機内部の潤滑油が不足する場合などが生じると、高圧
側の油溜(吐出空間油溜22など)から粘性が高くて極
細通路の油放出管23(または外部絞シ装置26など)
で適度に減圧されて細径の油放出開口端から駆動室15
に適量ずつ増速噴射される潤滑油に代って粘性の低い吐
出冷媒ガスが多量に高速度で温度センサー21に向って
噴射され駆動室15内の高速回転体による気体拡散の影
響を受けることが少なく吐出冷媒ガスが温度センサー2
1に確実に衝突して温度センサ−21感温部を集中的に
設定温度まで昇温せしめて非常に困錐な油溜(吐出空間
油溜23など)での潤滑油と吐出冷媒ガスとの混合割合
の変化検出を簡単な構成で感温応答性を早く確実に実現
でき、この検出にもとづき圧縮機の運転を制御して潤滑
油不足状態での早期圧縮機停止、あるいは圧縮機回転速
度の増加制御により冷媒流量を増加せしめて配管系内に
滞留した潤滑油を圧縮機内に戻して圧縮機の耐久性を高
めると共に熱交換器効率も高めることができ、細径ノズ
ル形状部から噴射される圧縮気体の速度が早いので駆動
室15内での気体拡散の影響を受けることなく吐出冷媒
ガスが温度センサー21に確実に衝突するので駆動室1
5の空間を狭くすると共に駆動軸8の回転速度も増加さ
せ圧縮機を高速小型化できる。
As described above, according to the above embodiment, the oil is separated from the compressed refrigerant gas on the high pressure side of the refrigeration cycle (the oil separator provided in the discharge piping system outside the compressor or the discharge idle pipe 13 inside the compressor), and the oil is separated from the compressed refrigerant gas at the bottom of the oil separator. A motor 10 driven by an inverter power supply or a drive shaft 8 driven by the motor 10 and having an eccentric hole 18 for refueling a centrifugal pump is arranged to transfer the lubricating oil stored in the oil sump 22 and the discharge space into suction refrigerant gas. An oil return passage 19 consisting of an oil discharge pipe 23 and a return hole 19 (or an oil discharge hole 32 having an extremely narrow passage and a recess hole 19a, or an oil return passage 31b consisting of an external throttle device 26, an oil discharge pipe 23a, etc.
) to control the flow rate of the oil return passage 31b (opening/closing the passage or adjusting the opening using the external throttling device 26), stopping or restarting the compressor, or controlling lubricating oil recovery (by increasing the rotational speed of the motor 10 for a certain period of time). Temperature sensor 21 related to the function of increasing the flow rate of refrigerant circulating through the refrigeration cycle and returning the lubricating oil stagnant in the piping system to the compressor together with the refrigerant.
is provided in the drive chamber 15, and the oil return passage 31 ("!
The downstream opening end of the oil return passage 31 (or 31a or 31b) is arranged to face the temperature sensor 21, and the downstream opening end of the oil return passage 31 (or 31a or 31b) is shaped like a nozzle with a small diameter. If the lubricating oil inside the compressor becomes insufficient due to stagnation,
Or, during defrosting operation during heating/refrigeration cycle operation, the fin temperature of the condenser is extremely low, the condensing capacity is large, and the heat absorption of the evaporator is insufficient, causing unevaporated refrigerant liquid containing lubricating oil to enter the low-pressure side of the refrigeration cycle. When the lubricating oil inside the compressor becomes insufficient due to accumulation in the accumulator, high viscosity oil is transferred from the oil reservoir on the high pressure side (discharge space oil reservoir 22, etc.) to the oil discharge pipe 23 in the extremely narrow passage (or equipment 26, etc.)
The pressure is moderately reduced in the drive chamber 15 from the small diameter oil discharge opening end.
Instead of the lubricating oil, which is injected in appropriate amounts and at increased speed, a large amount of discharged refrigerant gas with low viscosity is injected at high speed toward the temperature sensor 21 and is affected by gas diffusion by the high-speed rotating body in the drive chamber 15. Temperature sensor 2
The lubricating oil and the discharged refrigerant gas in extremely difficult oil sumps (such as the oil sump 23 in the discharge space) collide with the temperature sensor 21 to intensively raise the temperature to the set temperature. Temperature-sensitive responsiveness can be quickly and reliably realized with a simple configuration for detecting changes in the mixing ratio.Based on this detection, compressor operation can be controlled to stop the compressor early in the event of a lack of lubricating oil, or to reduce the compressor rotation speed. By increasing the refrigerant flow rate, the lubricating oil accumulated in the piping system is returned to the compressor, increasing the durability of the compressor and increasing the efficiency of the heat exchanger. Since the speed of the compressed gas is high, the discharged refrigerant gas reliably collides with the temperature sensor 21 without being affected by gas diffusion within the drive chamber 15.
By narrowing the space of the compressor 5 and increasing the rotational speed of the drive shaft 8, the compressor can be made faster and smaller.

また、上記実施例では油戻し通路31(または31at
たは31b)の下流側開口端部の細径ノズル形状部を管
状の油放出管23(または23a)とすることにより、
温度センサー21の近傍にまで油戻し通路下流側開口端
部を伸長できるので油戻し用の潤滑油や吐出冷媒ガスが
駆動室15内で回転体による気体拡散の影響を受けるこ
とがほとんど無くなり、温度センサー21の配置場所や
配置姿勢の制限も少なく駆動室15内の省空聞化がよシ
可能で、油戻し機能が駆動室15の大きさや駆動装置の
回転速度による影響を少なくすることができる。
Further, in the above embodiment, the oil return passage 31 (or 31at
or 31b) by making the small-diameter nozzle-shaped part at the downstream opening end into a tubular oil discharge pipe 23 (or 23a),
Since the downstream opening end of the oil return passage can be extended to the vicinity of the temperature sensor 21, the lubricating oil for oil return and the discharged refrigerant gas are hardly affected by gas diffusion by the rotating body in the drive chamber 15, and the temperature There are no restrictions on the placement location or orientation of the sensor 21, making it possible to save space in the drive chamber 15, and the oil return function can reduce the influence of the size of the drive chamber 15 and the rotation speed of the drive device. .

また、上記実施例では細径ノズル形状部を極細通路を兼
ねた油放出穴32とすることにより、極めて安価な油戻
し通路が形成でき、圧縮機の耐久性や熱交換器効率の向
上に寄与することができる。
Furthermore, in the above embodiment, by making the small-diameter nozzle shape part the oil discharge hole 32 that also serves as an extremely narrow passage, an extremely inexpensive oil return passage can be formed, which contributes to improving the durability of the compressor and the efficiency of the heat exchanger. can do.

発明の効果 以上のように本発明は、高圧側で圧縮気体から分離され
た潤滑油を圧縮機の駆動源および潤滑油供給装置を配置
した低圧側または低温雰囲気の中間圧側の駆動室に戻す
極細通路を有した油戻し通路を設け、油戻し通路の流ヱ
制御または圧縮機回転速度の制御機能または潤滑油回復
制御機能に係わる温度センサーを駆動室に設け、油戻し
通路の下流側開口端を温度センサーに対向して配置し、
油戻し通路の下流側開口端部を細径ノズル形状にするこ
とにより、高圧側で潤滑油が不足してくると、それまで
粘性が高くて油戻し通路で適度に減圧されて圧縮機駆動
源などを配した雰囲気温度の高くない低圧側または中間
圧側の駆動室に適量ずつ戻る潤滑油に代って粘性の低い
圧縮気体が油戻し通路の下流側開口端の細径部で増速さ
れて多量に流入し温度センサー感温部を集中的に検知設
定温度まで急速昇温せしめられるので非常に困懐な潤滑
油と圧縮気体との駆動室流入識別を簡単な構成で感温応
答性の早い流体戻し状態検知装置が可能になり、低圧側
や中間圧側への圧縮気体の流入をす早く制限して圧縮機
効率の低下を防ぐことができると共に圧縮機の運転を制
御して潤滑油不足状態での圧縮機の停止、あるいは減速
などによる圧縮機の耐久性を向上でき、潤滑油確保のた
めの制御装置を作動させて圧縮機内潤滑油を回復させ 
−ることにより潤滑油の一部を吸入気体と共に圧縮室に
流入させ圧縮室微少隙間を潤滑油で密封して圧縮気体の
隙間漏れを少なくして圧縮効率の早期回復ができ、さら
には細径ノズル形状部で増速されて噴射される圧縮気体
の速度が早いので駆動室内の高速回転体による気体拡散
の影響を受けることもなし圧i気体は温度センサーに確
実に倒達するので駆動室空回を狭くして圧縮機の主軸回
転速度も増速して圧縮機を高速小型化できる。
Effects of the Invention As described above, the present invention provides an ultra-fine pipe that returns lubricating oil separated from compressed gas on the high-pressure side to the drive chamber on the low-pressure side or intermediate-pressure side in a low-temperature atmosphere where the drive source of the compressor and lubricating oil supply device are arranged. An oil return passage having a passage is provided, a temperature sensor related to the flow control function of the oil return passage, the compressor rotational speed control function, or the lubricating oil recovery control function is provided in the drive chamber, and the downstream opening end of the oil return passage is provided. Placed opposite the temperature sensor,
By making the downstream opening end of the oil return passage into a small-diameter nozzle shape, when the lubricating oil becomes insufficient on the high pressure side, the viscous oil is moderately reduced in the oil return passage and the compressor drive source is removed. In place of the lubricating oil that returns in appropriate amounts to the drive chamber on the low-pressure side or intermediate-pressure side where the ambient temperature is not high, compressed gas with low viscosity is accelerated at the narrow diameter part of the downstream opening end of the oil return passage. A large amount flows in and the temperature sensing part of the temperature sensor intensively raises the temperature to the set temperature, so it is very difficult to distinguish between lubricating oil and compressed gas flowing into the drive chamber.It has a simple configuration and has a fast temperature sensing response. A fluid return status detection device is now available, which quickly restricts the inflow of compressed gas to the low-pressure side and intermediate-pressure side to prevent a decrease in compressor efficiency, and also controls compressor operation to detect lubricant shortage conditions. The durability of the compressor can be improved by stopping or decelerating the compressor, and the lubricating oil inside the compressor can be restored by operating the control device to secure the lubricating oil.
- By doing so, a part of the lubricating oil flows into the compression chamber together with the suction gas, sealing the small gap in the compression chamber with the lubricating oil, reducing the leakage of compressed gas from the gap, and quickly recovering the compression efficiency. The speed of the compressed gas that is accelerated and injected by the nozzle shape is fast, so it is not affected by gas diffusion caused by high-speed rotating bodies in the drive chamber.The pressure gas reliably reaches the temperature sensor, so the drive chamber is not idle. By narrowing the compressor and increasing the rotational speed of the main shaft of the compressor, the compressor can be made faster and more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例におけるスクロ+)v気
体圧縮機の縦断面図、第2図は本発明の第2の実施例に
おけるスクロール気体圧縮機の縦断面図、第3図は本発
明の第3の実施例に2けるスクロール気体圧縮機の縦断
面、第4図、第5図はそれぞれ異なる従来の油戻し通路
を備えたスクロー/L/気体圧縮機の断面図を示す。 1.2・・・・・・密閉ケース、3・・・・・・フレー
ム、7・・・・・・モータ、8・・・・・・駆動軸、1
0・・・・・・旋回スクロール、11・・・・・・固定
スクロール、13・・・・・・吐出空間、15・・・・
・・駆動室、17・・・・・・油溜、21・・・・・・
温度センサー、22・・・・・・吐出空回油溜、23,
23a・・・・・・油放出管、26・・・・・・外部絞
り装置、31,31a。 31b・・・・・・油戻し通路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
図 第5図
FIG. 1 is a vertical cross-sectional view of a scroll gas compressor according to a first embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of a scroll gas compressor according to a second embodiment of the present invention, and FIG. 2 shows a longitudinal section of a scroll gas compressor according to a third embodiment of the present invention, and FIGS. 4 and 5 show sectional views of a scroll/L/gas compressor equipped with different conventional oil return passages, respectively. . 1.2... Sealed case, 3... Frame, 7... Motor, 8... Drive shaft, 1
0...Orbiting scroll, 11...Fixed scroll, 13...Discharge space, 15...
...Drive chamber, 17...Oil sump, 21...
Temperature sensor, 22...Discharge idle oil sump, 23,
23a... Oil discharge pipe, 26... External throttle device, 31, 31a. 31b...Oil return passage. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 4
Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)密閉容器内に電動機とこれにより駆動されるスク
ロール圧縮機とを備え、高圧側で圧縮気体から分離され
た潤滑油を圧縮機の駆動源および潤滑油供給装置を配置
した低圧側または低温雰囲気の中間圧側の駆動室に戻す
極細通路を有した油戻し通路を設け、前記油戻し通路の
流量制御、圧縮機の回転速度制御、または潤滑油の回復
制御に係わる温度センサーを前記駆動室に設け、前記油
戻し通路の下流側開口端を前記温度センサーに対向して
配置し、前記油戻し通路の下流側開口端部を細径ノズル
形状にしたスクロール気体圧縮機。
(1) Equipped with an electric motor and a scroll compressor driven by the electric motor in a closed container, lubricating oil separated from compressed gas on the high pressure side is supplied to the low pressure side or low temperature side where the drive source of the compressor and lubricating oil supply device are arranged. An oil return passage having an extremely narrow passage returning the oil to the drive chamber on the intermediate pressure side of the atmosphere is provided, and a temperature sensor related to flow rate control of the oil return passage, compressor rotation speed control, or lubricant recovery control is provided in the drive chamber. A scroll gas compressor, wherein the downstream opening end of the oil return passage is arranged opposite to the temperature sensor, and the downstream opening end of the oil return passage is shaped like a small diameter nozzle.
(2)細径ノズル形状部を管状通路とした特許請求の範
囲第1項記載のスクロール気体圧縮機。
(2) The scroll gas compressor according to claim 1, wherein the small-diameter nozzle-shaped portion is a tubular passage.
(3)細径ノズル形状部を極細通路と兼ねた特許請求の
範囲第1項または第2項記載のスクロール気体圧縮機。
(3) The scroll gas compressor according to claim 1 or 2, wherein the small-diameter nozzle-shaped portion also serves as an extremely narrow passage.
JP25220486A 1986-10-23 1986-10-23 Scroll gas compressor Expired - Lifetime JPH06103038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25220486A JPH06103038B2 (en) 1986-10-23 1986-10-23 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25220486A JPH06103038B2 (en) 1986-10-23 1986-10-23 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPS63106392A true JPS63106392A (en) 1988-05-11
JPH06103038B2 JPH06103038B2 (en) 1994-12-14

Family

ID=17233948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25220486A Expired - Lifetime JPH06103038B2 (en) 1986-10-23 1986-10-23 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JPH06103038B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591018A (en) * 1993-12-28 1997-01-07 Matsushita Electric Industrial Co., Ltd. Hermetic scroll compressor having a pumped fluid motor cooling means and an oil collection pan
WO1999013225A1 (en) * 1997-09-05 1999-03-18 American Standard Inc. Oil flow protection scheme
KR101130465B1 (en) 2005-12-30 2012-03-27 엘지전자 주식회사 Overheating prevention apparatus for scroll compressor
CN102713288A (en) * 2010-01-20 2012-10-03 大金工业株式会社 Compressor
CN105351202A (en) * 2015-01-21 2016-02-24 广州日立压缩机有限公司 Oil return control system of scroll compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032156A (en) * 2019-08-23 2021-03-01 パナソニックIpマネジメント株式会社 Compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591018A (en) * 1993-12-28 1997-01-07 Matsushita Electric Industrial Co., Ltd. Hermetic scroll compressor having a pumped fluid motor cooling means and an oil collection pan
WO1999013225A1 (en) * 1997-09-05 1999-03-18 American Standard Inc. Oil flow protection scheme
KR101130465B1 (en) 2005-12-30 2012-03-27 엘지전자 주식회사 Overheating prevention apparatus for scroll compressor
CN102713288A (en) * 2010-01-20 2012-10-03 大金工业株式会社 Compressor
CN105351202A (en) * 2015-01-21 2016-02-24 广州日立压缩机有限公司 Oil return control system of scroll compressor

Also Published As

Publication number Publication date
JPH06103038B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
EP2012075B1 (en) Refrigeration device
JPH02118362A (en) Capacity control air conditioner
JPS63106393A (en) Scroll type gas compressor
JP3178287B2 (en) Oil level adjustment device for compressor
JP2015038406A (en) Refrigerating device
JPS63106392A (en) Scroll type gas compressor
JP2780561B2 (en) Operation control method of articulated compressor
WO2018090894A1 (en) Compressor assembly and control method thereof and refrigerating/heating system
JPH1037868A (en) Scroll compressor
CN212431383U (en) Water chilling unit
JPS63131888A (en) Scroll refrigerant compressor
JP2568711B2 (en) Gas compressor
US4474030A (en) Reversible refrigerant heat pump system
JP3255441B2 (en) Control device of heat pump air conditioner using scroll compressor
JP4192314B2 (en) Supercritical refrigeration cycle
JPH05172077A (en) Refrigerant compressor
JPS599113Y2 (en) Refrigerant compressor oil separator
JPH0886292A (en) Closed type motor-driven compressor
JPH0127279B2 (en)
JPH08319971A (en) Hermetic compressor
JPS63100285A (en) Compressor
JP3192863B2 (en) Hermetic compressor
JP2508811B2 (en) Air conditioner
JPS63294466A (en) Method of controlling refrigeration cycle
KR0133386B1 (en) Closed compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term