JPH0776709A - Production of alloy powder containing rare earth metal - Google Patents

Production of alloy powder containing rare earth metal

Info

Publication number
JPH0776709A
JPH0776709A JP5225993A JP22599393A JPH0776709A JP H0776709 A JPH0776709 A JP H0776709A JP 5225993 A JP5225993 A JP 5225993A JP 22599393 A JP22599393 A JP 22599393A JP H0776709 A JPH0776709 A JP H0776709A
Authority
JP
Japan
Prior art keywords
powder
rare earth
earth metal
alloy powder
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5225993A
Other languages
Japanese (ja)
Inventor
Kaname Takeya
要 武谷
Naoya Arao
直也 新穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5225993A priority Critical patent/JPH0776709A/en
Publication of JPH0776709A publication Critical patent/JPH0776709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce alloy powder having extremely fine grain size by mixing the powder of rare earth metal oxides and the powder of alloy elements excluding rare earth metals with alkali metals and alkali metal chlorides and subjecting the same to direct reduction diffusing under specified conditions. CONSTITUTION:The powder of rare earth metal oxides, the powder of at least one kind of alloy element selected from Ni, Mn, Co, Al, Fe, Cu, Si, Mo, Cr, Zr, B, Nb, Ta, Ti, V, W, Sn and Ga, at least one kind selected from alkali metals, alkaline earth metals and their hydrates and at least one kind selected from alkali metal chlorides and alkaline earth metal chlorides are mixed. This mixture is heated to 900 to 1300 deg.C in an atmosphere of an inert gas or in a vacuum while being applied with 0.1kg/cm<2> compressing force and is thereafter cooled, and the obtd. reaction product is subjected to wet treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属を含む合金
粉末の製造方法に関するものであり、より詳しくは、該
合金粉末を、その粒度の増大化を可及的に抑制して製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy powder containing a rare earth metal, and more specifically, a method for producing the alloy powder while suppressing the increase in grain size thereof as much as possible. Regarding

【0002】[0002]

【従来の技術】希土類金属を含む合金は、永久磁石材
料、水素吸蔵合金材料、光磁気記録材料、磁歪材料、磁
気冷凍作業物質、磁気センサ等に有用であることが知ら
れている。このような希土類金属を含む合金は、合金粉
末の形で使用されることが多い。
2. Description of the Related Art An alloy containing a rare earth metal is known to be useful as a permanent magnet material, a hydrogen storage alloy material, a magneto-optical recording material, a magnetostrictive material, a magnetic refrigeration substance, a magnetic sensor and the like. Alloys containing such rare earth metals are often used in the form of alloy powder.

【0003】希土類金属を含む合金粉末の製造方法とし
ては、希土類金属酸化物の粉末と、希土類金属以外の合
金元素の粉末と、アルカリ金属、アルカリ土類金属及び
これらの水素化物から選ばれる少なくとも1種と、アル
カリ金属塩化物及びアルカリ土類金属塩化物から選ばれ
る少なくとも1種とを混合し、該混合物を不活性ガス雰
囲気中または真空下で900〜1300℃まで加熱した
後、冷却し、得られた反応生成混合物を湿式処理すると
いう、所謂直接還元拡散法が提案されている。この方法
は、工程が比較的簡便で低コストという利点を有してお
り、その理由の1つは、湿式処理工程後の粗粉砕工程が
不要で、微粉砕工程も比較的軽微であるということであ
る。
As a method of producing an alloy powder containing a rare earth metal, at least one selected from powders of rare earth metal oxides, powders of alloying elements other than rare earth metals, alkali metals, alkaline earth metals and hydrides thereof. The seed and at least one selected from alkali metal chlorides and alkaline earth metal chlorides are mixed, and the mixture is heated to 900 to 1300 ° C. in an inert gas atmosphere or under vacuum, and then cooled to obtain A so-called direct reduction diffusion method has been proposed in which the obtained reaction product mixture is wet-processed. This method has the advantage that the steps are relatively simple and low cost, and one of the reasons is that the coarse crushing step after the wet treatment step is unnecessary and the fine crushing step is also relatively small. Is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法に対しては、微粉砕工程の負荷の軽減が更に望まれて
いる。
However, for the above method, it is further desired to reduce the load of the fine pulverization process.

【0005】本発明の目的は、上記事情に鑑み、微粉砕
工程の負荷を可及的に軽減すべく、製造される希土類金
属を含む合金粉末の粒度の増大化を可及的に抑制するこ
とができる直接還元拡散法を提供することにある。
In view of the above circumstances, an object of the present invention is to suppress the increase in particle size of the alloy powder containing a rare earth metal produced as much as possible in order to reduce the load of the fine pulverization process as much as possible. It is to provide a direct reduction diffusion method capable of

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するものとして、希土類金属酸化物の粉末と、Ni,
Mn,Co,Al,Fe,Cu,Si,Mo,Cr,Z
r,B,Nb,Ta,Ti,V,W,Sn及びGaから
選ばれる少なくとも1種のMの粉末と、アルカリ金属、
アルカリ土類金属及びこれらの水素化物から選ばれる少
なくとも1種と、アルカリ金属塩化物及びアルカリ土類
金属塩化物から選ばれる少なくとも1種とを混合し、不
活性ガス雰囲気中または真空下、該混合物に0.1kg
/cm2以上の圧縮力を掛けながら該混合物を900〜
1300℃まで加熱した後、冷却し、得られた反応生成
混合物を湿式処理することからなる希土類金属を含む合
金粉末の製造方法である。
In order to achieve the above object, the present invention provides a rare earth metal oxide powder, Ni,
Mn, Co, Al, Fe, Cu, Si, Mo, Cr, Z
at least one powder of M selected from r, B, Nb, Ta, Ti, V, W, Sn and Ga, and an alkali metal,
At least one selected from alkaline earth metals and hydrides thereof and at least one selected from alkali metal chlorides and alkaline earth metal chlorides are mixed, and the mixture is mixed in an inert gas atmosphere or under vacuum. 0.1 kg
900 ~ / cm 2 while applying a compressive force of 900 ~
It is a method for producing an alloy powder containing a rare earth metal, which comprises heating to 1300 ° C., then cooling, and subjecting the obtained reaction product mixture to wet treatment.

【0007】[0007]

【作用】本発明において、希土類金属としては、例え
ば、Gd,Tb,Ho,Er,Tm,Yb,La,C
e,Pr,Nd,Sm,Eu,Lu,Pm,Y,Sc等
が挙げられ、これらの酸化物が単独または2種以上使用
できる。この希土類金属酸化物の粉末は、平均粒度がフ
ィッシャー・サブシーブ・サイザー法(以下、平均粒度
はこの法によるものを意味する)による1〜50μmの
ものが好ましい。
In the present invention, examples of rare earth metals include Gd, Tb, Ho, Er, Tm, Yb, La and C.
e, Pr, Nd, Sm, Eu, Lu, Pm, Y, Sc and the like can be mentioned, and these oxides can be used alone or in combination of two or more. The rare earth metal oxide powder preferably has an average particle size of 1 to 50 μm according to the Fisher subsieve sizer method (hereinafter, the average particle size means that according to this method).

【0008】希土類金属以外の合金元素としては、前記
Mの粉末が少なくとも1種使用される。この粉末の粒度
は、100メッシュ以下が好ましい。
As the alloying element other than the rare earth metal, at least one kind of the powder of M is used. The particle size of this powder is preferably 100 mesh or less.

【0009】混合物中に配合される、アルカリ金属、ア
ルカリ土類金属及びこれらの水素化物から選ばれる少な
くとも1種は、還元剤として使用され、例えば、Li,
Na,K,Ca,Mg等及びこれらの水素化物が挙げら
れる。これらは、粒状または粉末状で使用されるが、粒
度4メッシュ以下の金属カルシウムが好ましい。また、
アルカリ金属塩化物及びアルカリ土類金属塩化物から選
ばれる少なくとも1種は、加熱工程において、前記Mの
粉末や直接還元拡散反応により生成した合金粉末粒子が
互いに融着、粒成長するのを抑制する作用を有してい
る。従って、湿式処理工程において、反応生成混合物の
崩壊が容易に起こる。これらの塩化物としては、例えば
Li,Na,K,Ca,Mg等の塩化物が挙げられ、水
和物を含まない無水物が好ましい。また、加熱した際に
揮発性をほとんど示さず、コストの点でも有利である無
水CaCl2 が特に好ましい。これら塩化物の使用量
は、希土類金属酸化物の量に対して1〜20重量%が好
ましい。
At least one selected from alkali metals, alkaline earth metals and their hydrides, which is blended in the mixture, is used as a reducing agent, for example, Li,
Examples thereof include Na, K, Ca, Mg, and hydrides thereof. These are used in the form of particles or powder, and metallic calcium having a particle size of 4 mesh or less is preferable. Also,
At least one selected from an alkali metal chloride and an alkaline earth metal chloride suppresses fusion of the M powder and alloy powder particles generated by the direct reduction diffusion reaction with each other in the heating step, and suppresses grain growth. Has an effect. Therefore, in the wet treatment process, the reaction product mixture is easily disintegrated. Examples of these chlorides include chlorides such as Li, Na, K, Ca, and Mg, and anhydrides containing no hydrate are preferable. Further, anhydrous CaCl 2 is particularly preferable because it exhibits almost no volatility when heated and is advantageous in terms of cost. The amount of these chlorides used is preferably 1 to 20% by weight with respect to the amount of rare earth metal oxide.

【0010】上述した各原料を混合し、この混合物をア
ルゴン等の不活性ガス雰囲気中または真空下で900〜
1300℃まで加熱することにより、直接還元拡散反応
を行なう。これを真空下で行なう場合、真空度は10-2
トール以上が好ましい。
The above-mentioned raw materials are mixed, and the mixture is heated to 900 to 900 in an atmosphere of an inert gas such as argon or under vacuum.
A direct reduction diffusion reaction is performed by heating to 1300 ° C. If this is done under vacuum, the degree of vacuum is 10 -2.
More than torr is preferred.

【0011】本発明においては、上記加熱を、混合物に
0.1kg/cm2 以上の圧縮力を掛けながら行なうこ
とが極めて重要である。このようにすることにより、ア
ルカリ金属塩化物及びアルカリ土類金属塩化物が合金粉
末粒子が融着、粒成長するのを抑制する前記作用が大幅
に増大する。これは、上記加熱により溶融した上記塩化
物が圧縮力を受け、混合物中粒子間の間隙をより広範囲
に浸透、分散するためであると考えられる。このような
作用を有効に発揮するために、圧縮力は0.1kg/c
2 以上とする必要がある。但し、圧縮力が高すぎる
と、上記塩化物が混合物から滲み出て無駄となる傾向が
生じ、却って上記作用に寄与する塩化物量が減少する。
In the present invention, it is extremely important to perform the above heating while applying a compressive force of 0.1 kg / cm 2 or more to the mixture. By doing so, the above-mentioned action of suppressing the alloy powder particles from being fused and the particle growth of the alkali metal chloride and the alkaline earth metal chloride is significantly increased. It is considered that this is because the chloride melted by the above heating receives a compressive force and permeates and disperses a wider range between the particles in the mixture. In order to effectively exert such an action, the compressive force is 0.1 kg / c.
It is required to be m 2 or more. However, if the compressive force is too high, the chloride tends to exude from the mixture and be wasted, and the amount of chloride contributing to the above action is rather decreased.

【0012】前記加熱後の混合物は、冷却され、得られ
た反応生成混合物は湿式処理に供される。
The mixture after heating is cooled, and the obtained reaction product mixture is subjected to wet treatment.

【0013】上記のようにすることによって、加熱の際
圧縮力を掛けることなく製造された合金粉末に比べて、
粒成長が大幅に抑制された、即ち極めてより細かい粒度
の合金粉末を製造することができる。
By the above, as compared with the alloy powder produced without applying compressive force during heating,
It is possible to produce alloy powders with significantly suppressed grain growth, that is to say with extremely fine grain sizes.

【0014】[0014]

【実施例】【Example】

実施例1 平均粒度3.3μmのNd2 3 粉末(純度99.9重
量%以上、以下重量%を%と記す)72.6g、平均粒
度3.0μmのDy2 3 粉末(純度99.9%以上)
4.6g、平均粒度5.2μmのFe−B合金(B:1
9.1%)粉末17.3g、平均粒度5.3μmのFe
粉(純度99.5%以上)124.3g、粒度4メッシ
ュ以下の金属Ca(純度99%以上)40.8g及び粒
度100メッシュ以下の無水CaCl2 7.7gを十分
に混合した。この混合物を、内部が直径8cm、高さ3
0cmの円筒状のステンレス鋼製反応容器に装入し、該
混合物の上に直径7.8cm、厚さ5mmのステンレス
鋼板を載せ、更にその上に6.5kgのステンレス鋼球
(直径4〜50mm)を装入した直径7.5cm、高さ
40cmのステンレス鋼製容器を載せた(掛けた圧縮力
0.15kg/cm2 )。反応容器内を高純度Arガス
雰囲気とし、980℃まで70分で昇温し、その温度で
3時間保持した後、室温まで冷却した。
Example 1 72.6 g of Nd 2 O 3 powder having an average particle size of 3.3 μm (purity 99.9% by weight or more; hereinafter, wt% is referred to as%) and Dy 2 O 3 powder having an average particle size of 3.0 μm (purity 99. 9% or more)
Fe-B alloy (B: 1, 4.6 g, average particle size 5.2 μm)
9.1%) powder 17.3 g, average particle size 5.3 μm Fe
124.3 g of powder (purity of 99.5% or more), 40.8 g of metallic Ca having a particle size of 4 mesh or less (purity of 99% or more), and 7.7 g of anhydrous CaCl 2 having a particle size of 100 mesh or less were sufficiently mixed. This mixture has an inner diameter of 8 cm and a height of 3
It is charged in a 0 cm cylindrical stainless steel reaction vessel, a stainless steel plate having a diameter of 7.8 cm and a thickness of 5 mm is placed on the mixture, and further 6.5 kg of stainless steel balls (diameter 4 to 50 mm). ) Was placed on a stainless steel container having a diameter of 7.5 cm and a height of 40 cm (compressed force applied was 0.15 kg / cm 2 ). The inside of the reaction vessel was set to a high-purity Ar gas atmosphere, the temperature was raised to 980 ° C. in 70 minutes, the temperature was maintained for 3 hours, and then cooled to room temperature.

【0015】得られた反応生成混合物を約1cm大の塊
状に粗砕した後、10 lの純水中に投入し、約60分
撹拌し水中崩壊させてスラリー状にした。このスラリー
からCa(OH)2 を主成分とする上層部の白色懸濁物
をデカンテーションにより分離した後、再び注水し、ス
ラリーを5分間撹拌し、デカンテーションを行なった。
この注水−撹拌−デカンテーションの操作を繰り返しC
a成分を十分に除去した後、濾過した。得られた合金粉
末をエタノールで洗浄し、次に、40℃、1×10-2
orrで8時間真空乾燥して、192.1gの合金粉末
を得た。
The resulting reaction product mixture was roughly crushed into a lump having a size of about 1 cm and then poured into 10 l of pure water, stirred for about 60 minutes and disintegrated in water to form a slurry. The white suspension of the upper layer containing Ca (OH) 2 as the main component was separated from this slurry by decantation, and then water was poured again, and the slurry was stirred for 5 minutes and decanted.
This operation of water injection-stirring-decantation is repeated C
After sufficiently removing the component a, it was filtered. The obtained alloy powder is washed with ethanol, then at 40 ° C., 1 × 10 −2 t
Vacuum-dried at orr for 8 hours to obtain 192.1 g of alloy powder.

【0016】この合金粉末の組成は、Nd:28.4
%、Dy:18.0%、B:1.39%、Ca:0.0
6%、酸素:0.18%、C:0.022%であり、平
均粒度は18.0μmであった。
The composition of this alloy powder is Nd: 28.4.
%, Dy: 18.0%, B: 1.39%, Ca: 0.0
6%, oxygen: 0.18%, C: 0.022%, and the average particle size was 18.0 μm.

【0017】比較例1 反応容器内に装入した混合物上にステンレス鋼の重錘を
載せなかった以外は、実施例1と同様に試験した。その
結果を表1に示す。
Comparative Example 1 A test was conducted in the same manner as in Example 1 except that the stainless steel weight was not placed on the mixture charged in the reaction vessel. The results are shown in Table 1.

【0018】比較例2 無水CaCl2 の配合量を16.0gとした以外は、比
較例1と同様に試験した。その結果を表1に示す。
Comparative Example 2 A test was conducted in the same manner as in Comparative Example 1 except that the amount of anhydrous CaCl 2 blended was 16.0 g. The results are shown in Table 1.

【0019】比較例3 ステンレス鋼板の上に3.0kgのステンレス鋼球(直
径4〜50mm)を装入したステンレス鋼製容器を載せ
た(掛けた圧縮力0.07kg/cm2 )以外は、実施
例1と同様に試験した。その結果を表1に示す。
Comparative Example 3 A stainless steel container having 3.0 kg of stainless steel balls (4 to 50 mm in diameter) placed on a stainless steel plate was placed (compressed force of 0.07 kg / cm 2 ), except that The same test as in Example 1 was carried out. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明によれば、直接還元拡散法により
粒度の増大化を大幅に抑制した希土類金属を含む合金粉
末を製造することができる。
According to the present invention, it is possible to produce an alloy powder containing a rare earth metal in which the increase in particle size is significantly suppressed by the direct reduction diffusion method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属酸化物の粉末と、Ni,M
n,Co,Al,Fe,Cu,Si,Mo,Cr,Z
r,B,Nb,Ta,Ti,V,W,Sn及びGaから
選ばれる少なくとも1種のMの粉末と、アルカリ金属、
アルカリ土類金属及びこれらの水素化物から選ばれる少
なくとも1種と、アルカリ金属塩化物及びアルカリ土類
金属塩化物から選ばれる少なくとも1種とを混合し、不
活性ガス雰囲気中または真空下、該混合物に0.1kg
/cm2 以上の圧縮力を掛けながら該混合物を900〜
1300℃まで加熱した後、冷却し、得られた反応生成
混合物を湿式処理することからなる希土類金属を含む合
金粉末の製造方法。
1. A rare earth metal oxide powder, and Ni, M
n, Co, Al, Fe, Cu, Si, Mo, Cr, Z
at least one powder of M selected from r, B, Nb, Ta, Ti, V, W, Sn and Ga, and an alkali metal,
At least one selected from alkaline earth metals and hydrides thereof and at least one selected from alkali metal chlorides and alkaline earth metal chlorides are mixed, and the mixture is mixed in an inert gas atmosphere or under vacuum. 0.1 kg
900 ~ / cm 2 while applying a compressive force of 900 ~
A method for producing an alloy powder containing a rare earth metal, which comprises heating to 1300 ° C., then cooling, and subjecting the obtained reaction product mixture to wet treatment.
JP5225993A 1993-09-10 1993-09-10 Production of alloy powder containing rare earth metal Pending JPH0776709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225993A JPH0776709A (en) 1993-09-10 1993-09-10 Production of alloy powder containing rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5225993A JPH0776709A (en) 1993-09-10 1993-09-10 Production of alloy powder containing rare earth metal

Publications (1)

Publication Number Publication Date
JPH0776709A true JPH0776709A (en) 1995-03-20

Family

ID=16838116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225993A Pending JPH0776709A (en) 1993-09-10 1993-09-10 Production of alloy powder containing rare earth metal

Country Status (1)

Country Link
JP (1) JPH0776709A (en)

Similar Documents

Publication Publication Date Title
JP2649245B2 (en) Method for producing tough and porous getter by hydrogen grinding and getter produced therefrom
US4770702A (en) Process for producing the rare earth alloy powders
US4681623A (en) Process for producing alloy powder containing rare earth metals
US4769063A (en) Method for producing rare earth alloy
JP3304726B2 (en) Rare earth-iron-nitrogen magnet alloy
JP2013001985A (en) Rare-earth transition metal-based alloy powder and method for producing the same
JPH08167515A (en) Manufacturing for material of r-f-b-based permanent magnet
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
US4898613A (en) Rare earth alloy powder used in production of permanent magnets
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JPH0776709A (en) Production of alloy powder containing rare earth metal
JP2022119057A (en) Method for manufacturing rare earth permanent magnet
JP3049874B2 (en) Method for producing alloy powder containing rare earth metal
JPH09157803A (en) Rare earth-iron base alloy
JP2718314B2 (en) Method for producing alloy powder containing rare earth metal
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JPH0548281B2 (en)
JPH0582319A (en) Permanent magnet
JPH06279815A (en) Production of alloy powder containing rare earth metal
JPH0797608A (en) Production of alloy powder containing rare earth metal
JPH03167803A (en) Manufacture of rare-earth permanent magnet
JPH04107244A (en) Rare earth magnet material and its manufacture
JP3474683B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JPH0582442B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees