JPH0776706A - Heating method and device for titanium powder production - Google Patents

Heating method and device for titanium powder production

Info

Publication number
JPH0776706A
JPH0776706A JP22262593A JP22262593A JPH0776706A JP H0776706 A JPH0776706 A JP H0776706A JP 22262593 A JP22262593 A JP 22262593A JP 22262593 A JP22262593 A JP 22262593A JP H0776706 A JPH0776706 A JP H0776706A
Authority
JP
Japan
Prior art keywords
titanium
vessel
furnace
powder
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22262593A
Other languages
Japanese (ja)
Inventor
Noboru Takaku
昇 高久
Hideki Fujii
秀樹 藤井
Masao Yamamiya
昌夫 山宮
Michio Tamura
道夫 田村
Wataru Kagohashi
亘 籠橋
Hidekazu Fukazawa
英一 深澤
Ryoji Murayama
良治 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toho Titanium Co Ltd
Original Assignee
Nippon Steel Corp
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toho Titanium Co Ltd filed Critical Nippon Steel Corp
Priority to JP22262593A priority Critical patent/JPH0776706A/en
Publication of JPH0776706A publication Critical patent/JPH0776706A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve productivity and to reduce a production cost by enhancing heating efficiency and shortening the heating time at the time of a hydrogenation treatment and dehydrogenation treatment in production of titanium powder by a hydrogenation and dehydrogenation method. CONSTITUTION:This heating method comprises charging raw material titanium 13 or titanium hydride powder into a vessel 1 and heating the titanium powder by heaters 4, 5 arranged on the outer side and inside of the vessel 1. The heating device consists of the hydrogenation treating vessel 1 or the dehydrogenation treating vessel and a furnace 3 covering this vessel, is provided with a hollow part exclusive at the central part of the hydrogenation treating vessel of a gap made to remain in the upper part in the vessel, is provided with the hollow part 6 at the central part of the dehydrogenation treating vessel 1 and has an internal heater in this hollow part 6 and a furnace wall heater 5 on the inside wall of the furnace 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金原料としての
純チタン粉末またはチタン合金粉末(本明細書ではこれ
らを総称してチタン粉末という)を、水素化脱水素法
(以下HDH法という)により製造する際の、原料チタ
ンの水素化処理と水素化チタン粉末の脱水素化処理にお
ける加熱方法およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a pure titanium powder or a titanium alloy powder (herein collectively referred to as titanium powder) as a powder metallurgical raw material by a hydrodehydrogenation method (hereinafter referred to as HDH method). The present invention relates to a heating method and apparatus for hydrogenating raw material titanium and dehydrogenating titanium hydride powder during production.

【0002】[0002]

【従来の技術】チタン合金は比強度が高く、耐熱性およ
び耐食性に優れており、航空機等の材料として極めて有
効な特性を具備しているが、溶解、鍛造や圧延等の熱間
加工性および切削加工性に難点がある。このため、加工
費低減や歩留向上の観点から、最終形状に近い半製品を
直接製造する技術として、粉末冶金法が有望になってい
る。粉末冶金によりチタン合金を製造する場合、原料と
して純チタン粉末と合金元素添加用粉末の混合粉末を用
いる方法、およびチタン合金粉末を用いる方法がある。
2. Description of the Related Art Titanium alloys have high specific strength, excellent heat resistance and corrosion resistance, and have properties that are extremely effective as materials for aircraft and the like, but hot workability such as melting, forging and rolling and Difficulty in machinability. Therefore, from the viewpoint of reducing the processing cost and improving the yield, the powder metallurgy method is promising as a technique for directly manufacturing a semi-finished product having a final shape. When a titanium alloy is manufactured by powder metallurgy, there are a method of using a mixed powder of pure titanium powder and a powder for adding an alloy element as a raw material, and a method of using a titanium alloy powder.

【0003】純チタン粉末の製造方法としては、スポン
ジチタンを機械的に直接粉砕して粉末とする方法もある
が、スポンジチタンは展延性に富むため、粉砕するのが
困難であり、また、得られたとしても塩素分が多いた
め、粉末冶金用としては低品質のものとなる。一方、チ
タン粉末の製造方法として、純チタンまたはチタン合金
(以下これらを総称してチタンという)の融液をガスで
飛散させて粉末とするアトマイズ法、あるいはチタン電
極を回転させ、プラズマ等で溶融し、遠心力で飛散させ
て粉末とする回転電極法がある。これらの方法によれ
ば、比較的純度の高いチタン粉末が得られるが、粉末個
々の形状や粒度、コスト等に難点がある。
As a method of producing pure titanium powder, there is a method of directly mechanically crushing titanium sponge into powder, but since titanium sponge is rich in spreadability, it is difficult to pulverize it, and Even if it is produced, it will be of low quality for powder metallurgy due to its high chlorine content. On the other hand, as a method for producing titanium powder, an atomizing method in which a melt of pure titanium or a titanium alloy (hereinafter collectively referred to as titanium) is dispersed by a gas to form powder, or a titanium electrode is rotated and melted by plasma or the like. Then, there is a rotating electrode method in which the powder is dispersed by centrifugal force. According to these methods, a titanium powder having a relatively high purity can be obtained, but there are problems in the shape, particle size, cost, etc. of each powder.

【0004】このため、チタンを水素化処理して脆弱な
チタン水素化物とし、これを機械的に粉砕して粉末にし
た後、真空加熱等により脱水素してチタン粉末を得るH
DH法による方法が一般的に採用されている。水素化処
理して常温で脆弱なチタン水素化物を得るためには、水
素を約3重量%以上吸収させる必要がある。この水素を
約3重量%以上含有する水素化物は一般にδ相といわれ
ている。そして、チタンの水素化は300〜500℃の
低温域が最も効率が良いとされているが、原料であるチ
タンの表層には、水素侵入のバリヤーとなる酸化層が存
在するため、500〜600℃以上に加熱し、この酸化
層を内部拡散させて無害化することが望ましい。そこ
で、原料チタンを600〜700℃に加熱した後、徐々
に冷却して水素化を行うことが効率的な操業法である。
For this reason, titanium is hydrogenated to give a brittle titanium hydride, which is mechanically pulverized into powder and then dehydrogenated by vacuum heating or the like to obtain titanium powder H
The method based on the DH method is generally adopted. In order to obtain a brittle titanium hydride at room temperature by hydrotreating, it is necessary to absorb about 3% by weight or more of hydrogen. A hydride containing about 3% by weight or more of hydrogen is generally called a δ phase. And, it is said that the hydrogenation of titanium is most efficient in the low temperature range of 300 to 500 ° C., but since the surface layer of titanium as a raw material has an oxide layer which serves as a barrier for hydrogen penetration, it is 500 to 600. It is desirable to heat the material at a temperature of not less than 0 ° C. to internally diffuse the oxide layer to render it harmless. Therefore, an efficient operating method is to heat the raw material titanium to 600 to 700 ° C. and then gradually cool it to perform hydrogenation.

【0005】従来のHDH法における水素化処理は、図
4に示すような装置により行われていた。すなわち、原
料チタン13を水素化処理容器1に装入し、炉3で覆
い、容器1内を排気した後、炉壁ヒーター5により加熱
し、原料チタン13の外周部が600〜700℃に達し
たら、炉壁ヒーター5をOFFにして炉を取外し、水素
ガスを導入する。すると原料チタン13の水素化が進行
し、発熱反応により、中心部に向かって温度が上昇し1
000℃弱まで過熱される。この間、水素化処理容器1
内が所定の圧に保たれるよう水素ガスを補充し、水素化
が完了したら、水素ガスの供給を停止し、室温まで冷却
する。なお図4において、7は種々の形状の原料チタン
を保持する内筒、10は排気管、11は水素ガス等のガ
ス導入管である。
The hydrogenation process in the conventional HDH method has been carried out by an apparatus as shown in FIG. That is, the raw material titanium 13 is charged into the hydrotreating vessel 1, covered with the furnace 3, the vessel 1 is evacuated, and then heated by the furnace wall heater 5, so that the outer peripheral portion of the raw material titanium 13 reaches 600 to 700 ° C. Then, the furnace wall heater 5 is turned off, the furnace is removed, and hydrogen gas is introduced. Then, hydrogenation of the raw material titanium 13 proceeds, and the temperature rises toward the center due to the exothermic reaction.
Overheated to less than 000 ℃. During this time, the hydrotreatment container 1
Hydrogen gas is replenished so that the inside is kept at a predetermined pressure, and when hydrogenation is completed, the supply of hydrogen gas is stopped and the temperature is cooled to room temperature. In FIG. 4, 7 is an inner cylinder for holding various shapes of raw material titanium, 10 is an exhaust pipe, and 11 is a gas introduction pipe for hydrogen gas or the like.

【0006】チタンの水素化処理における加熱手段とし
て、特公昭50−17956号公報には、原料チタンが
入った容器の一部を加熱して反応着火させ、その後の水
素化反応は自己発熱作用の熱伝播で高温反応帯を形成
し、順次未反応部分へ移行させ、全体を水素化する方法
が提案されている。しかし、この方法では、容器内の原
料チタンの一端から順次発熱反応が進行するため、やは
り加熱に長時間を要するとともに、容器自体の温度分布
が不均質になり、その熱歪により容器が損傷を受け、安
全上の問題が生じるおそれがあった。
As a heating means in the hydrogenation treatment of titanium, Japanese Patent Publication No. 50-17956 discloses heating a part of a container containing titanium as a raw material for reaction ignition, and the subsequent hydrogenation reaction is self-heating. A method has been proposed in which a high-temperature reaction zone is formed by heat propagation, successively transferred to an unreacted portion, and the whole is hydrogenated. However, in this method, since the exothermic reaction progresses sequentially from one end of the raw material titanium in the container, it also takes a long time for heating and the temperature distribution of the container itself becomes inhomogeneous, and the thermal strain causes damage to the container. However, there was a risk of safety issues.

【0007】つぎに、従来のHDH法における脱水素処
理は、図5に示すような装置により行われていた。すな
わち、水素化チタン粉末14を皿状のトレイ8に収容し
て脱水素化処理容器2内に多段に積み、炉3で覆い、容
器2内を排気し、炉壁ヒーター5により600〜700
℃に加熱し、発生する水素ガスを排気する。脱水素化が
完了したら、炉壁ヒーター5をOFFにし、炉3を取り
外し、室温まで冷却する。なお図5において、9はトレ
イ8の縁部に設けられたガス流通用の切欠である。
Next, the dehydrogenation process in the conventional HDH method has been carried out by an apparatus as shown in FIG. That is, the titanium hydride powder 14 is housed in a dish-shaped tray 8 and stacked in multiple stages in the dehydrogenation treatment container 2, covered with a furnace 3, the interior of the container 2 is evacuated, and the furnace wall heater 5 is used for 600 to 700.
It is heated to ℃ and the generated hydrogen gas is exhausted. When the dehydrogenation is completed, the furnace wall heater 5 is turned off, the furnace 3 is removed, and it is cooled to room temperature. In FIG. 5, reference numeral 9 is a notch for gas flow provided on the edge of the tray 8.

【0008】[0008]

【発明が解決しようとする課題】上記従来技術の水素化
処理においては、原料チタン13は、炉壁ヒーター5に
より、水素化処理容器1を介して輻射加熱されていたた
め、加熱に長時間を要していた。水素ガスを充填した後
に加熱しても、容器内のガス圧は、安全を考慮して大気
圧程度であるため、ガスの対流はほとんどなく、加熱時
間の短縮効果は得られなかった。一方、上記従来技術の
脱水素化処理においても、水素化チタン粉末14は、炉
壁ヒーター5により、脱水素化処理容器2を介して輻射
加熱されていたため、加熱に長時間を要していた。脱水
素化反応は吸熱反応であるため、容器中心部の温度が上
昇するのに長時間を要し、さらに排気しつつ加熱するの
で、容器内のガス対流がほとんどなく、加熱効率が悪か
った。加熱時間短縮のために、炉壁ヒーター5の設定温
度を高めにすると、脱水素化粉が疑似焼結するおそれが
生じるという問題があった。
In the above-mentioned prior art hydrotreating, the raw material titanium 13 was radiantly heated by the furnace wall heater 5 through the hydrotreating vessel 1, so that it takes a long time to heat it. Was. Even after heating after filling with hydrogen gas, the gas pressure in the container was about atmospheric pressure in consideration of safety, so that there was almost no gas convection and the effect of shortening the heating time was not obtained. On the other hand, even in the dehydrogenation treatment of the above-mentioned conventional technique, the titanium hydride powder 14 was radiantly heated by the furnace wall heater 5 through the dehydrogenation treatment container 2, so that heating took a long time. . Since the dehydrogenation reaction is an endothermic reaction, it takes a long time for the temperature in the central part of the container to rise, and since the heating is performed while exhausting the gas, there is almost no gas convection in the container and the heating efficiency is poor. If the set temperature of the furnace wall heater 5 is increased to shorten the heating time, there is a problem that the dehydrogenated powder may be pseudo-sintered.

【0009】本発明は、HDH法によるチタン粉末の製
造において、水素化処理時および脱水素化処理時の加熱
効率を、安全性を維持して高め、加熱時間を短縮するこ
とにより、生産性の向上並びに生産コストの削減を図る
ことを目的とする。
According to the present invention, in the production of titanium powder by the HDH method, the heating efficiency during the hydrogenation treatment and the dehydrogenation treatment is increased while maintaining the safety and the heating time is shortened, thereby improving the productivity. The objective is to improve and reduce production costs.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の構成を要旨とする。請求項1は、H
DH法において、原料チタンを水素化処理容器に装入
し、該容器の外側および内部に配設されたヒーターによ
り加熱することを特徴とするチタン粉末製造における加
熱方法である。請求項2は、おなじくHDH法におい
て、水素化チタン粉末を脱水素化処理容器に装入し、該
容器の外側および内部に配設されたヒーターにより加熱
することを特徴とするチタン粉末製造における加熱方法
である。
In order to achieve the above object, the present invention has the following structures. Claim 1 is H
In the DH method, a raw material titanium is charged into a hydrotreating vessel and heated by heaters arranged outside and inside the vessel, which is a heating method in titanium powder production. Claim 2 is the same as in the HDH method, wherein titanium hydride powder is charged into a dehydrogenation treatment container and heated by heaters arranged outside and inside the container. Is the way.

【0011】請求項3は、水素化処理容器および該容器
を覆う炉からなり、水素化処理容器の中心部に、該容器
内の上部に空隙を残して中空部が設けられ、該中空部内
に内部ヒーターを有し、炉の内壁に炉壁ヒーターを有し
ていることを特徴とするチタン粉末製造における加熱装
置である。請求項4は、脱水素化処理容器および該容器
を覆う炉からなり、脱水素化処理容器の中心部に中空部
が設けられ、該中空部内に内部ヒーターを有し、炉の内
壁に炉壁ヒーターを有していることを特徴とするチタン
粉末製造における加熱装置である。
A third aspect of the present invention comprises a hydrotreating vessel and a furnace for covering the vessel, wherein a hollow portion is provided in the center of the hydrotreating vessel leaving an upper space inside the vessel, and a void is left in the hollow portion. A heating device for producing titanium powder, comprising an internal heater and a furnace wall heater on the inner wall of the furnace. A fourth aspect of the present invention comprises a dehydrogenation treatment container and a furnace covering the vessel, wherein a hollow portion is provided at the center of the dehydrogenation treatment container, an internal heater is provided in the hollow portion, and a furnace wall is provided on the inner wall of the furnace. A heating device in the production of titanium powder, characterized by having a heater.

【0012】なお、本発明において、「チタン」は純チ
タンまたはチタン合金を総称したものである。すなわ
ち、原料チタンは純チタンでもチタン合金でもよく、ま
た水素化チタン粉末は、純チタンを水素化した粉末で
も、チタン合金を水素化した粉末でもよい。
In the present invention, "titanium" is a general term for pure titanium or titanium alloy. That is, the raw material titanium may be pure titanium or a titanium alloy, and the titanium hydride powder may be a pure hydrogenated powder or a titanium alloy hydrogenated powder.

【0013】[0013]

【作用】以下、図面により本発明を詳細に説明する。図
1は、本発明の請求項1の方法および請求項3の装置例
を示す中央部断面斜視図である。図2は、本発明の請求
項2の方法および請求項4の装置例を示す中央部断面斜
視図である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional perspective view of a central portion showing an example of the method of claim 1 and the apparatus of claim 3 of the present invention. FIG. 2 is a cross-sectional perspective view of a central portion showing an example of the method of claim 2 and the apparatus of claim 4 of the present invention.

【0014】請求項1の方法は、図1の例に示すよう
に、まず水素化処理容器1に原料チタン13を内筒7で
保持して装入し、炉3で覆い、容器1内を排気管10よ
り排気する。原料チタン13としては、スポンジチタ
ン、チタン製品あるいは中間製品の切削屑、端切れ材等
のスクラップが適用できる。水素化処理容器1内中央の
中空部6には内部ヒーター4が、炉3の内壁には炉壁ヒ
ーター5が、それぞれ設けてあり、容器1内を排気した
後、内部ヒーター4および炉壁ヒーター5をONにし
て、原料チタン13を加熱する。このように本発明法で
は、原料チタン13は内外から加熱されるので、短時間
で600〜700℃の所定温度に達し、水素侵入のバリ
ヤーとなる表面の酸化層が内部に拡散する。
According to the method of claim 1, as shown in the example of FIG. 1, first, the raw material titanium 13 is loaded into the hydrotreating vessel 1 while being held by the inner cylinder 7, and is covered with the furnace 3 to cover the inside of the vessel 1. Exhaust from the exhaust pipe 10. As the raw material titanium 13, sponge titanium, scraps of titanium products or intermediate products, scraps such as scraps, etc. can be applied. An internal heater 4 is provided in a hollow portion 6 in the center of the hydrotreating vessel 1, and an oven wall heater 5 is provided on the inner wall of the furnace 3. After exhausting the interior of the vessel 1, the internal heater 4 and the oven wall heater are provided. 5 is turned on to heat the raw material titanium 13. As described above, in the method of the present invention, since the raw material titanium 13 is heated from the inside and outside, it reaches a predetermined temperature of 600 to 700 ° C. in a short time, and the oxide layer on the surface serving as a barrier for hydrogen penetration diffuses inside.

【0015】その後は前記従来法と同様、ガス導入管1
1から水素ガスを導入し、内部ヒーター4および炉壁ヒ
ーター5をOFFにし、炉3を取外して容器1を風冷す
る。水素ガスは、容器1内が所定圧に保たれるように補
充し、原料チタン13は反応熱により自己燃焼しながら
水素化が進行して1000℃弱まで温度上昇するが、水
素化の終了とともに温度降下する。降温中も原料チタン
13は水素を吸収し、水素を殆ど吸収しなくなる300
℃以下で、導入ガスをアルゴンに切替え、室温まで冷却
した後、容器1から取出し、水素化処理が終了する。な
お、図1において、12は導入した水素ガス中の不純物
を取り除くためのゲッター材である。
After that, as in the conventional method, the gas introduction pipe 1
Hydrogen gas is introduced from 1, the internal heater 4 and the furnace wall heater 5 are turned off, the furnace 3 is removed, and the container 1 is air-cooled. Hydrogen gas is replenished so that the inside of the container 1 is maintained at a predetermined pressure, and the raw material titanium 13 undergoes hydrogenation while self-combusting due to the reaction heat and the temperature rises to a little less than 1000 ° C. The temperature drops. The material titanium 13 absorbs hydrogen even when the temperature is lowered, and hardly absorbs hydrogen.
At a temperature of not higher than 0 ° C., the introduced gas is switched to argon, cooled to room temperature, taken out from the container 1, and the hydrogenation treatment is completed. In FIG. 1, 12 is a getter material for removing impurities in the introduced hydrogen gas.

【0016】請求項2の方法は、図2の例に示すよう
に、まず水素化チタン粉末14を脱水素化処理容器2に
装入し、炉3で覆い、容器2内を排気管10より排気す
る。水素化チタン粉末14としては、上記原料チタン1
3を水素化処理し、粉砕し、篩別したもの等を用いるこ
とができ、粉末14を、中心部に孔のあるトレイ8に3
0〜50mm程度の層厚にして収容し、脱水素化処理容器
2内に多段に積む。容器2内の中央には、トレイ8の孔
を貫通する中空部6があり、そこに内部ヒーター4が設
けてある。炉3の内壁には炉壁ヒーター5が設けてあ
り、容器2内を排気した後、内部ヒーター4および炉壁
ヒーター5をONにして水素化チタン粉末14を加熱す
る。
According to the method of claim 2, as shown in the example of FIG. 2, first, titanium hydride powder 14 is charged into the dehydrogenation treatment container 2, covered with a furnace 3, and the inside of the container 2 is exhausted from the exhaust pipe 10. Exhaust. As the titanium hydride powder 14, the raw material titanium 1 is used.
3 which has been hydrotreated, crushed and sieved can be used, and the powder 14 is placed in a tray 8 having a hole in the center thereof.
It is housed in a layer thickness of about 0 to 50 mm and stacked in multiple stages in the dehydrogenation treatment container 2. At the center of the container 2, there is a hollow portion 6 penetrating the hole of the tray 8 and an internal heater 4 is provided therein. A furnace wall heater 5 is provided on the inner wall of the furnace 3. After the inside of the container 2 is evacuated, the internal heater 4 and the furnace wall heater 5 are turned on to heat the titanium hydride powder 14.

【0017】このような本発明法では、水素化チタン粉
末14は内外から加熱されるので、短時間に600〜7
00℃の所定温度に達し、脱水素化が進行する。脱水素
化は吸熱反応であるため、反応中は熱の供給が必要であ
るが、本発明法では内外から加熱されるので反応の進行
も速い。発生した水素ガスは、中空部6に設けられた通
気孔(図示せず)を経て排気管10から排気される。脱
水素化終了後は、内部ヒーター4および炉壁ヒーター5
をOFFにし、炉3を取外して容器2を風冷し、冷却ア
ルゴンガスをガス導入管11から導入して室温まで冷却
した後、粉末14を取出す。なお、図2に示すように、
トレイ8には外周縁に切欠9が設けてあるほか、内周の
縁にも切欠9が設けてあり、容器2の内外からの加熱が
効率よく行われる。
In such a method of the present invention, since the titanium hydride powder 14 is heated from the inside and outside, 600 to 7 in a short time.
A predetermined temperature of 00 ° C. is reached and dehydrogenation proceeds. Since dehydrogenation is an endothermic reaction, it is necessary to supply heat during the reaction, but in the method of the present invention, the reaction proceeds rapidly because it is heated from inside and outside. The generated hydrogen gas is exhausted from the exhaust pipe 10 through a vent hole (not shown) provided in the hollow portion 6. After completion of dehydrogenation, internal heater 4 and furnace wall heater 5
Is turned off, the furnace 3 is removed, the container 2 is air-cooled, cooling argon gas is introduced through the gas introduction pipe 11 and cooled to room temperature, and then the powder 14 is taken out. In addition, as shown in FIG.
Notches 9 are provided on the outer peripheral edge of the tray 8 as well as notches 9 on the inner peripheral edge, so that the container 2 can be efficiently heated from the inside and the outside.

【0018】請求項3の装置は、図1の例に示すよう
に、水素化処理容器1の中心部に中空部6が設けられ、
中空部6内に内部ヒーター5を有し、中空部6の上方に
空隙がある。この空隙は、容器1の上部には全面に原料
チタン13が入るようにするために必要である。そして
容器1を覆う炉3の内壁に炉壁ヒーター5を有してい
る。このような本発明装置によれば、原料チタンは、中
心部および下方から、内部ヒーター4により加熱される
とともに、外方から炉壁ヒーター5により加熱されるの
で、短時間で所定の温度に達することができる。また図
1の例では、原料チタン13の上面がゲッター材12で
覆われており、水素ガスは、ガス導入管11から、水素
化処理容器1と内筒7の間隙を通って、上方から内筒7
内に入るようになっている。このため、水素ガス中の不
純物が、ゲッター材12により除去され、原料チタン1
3は酸化等の汚染を受けることがない。しかし、容器1
の外あるいは入口にて、ガス導入管11の経路にゲッタ
ー材12を置くようにすれば、図1のように容器1内に
ゲッター材12を入れる必要はなく、その場合は内筒7
の側壁が通気孔を有していてもよい。また、中空部6に
通気孔を設け、水素ガスを中空部6を経て容器1内に導
入してもよい。
In the apparatus of claim 3, as shown in the example of FIG. 1, a hollow portion 6 is provided at the center of the hydrotreating vessel 1,
There is an internal heater 5 in the hollow portion 6, and there is a void above the hollow portion 6. This void is necessary to allow the raw material titanium 13 to enter the entire upper surface of the container 1. A furnace wall heater 5 is provided on the inner wall of the furnace 3 that covers the container 1. According to such an apparatus of the present invention, the raw material titanium is heated by the internal heater 4 from the center and from below and is also heated by the furnace wall heater 5 from the outside, and thus reaches a predetermined temperature in a short time. be able to. In addition, in the example of FIG. 1, the upper surface of the raw material titanium 13 is covered with the getter material 12, and the hydrogen gas passes from the gas introduction pipe 11 through the gap between the hydrotreating container 1 and the inner cylinder 7 and enters from above. Tube 7
It is designed to go inside. Therefore, the impurities in the hydrogen gas are removed by the getter material 12, and the raw material titanium 1
No. 3 does not suffer from pollution such as oxidation. But container 1
If the getter material 12 is placed in the path of the gas introduction pipe 11 outside or at the inlet of the container 1, it is not necessary to put the getter material 12 in the container 1 as shown in FIG.
May have a vent hole in the side wall thereof. Further, a vent may be provided in the hollow portion 6 and hydrogen gas may be introduced into the container 1 through the hollow portion 6.

【0019】請求項4の装置は、図2の例に示すよう
に、脱水素化処理容器2の中心部に中空部6が設けら
れ、中空部6内に内部ヒーター5を有している。この請
求項4においては中空部6上方の空隙は必要ない。そし
て容器1を覆う炉3の内壁に炉壁ヒーター5を有してい
る。このような本発明装置によれば、水素化チタン粉末
14は、内部ヒーター4および炉壁ヒーター5により内
外から加熱されるので、短時間で所定の温度に達するこ
とができる。また、中空部6に通気孔を設け、図2に示
すように排気管10およびガス導入管11を中空部6に
設けることにより、反応により発生する水素ガスの排
出、および脱水素化終了後のアルゴンガス導入による冷
却が効果的に行える。
In the apparatus of claim 4, as shown in the example of FIG. 2, a hollow portion 6 is provided at the center of the dehydrogenation treatment container 2, and the hollow portion 6 has an internal heater 5. In this claim 4, the space above the hollow portion 6 is not necessary. A furnace wall heater 5 is provided on the inner wall of the furnace 3 that covers the container 1. According to such an apparatus of the present invention, the titanium hydride powder 14 is heated from the inside and outside by the internal heater 4 and the furnace wall heater 5, so that the predetermined temperature can be reached in a short time. Further, by providing a ventilation hole in the hollow portion 6 and providing an exhaust pipe 10 and a gas introduction pipe 11 in the hollow portion 6 as shown in FIG. 2, the hydrogen gas generated by the reaction is discharged and after the completion of dehydrogenation. Cooling can be effectively performed by introducing argon gas.

【0020】なお上記本発明の方法および装置におい
て、図1および図2のような装置のほか、図3のような
装置を適用することもできる。図3は水素化処理容器1
を載置した底壁15が、支持部材16により昇降可能に
なっており、図示位置にて、内部ヒーター4および炉3
の内壁に設けられた炉壁ヒーター5により、原料チタン
を加熱し、水素化処理を行った後、容器1を降下させ、
冷却コイル17により冷却することができる。また、脱
水素化処理においては、水素化処理容器1に替えて脱水
素化処理容器を底壁15に載設し、同様に昇降させて加
熱および冷却を行うことができる。
In addition to the apparatus shown in FIGS. 1 and 2, the apparatus shown in FIG. 3 can be applied to the method and apparatus of the present invention. FIG. 3 shows a hydrotreating vessel 1.
The bottom wall 15 on which is mounted is movable up and down by a support member 16, and at the position shown in the drawing, the internal heater 4 and the furnace 3
The raw material titanium is heated by the furnace wall heater 5 provided on the inner wall of the container and hydrogenated, and then the container 1 is lowered.
It can be cooled by the cooling coil 17. Further, in the dehydrogenation treatment, the dehydrogenation treatment container can be placed on the bottom wall 15 in place of the hydrotreatment treatment container 1, and similarly moved up and down for heating and cooling.

【0021】また上記本発明装置において、内部ヒータ
ー4および炉壁ヒーター5には、従来から一般に使用さ
れている、金属あるいは非金属の抵抗発熱体を採用する
ことができる。また、ラジアントチューブ型のガス燃焼
による間接加熱方式とすることもできる。内部ヒーター
4は中空部6内に設けるが、中空部6の雰囲気が、水素
化処理容器1あるいは脱水素化処理容器2と遮断されて
ない場合は、内部ヒーター4の取付部をシールすること
が必要である。また、中空部6に排気管10またはガス
導入管11を設け、これらの管に抵抗発熱体を巻いたも
のを内部ヒーター4とすることもできる。
In the apparatus of the present invention, the internal heater 4 and the furnace wall heater 5 may be made of a metal or non-metal resistance heating element which is generally used in the past. Alternatively, a radiant tube type indirect heating method using gas combustion may be used. The internal heater 4 is provided in the hollow portion 6. However, when the atmosphere of the hollow portion 6 is not blocked from the hydrogenation treatment container 1 or the dehydrogenation treatment container 2, the mounting portion of the internal heater 4 can be sealed. is necessary. Further, an exhaust pipe 10 or a gas introduction pipe 11 may be provided in the hollow portion 6, and a resistance heating element may be wound around these pipes to form the internal heater 4.

【0022】[0022]

【実施例】【Example】

(本発明例1) 図1に示すように、種々の形態の商用
純チタンスクラップからなる原料チタン13を150kg
内筒7に入れ、上部にゲッター材12を置き、水素化容
器1に装入して、排気管10より容器1内を10-3Torr
以下に排気した後、内部ヒーター4および炉壁ヒーター
5をONにし加熱した結果、ヒーターONから所定温度
650℃到達までの所要時間は150分であった。な
お、内部ヒーター4および中空部6がない他は上記本発
明例と同一の、図4のような従来装置により、上記本発
明例と同条件で加熱した結果、炉壁ヒーターONから6
50℃到達までの所要時間は200分であった。
Inventive Example 1 As shown in FIG. 1, 150 kg of raw material titanium 13 made of various types of commercial pure titanium scrap is used.
Placed in the inner cylinder 7, place the getter material 12 in the upper and put into a hydrogenation vessel 1, the exhaust pipe 10 from the container 1 10 -3 Torr
After evacuating to the following, the internal heater 4 and the furnace wall heater 5 were turned on and heated, and as a result, the time required from the heater being turned on to reaching the predetermined temperature of 650 ° C. was 150 minutes. In addition, as a result of heating under the same conditions as the above-mentioned example of the present invention by the same conventional apparatus as shown in FIG. 4 except that the internal heater 4 and the hollow portion 6 are not provided, the furnace wall heaters from ON to 6
The time required to reach 50 ° C. was 200 minutes.

【0023】(本発明例2) 図2に示すように、水素
化チタン粉末14を合計65kg、30mmの層厚にしてト
レイ8に入れ、脱水素化処理容器2内に積層し、排気管
10より容器2内を10-3Torr以下に排気した後、内部
ヒーター4および炉壁ヒーター5をONにし、排気しつ
つ加熱した結果、ヒーターONから所定温度750℃到
達までの所要時間は900分であった。なお、内部ヒー
ター4および中空部6がない他は上記本発明例と同一
の、図5のような従来装置により、上記本発明例と同条
件で加熱した結果、炉壁ヒーターONから750℃到達
までの所要時間は2800分であった。
(Example 2 of the present invention) As shown in FIG. 2, titanium hydride powder 14 having a total layer thickness of 65 kg and 30 mm was placed in a tray 8 and stacked in a dehydrogenation treatment container 2, and an exhaust pipe 10 was formed. After evacuating the inside of the container 2 to 10 -3 Torr or less, the internal heater 4 and the furnace wall heater 5 are turned on and heated while being evacuated. As a result, it takes 900 minutes to turn on the heater and reach the predetermined temperature of 750 ° C. there were. In addition, as a result of heating under the same conditions as the above-mentioned example of the present invention by the same conventional apparatus as shown in FIG. 5 except that the internal heater 4 and the hollow portion 6 were not provided, the furnace wall heater was turned on to 750 ° C. It took 2,800 minutes.

【0024】[0024]

【発明の効果】本発明によれば、水素化脱水素法による
チタン粉末の製造において、原料チタンの水素化処理、
および水素化チタン粉末の脱水素化処理における加熱時
間が短縮される。特に、従来は長時間要していて、チタ
ン粉末製造の律速工程であった脱水素化処理における加
熱工程の処理時間が著しく短縮され、生産性が大幅に向
上した。また本発明は、水素ガスを扱う上での安全性の
問題も生じない。
According to the present invention, in the production of titanium powder by the hydrodehydrogenation method, the raw material titanium is hydrotreated,
And the heating time in the dehydrogenation treatment of the titanium hydride powder is shortened. In particular, it takes a long time in the past, and the treatment time of the heating step in the dehydrogenation treatment, which was the rate-determining step in the production of titanium powder, was significantly shortened, and the productivity was greatly improved. Further, the present invention does not cause a safety problem in handling hydrogen gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法および装置の例を示す中央部断面斜視
図である。
FIG. 1 is a cross-sectional perspective view of a central portion showing an example of the method and apparatus of the present invention.

【図2】本発明法および装置の別の例を示す中央部断面
斜視図である。
FIG. 2 is a central cross-sectional perspective view showing another example of the method and apparatus of the present invention.

【図3】本発明法および装置の別の例を示す中央部断面
図である。
FIG. 3 is a central sectional view showing another example of the method and apparatus of the present invention.

【図4】従来法および装置の例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a conventional method and an apparatus.

【図5】従来法および装置の別の例を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing another example of a conventional method and an apparatus.

【符号の説明】[Explanation of symbols]

1:水素化処理容器 2:脱水素化処理容器 3:炉 4:内部ヒーター 5:炉壁ヒーター 6:中空部 7:内筒 8:トレイ 9:切欠 10:排気管 11:ガス導入管 12:ゲッター材 13:原料チタン 14:水素化チタン粉末 15:底壁 16:昇降支持部材 17:冷却コイル 1: Hydrogenation treatment container 2: Dehydrogenation treatment container 3: Furnace 4: Inner heater 5: Furnace wall heater 6: Hollow part 7: Inner cylinder 8: Tray 9: Notch 10: Exhaust pipe 11: Gas introduction pipe 12: Getter material 13: Raw material titanium 14: Titanium hydride powder 15: Bottom wall 16: Lift support member 17: Cooling coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山宮 昌夫 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 田村 道夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 籠橋 亘 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 深澤 英一 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 村山 良治 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Yamamiya 2-6-3 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Michio Tamura 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo New Nippon Steel Co., Ltd., Hirohata Works (72) Inventor Wataru Kagohashi 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Eiichi Fukazawa 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Inventor Ryoji Murayama 3-3-5 Chigasaki, Chigasaki City, Kanagawa Toho Titanium Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法によりチタン粉末を製造
する方法において、原料チタンを水素化処理容器に装入
し、該容器の外側および内部に配設されたヒーターによ
り加熱することを特徴とするチタン粉末製造における加
熱方法。
1. A method for producing titanium powder by a hydrodehydrogenation method, wherein raw material titanium is charged into a hydrotreating vessel and heated by heaters arranged outside and inside the vessel. Heating method for producing titanium powder.
【請求項2】 水素化脱水素法によりチタン粉末を製造
する方法において、水素化チタン粉末を脱水素化処理容
器に装入し、該容器の外側および内部に配設されたヒー
ターにより加熱することを特徴とするチタン粉末製造に
おける加熱方法。
2. A method for producing titanium powder by a hydrodehydrogenation method, which comprises charging the titanium hydride powder into a dehydrogenation treatment container and heating it with a heater provided outside and inside the container. A heating method in the production of titanium powder.
【請求項3】 水素化処理容器および該容器を覆う炉か
らなり、水素化処理容器の中心部に、該容器内の上部に
空隙を残して中空部が設けられ、該中空部内に内部ヒー
ターを有し、炉の内壁に炉壁ヒーターを有していること
を特徴とするチタン粉末製造における加熱装置。
3. A hydrotreating vessel and a furnace for covering the vessel, wherein a hollow portion is provided in the center of the hydrotreating vessel leaving an upper space inside the vessel, and an internal heater is provided in the hollow portion. A heating device in the production of titanium powder, which has a furnace wall heater on the inner wall of the furnace.
【請求項4】 脱水素化処理容器および該容器を覆う炉
からなり、脱水素化処理容器の中心部に中空部が設けら
れ、該中空部内に内部ヒーターを有し、炉の内壁に炉壁
ヒーターを有していることを特徴とするチタン粉末製造
における加熱装置。
4. A dehydrogenation treatment vessel and a furnace covering the vessel, a hollow portion is provided at the center of the dehydrogenation treatment vessel, an internal heater is provided in the hollow portion, and a furnace wall is provided on the inner wall of the furnace. A heating device for producing titanium powder, comprising a heater.
JP22262593A 1993-09-07 1993-09-07 Heating method and device for titanium powder production Withdrawn JPH0776706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22262593A JPH0776706A (en) 1993-09-07 1993-09-07 Heating method and device for titanium powder production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22262593A JPH0776706A (en) 1993-09-07 1993-09-07 Heating method and device for titanium powder production

Publications (1)

Publication Number Publication Date
JPH0776706A true JPH0776706A (en) 1995-03-20

Family

ID=16785387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22262593A Withdrawn JPH0776706A (en) 1993-09-07 1993-09-07 Heating method and device for titanium powder production

Country Status (1)

Country Link
JP (1) JPH0776706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079887A2 (en) * 2005-01-27 2006-08-03 Peruke (Proprietary) Limited A method of producing titanium
CN106077671A (en) * 2016-08-29 2016-11-09 贵州省钛材料研发中心有限公司 Hydrogenation device for producing titanium powder by hydrogenation dehydrogenation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079887A2 (en) * 2005-01-27 2006-08-03 Peruke (Proprietary) Limited A method of producing titanium
WO2006079887A3 (en) * 2005-01-27 2006-10-05 Peruke Invest Holdings Pty Ltd A method of producing titanium
EP2177636A1 (en) * 2005-01-27 2010-04-21 Peruke (Proprietary) Limited A method of producing titanium powder
EA013432B1 (en) * 2005-01-27 2010-04-30 Перук (Проприетари) Лимитед A method of producing titanium
EA015885B1 (en) * 2005-01-27 2011-12-30 Перук (Проприетари) Лимитед A method of producing titanium
CN106077671A (en) * 2016-08-29 2016-11-09 贵州省钛材料研发中心有限公司 Hydrogenation device for producing titanium powder by hydrogenation dehydrogenation method

Similar Documents

Publication Publication Date Title
EP1785502A1 (en) Direct rolling of cast gamma titanium aluminide alloys
CN112795798B (en) Preparation method of titanium alloy plate
CN106435249A (en) Multi-element micro-alloyed high-strength high-conductivity copper alloy and preparation technique thereof
JP3646570B2 (en) Silicon continuous casting method
JP2008229680A (en) PROCESS FOR PRODUCING MOLDED PRODUCT OF TiAl-BASED ALLOY
JP3332105B2 (en) Hydrothermal treatment method and apparatus for titanium powder production
EP0434069B1 (en) Process for preparing titanium and titanium alloy having fine acicular microstructure
JPH0776706A (en) Heating method and device for titanium powder production
EP0411537B1 (en) Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure
JP2003226964A (en) Method of producing tungsten target for sputtering
JPS6353257B2 (en)
JP5410673B2 (en) Reaction container for producing refractory metal and its processing method
JPH0754021A (en) Method and apparatus for producing titanium powder
JPH06264233A (en) Sputtering target for producing tft
JPH07118710A (en) Hydrogenation method in production of titanium powder
JPH0776705A (en) Cooling method and device for dehydrogenation of titanium powder production
JPH0754017A (en) Method and apparatus for producing titanium powder
EP0835330B1 (en) Fuel boxes and a method for manufacturing fuel boxes
JPH0693400A (en) Production of electrodeposition drum made of titanium
JPH06256918A (en) Production of molybdenum or molybdenum alloy sheet
JPH07206404A (en) Production of titanium hydride and its device
JPH073308A (en) Heating method for hydrogenation treatment of titanium raw material
JPH06220596A (en) Production of molybdenum or molybdenum alloy sheet
JP3063014B2 (en) Manufacturing method of titanium powder
JP3820010B2 (en) Method for cooling aluminum foil annealing coil

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001107