JPH0754021A - Method and apparatus for producing titanium powder - Google Patents

Method and apparatus for producing titanium powder

Info

Publication number
JPH0754021A
JPH0754021A JP20519993A JP20519993A JPH0754021A JP H0754021 A JPH0754021 A JP H0754021A JP 20519993 A JP20519993 A JP 20519993A JP 20519993 A JP20519993 A JP 20519993A JP H0754021 A JPH0754021 A JP H0754021A
Authority
JP
Japan
Prior art keywords
titanium
chamber
inner chamber
powder
outer chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20519993A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Noboru Takaku
昇 高久
Masao Yamamiya
昌夫 山宮
Michio Tamura
道夫 田村
Wataru Kagohashi
亘 籠橋
Ryoji Murayama
良治 村山
Hidekazu Fukazawa
英一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toho Titanium Co Ltd
Original Assignee
Nippon Steel Corp
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toho Titanium Co Ltd filed Critical Nippon Steel Corp
Priority to JP20519993A priority Critical patent/JPH0754021A/en
Publication of JPH0754021A publication Critical patent/JPH0754021A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PURPOSE:To effectively utilize the heat generated in a hydrogenation treatment to the dehydrogenation treatment and embody the running cost reduction, enhancement of the productivity, etc., in production of the titanium powder by a hydrogenation and dehydrogenation method. CONSTITUTION:This method comprises charging feedstock titanium into one chamber of a circular columnar furnace 1 internally bisected to the inside chamber 2 and the outside chamber 3 and titanium hydride powder into the other chamber, carrying out heat transfer between both chambers and subjecting the feedstock titanium to the hydrogenation treatment and the titanium hydride power to the dehydrogenation treatment. The circular columnar furnace 1 is internally bisected to the inside chamber 2 and the outside chamber 3. The outer peripheral part of the outside chamber 3 and the outer peripheral part or central part of the inside chamber 2 are provided with heaters 4, 5. The inside chamber 2 and the outside chamber 3 are respectively provided with discharge pipes 7, 9 and gas introducing pipes 6, 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金原料としての
純チタン粉末またはチタン合金粉末(本明細書ではこれ
らを総称してチタン粉末という)を、水素化脱水素法
(以下HDH法という)により製造する方法および装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a pure titanium powder or a titanium alloy powder (herein collectively referred to as titanium powder) as a powder metallurgical raw material by a hydrodehydrogenation method (hereinafter referred to as HDH method). The present invention relates to a method and an apparatus manufactured by.

【0002】[0002]

【従来の技術】チタン合金は比強度が高く、耐熱性およ
び耐食性に優れており、航空機等の材料として極めて有
効な特性を具備しているが、溶解、鍛造や圧延等の熱間
加工性および切削加工性に難点がある。このため、加工
費低減や歩留向上の観点から、最終形状に近い半製品を
直接製造する技術として、粉末冶金法が有望になってい
る。粉末冶金によりチタン合金を製造する場合、原料と
して純チタン粉末と合金元素添加用粉末の混合粉末を用
いる方法、およびチタン合金粉末を用いる方法がある。
2. Description of the Related Art Titanium alloys have high specific strength, excellent heat resistance and corrosion resistance, and have properties that are extremely effective as materials for aircraft and the like, but hot workability such as melting, forging and rolling and Difficulty in machinability. Therefore, from the viewpoint of reducing the processing cost and improving the yield, the powder metallurgy method is promising as a technique for directly manufacturing a semi-finished product having a final shape. When a titanium alloy is manufactured by powder metallurgy, there are a method of using a mixed powder of pure titanium powder and a powder for adding an alloy element as a raw material, and a method of using a titanium alloy powder.

【0003】純チタン粉末の製造方法としては、スポン
ジチタンを機械的に直接粉砕して粉末とする方法もある
が、スポンジチタンは展延性に富むため、粉砕するのが
困難であり、また、得られたとしても塩素分が多いた
め、粉末冶金用としては低品質のものとなる。一方、チ
タン粉末の製造方法として、純チタンまたはチタン合金
(以下これらを総称してチタンという)の融液をガスで
飛散させて粉末とするアトマイズ法、あるいはチタン電
極を回転させ、プラズマ等で溶融し、遠心力で飛散させ
て粉末とする回転電極法がある。これらの方法によれ
ば、比較的純度の高いチタン粉末が得られるが、粉末個
々の形状や粒度、コスト等に難点がある。
As a method of producing pure titanium powder, there is a method of directly mechanically crushing titanium sponge into powder, but since titanium sponge is rich in spreadability, it is difficult to pulverize it, and Even if it is produced, it will be of low quality for powder metallurgy due to its high chlorine content. On the other hand, as a method for producing titanium powder, an atomizing method in which a melt of pure titanium or a titanium alloy (hereinafter collectively referred to as titanium) is dispersed by a gas to form powder, or a titanium electrode is rotated and melted by plasma or the like. Then, there is a rotating electrode method in which the powder is dispersed by centrifugal force. According to these methods, a titanium powder having a relatively high purity can be obtained, but there are problems in the shape, particle size, cost, etc. of each powder.

【0004】このため、チタンを水素化処理して脆弱な
チタン水素化物とし、これを機械的に粉砕して粉末にし
た後、真空加熱等により脱水素してチタン粉末を得るH
DH法による方法が一般的に採用されている。水素化処
理して常温で脆弱なチタン水素化物を得るためには、水
素を約3重量%以上吸収させる必要がある。この水素を
約3重量%以上含有する水素化物は一般にδ相といわれ
ている。そして、チタンの水素化は300〜500℃の
低温域が最も効率が良いとされているが、原料であるチ
タンの表層には、水素侵入のバリヤーとなる酸化層が存
在するため、500〜600℃以上に加熱し、この酸化
層を内部拡散させて無害化することが望ましい。そこ
で、原料チタンを600〜700℃に加熱した後、徐々
に冷却して水素化を行うことが効率的な操業法である。
For this reason, titanium is hydrogenated to give a brittle titanium hydride, which is mechanically pulverized into powder and then dehydrogenated by vacuum heating or the like to obtain titanium powder H
The method based on the DH method is generally adopted. In order to obtain a brittle titanium hydride at room temperature by hydrotreating, it is necessary to absorb about 3% by weight or more of hydrogen. A hydride containing about 3% by weight or more of hydrogen is generally called a δ phase. And, it is said that the hydrogenation of titanium is most efficient in the low temperature range of 300 to 500 ° C., but since the surface layer of titanium as a raw material has an oxide layer which serves as a barrier for hydrogen penetration, it is 500 to 600. It is desirable to heat the material at a temperature of not less than 0 ° C. to internally diffuse the oxide layer to render it harmless. Therefore, an efficient operating method is to heat the raw material titanium to 600 to 700 ° C. and then gradually cool it to perform hydrogenation.

【0005】従来のHDH法における水素化のための加
熱は、原料チタンを入れた容器を水素化炉に入れ、炉壁
に設けられたヒーターで加熱することにより行われる。
このとき原料チタンは、容器内の外周部から加熱され、
中心部の原料チタンは徐々に加熱される。チタンの水素
化は、発熱反応であるため、600〜700℃に加熱さ
れた後でも温度上昇し、原料チタンは容器内の外周部で
は1000℃弱に、中心部では800℃前後にまで過熱
される。このため、無駄なエネルギーを使用するととも
に、冷却に時間がかかり、生産性低下を招いているとい
う問題がある。過熱を抑えるために加熱温度を低めにす
ると、長時間の処理を要し、やはり生産性が低下すると
いう問題がある。
The heating for hydrogenation in the conventional HDH method is carried out by placing a container containing titanium as a raw material in a hydrogenation furnace and heating it with a heater provided on the furnace wall.
At this time, the raw material titanium is heated from the outer periphery of the container,
The raw material titanium in the center is gradually heated. Since the hydrogenation of titanium is an exothermic reaction, the temperature rises even after being heated to 600 to 700 ° C, and the raw material titanium is overheated to less than 1000 ° C in the outer peripheral portion of the container and to about 800 ° C in the central portion. It For this reason, there is a problem that wasteful energy is used and it takes a long time to cool, resulting in a decrease in productivity. If the heating temperature is lowered in order to suppress overheating, there is a problem that long-term processing is required and the productivity is also reduced.

【0006】一方、従来のHDH法における脱水素は、
水素化チタンの粉末を容器に30〜50mm程度の層厚に
し、これを多段に積んだものを脱水素化炉に入れ、真空
にして、炉壁に設けられたヒーターで600〜700℃
に加熱して行われる。しかし水素化チタンの脱水素は吸
熱反応のため、炉中心部の水素化チタン粉末の温度が上
昇するのに時間がかかり、炉温を高めにすると、脱水素
粉が疑似焼結する恐れがある。
On the other hand, dehydrogenation in the conventional HDH method is
Titanium hydride powder was made into a layer thickness of about 30 to 50 mm in a container, which was stacked in multiple stages was placed in a dehydrogenation furnace, which was evacuated to 600 to 700 ° C. by a heater provided on the furnace wall.
It is done by heating to. However, since the dehydrogenation of titanium hydride is an endothermic reaction, it takes time for the temperature of the titanium hydride powder in the center of the furnace to rise, and if the furnace temperature is raised, the dehydrogenated powder may pseudo-sinter. .

【0007】[0007]

【発明が解決しようとする課題】このように従来のHD
H法においては、水素化処理と脱水素化処理は、別々の
炉を用いるか、あるいは同一の炉を使用する場合でも各
処理が別々に行われており、水素化処理および脱水素化
処理それぞれが、上記のような問題点を有していた。本
発明は、HDH法によるチタン粉末の製造において、水
素化処理で発生する熱を脱水素化処理に有効利用すると
ともに、設備費用の削減、生産性向上等を達成すること
を目的とする。
As described above, the conventional HD
In the H method, the hydrogenation treatment and the dehydrogenation treatment are performed in different furnaces, or even when the same furnace is used, each treatment is performed separately. However, it has the above problems. An object of the present invention is to effectively utilize the heat generated in the hydrotreating process in the dehydrogenation process in the production of titanium powder by the HDH method, and at the same time, reduce the facility cost and improve the productivity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の構成を要旨とする。すなわち、
(1)HDH法において、内部が内室と外室に2分割さ
れた円柱型炉の、一方の室に原料チタンを、他方の室に
水素化チタン粉末を装入し、両室間に熱移動を行わせ
て、原料チタンには水素化処理を、水素化チタン粉末に
は脱水素化処理を施すことを特徴とするチタン粉末の製
造方法である。具体的には、(2)外室に原料チタンを
装入し、内室に水素化チタン粉末を装入し、外室の外周
部から加熱を開始して水素化処理の進行に伴い該加熱を
停止し、その後、内室の外周部から加熱を行いつつ脱水
素化処理してもよく、また(3)外室に原料チタンを装
入し、内室に水素化チタン粉末を装入し、外室の外周部
から加熱を開始して水素化処理の進行に伴い該加熱を停
止し、その後、内室の中心部から加熱を行いつつ脱水素
化処理してもよく、さらに(4)内室に原料チタンを装
入し、外室に水素化チタン粉末を装入し、内室の中心部
から加熱を開始して水素化処理の進行に伴い該加熱を停
止し、その後、外室の外周部から加熱を行いつつ脱水素
化処理してもよい。(5)そして上記方法を実施する装
置として、円柱型炉の内部が内室と外室に2分割され、
外室の外周部および内室の外周部にヒーターが設けら
れ、内室および外室には、それぞれ排気管およびガス導
入管が設けられていることを特徴とするチタン粉末の製
造装置であり、また(6)円柱型炉の内部が内室と外室
に2分割され、外室の外周部および内室の中心部にヒー
ターが設けられ、内室および外室には、それぞれ排気管
およびガス導入管が設けられていることを特徴とするチ
タン粉末の製造装置である。
In order to achieve the above object, the present invention has the following structures. That is,
(1) In the HDH method, in a cylindrical furnace in which the inside is divided into an inner chamber and an outer chamber, titanium raw material is charged in one chamber and titanium hydride powder is charged in the other chamber, and heat is applied between both chambers. In the method for producing titanium powder, the raw material titanium is subjected to a hydrogenation treatment and the titanium hydride powder is subjected to a dehydrogenation treatment by moving. Specifically, (2) Titanium raw material is charged into the outer chamber, titanium hydride powder is charged into the inner chamber, heating is started from the outer peripheral portion of the outer chamber, and the heating is performed as the hydrogenation treatment progresses. Then, dehydrogenation treatment may be performed while heating from the outer peripheral portion of the inner chamber, and (3) charging the raw material titanium into the outer chamber and charging the titanium hydride powder into the inner chamber. The heating may be started from the outer peripheral portion of the outer chamber and stopped with the progress of the hydrogenation treatment, and then the dehydrogenation treatment may be performed while heating from the central portion of the inner chamber, and (4) Raw material titanium is charged into the inner chamber, titanium hydride powder is charged into the outer chamber, heating is started from the center of the inner chamber, the heating is stopped as the hydrogenation process progresses, and then the outer chamber is charged. The dehydrogenation treatment may be performed while heating from the outer peripheral portion. (5) And as an apparatus for carrying out the above method, the inside of the cylindrical furnace is divided into an inner chamber and an outer chamber,
A heater is provided in the outer peripheral portion of the outer chamber and the outer peripheral portion of the inner chamber, and an exhaust pipe and a gas introduction pipe are provided in the inner chamber and the outer chamber, respectively, which is a titanium powder manufacturing apparatus, (6) The inside of the cylindrical furnace is divided into an inner chamber and an outer chamber, heaters are provided at the outer peripheral portion of the outer chamber and the central portion of the inner chamber, and an exhaust pipe and a gas are respectively provided in the inner chamber and the outer chamber. The apparatus for producing titanium powder is characterized in that an introduction pipe is provided.

【0009】なお、本発明において「チタン」は純チタ
ンまたはチタン合金を総称したものである。すなわち、
原料チタンは純チタンでもチタン合金でもよく、純チタ
ンの原料からは純チタン粉末が得られ、チタン合金の原
料からはチタン合金粉末が得られる。
In the present invention, "titanium" is a general term for pure titanium or titanium alloy. That is,
The raw material titanium may be pure titanium or a titanium alloy, pure titanium powder is obtained from the pure titanium raw material, and titanium alloy powder is obtained from the titanium alloy raw material.

【0010】[0010]

【作用】以下、図面により本発明を詳細に説明する。図
1は、本発明の請求項5の装置例を示す中央部断面斜視
図であり、円柱型炉1の内部が柱状の内室2と環状の外
室3に2分割され、内室2の外周部に内室ヒーター4
が、外室3の外周部に外室ヒーター5が設けられ、内室
2には内室ガス導入管6および内室排気管7が、外室3
には外室ガス導入管8および外室排気管9が設けられて
いる。図2は、本発明の請求項6の装置例を示す中央部
断面斜視図であり、内室ヒーター4が内室2の中心部に
設けられている他は、図1と同様である。なお図1およ
び図2の装置において、内室ガス導入管6と内室排気管
7、および外室ガス導入管8と外室排気管9は、それぞ
れ共通の管とし、バルブ操作により、ガス導入と排気を
切替え可能としてもよく、本発明装置はそのような構造
のものも含んでいる。また内室2および外室3は、上部
または下部の平板が着脱可能である等、原料チタンある
いは水素化チタン粉末が装入搬出できる構造になってい
る。そして、内室2と外室3の境界の壁は、耐熱性およ
び気密性があり、水素脆化し難く、かつ熱伝導性の悪く
ない材料、例えばオーステナイト系ステンレス鋼等で構
成するのが好ましい。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view of a central portion of an apparatus according to claim 5 of the present invention. The inside of the cylindrical furnace 1 is divided into a columnar inner chamber 2 and an annular outer chamber 3, and the inner chamber 2 Inner chamber heater 4 on the outer circumference
However, the outer chamber heater 5 is provided on the outer peripheral portion of the outer chamber 3, and the inner chamber 2 is provided with the inner chamber gas introduction pipe 6 and the inner chamber exhaust pipe 7.
An outer chamber gas introduction pipe 8 and an outer chamber exhaust pipe 9 are provided in the. FIG. 2 is a perspective view of a central portion of a device according to claim 6 of the present invention, which is the same as FIG. 1 except that the inner heater 4 is provided at the center of the inner chamber 2. In the apparatus of FIGS. 1 and 2, the inner chamber gas introduction pipe 6 and the inner chamber exhaust pipe 7, and the outer chamber gas introduction pipe 8 and the outer chamber exhaust pipe 9 are common pipes, and the gas introduction is performed by a valve operation. And exhaust may be switchable, and the device of the present invention includes such a structure. Further, the inner chamber 2 and the outer chamber 3 are structured such that raw material titanium or titanium hydride powder can be loaded and unloaded such that the upper or lower flat plate can be attached and detached. The wall at the boundary between the inner chamber 2 and the outer chamber 3 is preferably made of a material that has heat resistance and airtightness, is less likely to be embrittled by hydrogen, and has good thermal conductivity, such as austenitic stainless steel.

【0011】請求項1の本発明法は、図1あるいは図2
のような円柱型炉1の、内室2および外室3の一方の室
に原料チタンを装入し、他方の室に水素化チタン粉末を
装入し、原料チタンの水素化により発生した熱を水素化
チタン粉末に伝える等、両室間に熱移動を行わせて、原
料チタンには水素化処理を、水素化チタン粉末には脱水
素化処理を施す。原料チタンとしては、スポンジチタ
ン、チタン製品あるいは中間製品の切削屑、端切れ材等
のスクラップが適用できる。水素化チタン粉末は、上記
原料チタンを水素化し粉砕し篩別したものであり、粉末
を皿状の容器に入れたものを多段に積んで炉内に装入す
る。
The method of the present invention as defined in claim 1 is based on FIG.
In a cylindrical furnace 1 such as the one described above, raw material titanium was charged into one of the inner chamber 2 and the outer chamber 3, and titanium hydride powder was charged into the other chamber to generate heat generated by hydrogenation of the raw material titanium. Is transferred to the titanium hydride powder to cause heat transfer between the two chambers, so that the raw material titanium is subjected to hydrogenation treatment and the titanium hydride powder is subjected to dehydrogenation treatment. As raw material titanium, sponge titanium, scraps of titanium products or intermediate products, scraps such as scraps, etc. can be applied. The titanium hydride powder is obtained by hydrogenating and pulverizing the above raw material titanium, and the powder is placed in a dish-shaped container and stacked in multiple stages and charged into a furnace.

【0012】請求項2の具体的方法は、図1のような装
置により行うことができる。まず外室3に原料チタン
を、内室2に水素化チタン粉末を、それぞれ装入し、内
室排気管7および外室排気管9により両室の空気を排気
する。その後の工程は、図3に示すように、 (a)外室ヒーター5をONにし、外室ガス導入管8よ
り外室3に水素ガスを導入する。内室2には、内室ガス
導入管6よりアルゴンガスを導入し充満させる。 (b)外室3内の原料チタンが外周から加熱され水素化
が起こり、発熱して水素化が進行し始めたら、外室ヒー
ター5をOFFにする。内室2内の水素化チタン粉末は
外室3からの伝熱により加熱される。 (c)外室3内の原料チタンは、自己燃焼で内部に向か
って水素化が進行するとともに、その反応熱で内室2内
の水素化チタン粉末がより高温に加熱される。 (d)内室ヒーター4を必要に応じてONにし、内室2
内の水素化チタン粉末を該ヒーター4により補助的に加
熱し、水素化チタン粉末が脱水素可能な温度に加熱され
たら、内室排気管6により内室2を排気し、脱水素化が
開始される。 (e)外室3内の原料チタンの水素化がほぼ完了し、温
度が低下し始める。内室ヒーター4はONの状態とし、
内室2内の水素化チタン粉末は脱水素化がより進行す
る。 (f)内室2内の水素化チタン粉末の脱水素化が完了す
ると、内室ヒーター4をOFFにし、内室ガス導入管6
よりアルゴンガスを導入して冷却を開始する。外室3に
は、水素化が殆ど生じなくなる300℃以下で、外室ガ
ス導入管8のバルブ(図示せず)を切替えてアルゴンガ
スを導入し冷却を促進する。 なお、(a)(b)および(c)の工程において、内室
2内を排気し真空にしておいてもよいが、上記のように
アルゴンガスを充満させておいた方が、熱効率がよく加
熱されやすいので好ましい。
The concrete method of claim 2 can be carried out by an apparatus as shown in FIG. First, raw material titanium is charged into the outer chamber 3 and titanium hydride powder is charged into the inner chamber 2, and the air in both chambers is exhausted through the inner chamber exhaust pipe 7 and the outer chamber exhaust pipe 9. In the subsequent steps, as shown in FIG. 3, (a) the outer chamber heater 5 is turned on, and hydrogen gas is introduced into the outer chamber 3 through the outer chamber gas introduction pipe 8. The inner chamber 2 is filled with argon gas from the inner chamber gas introduction pipe 6. (B) When the raw material titanium in the outer chamber 3 is heated from the outer periphery and hydrogenation occurs and heat is generated to start hydrogenation, the outer chamber heater 5 is turned off. The titanium hydride powder in the inner chamber 2 is heated by the heat transfer from the outer chamber 3. (C) The raw material titanium in the outer chamber 3 is hydrogenated inward by self-combustion, and the reaction heat heats the titanium hydride powder in the inner chamber 2 to a higher temperature. (D) The inner chamber heater 4 is turned on as necessary to turn on the inner chamber 2
The titanium hydride powder therein is auxiliary heated by the heater 4, and when the titanium hydride powder is heated to a temperature at which it can be dehydrogenated, the inner chamber exhaust pipe 6 evacuates the inner chamber 2 to start dehydrogenation. To be done. (E) The hydrogenation of the raw material titanium in the outer chamber 3 is almost completed, and the temperature starts to drop. The inner heater 4 is turned on,
The dehydrogenation of the titanium hydride powder in the inner chamber 2 progresses more. (F) When the dehydrogenation of the titanium hydride powder in the inner chamber 2 is completed, the inner chamber heater 4 is turned off and the inner chamber gas introduction pipe 6
More argon gas is introduced to start cooling. In the outer chamber 3, at a temperature of 300 ° C. or lower at which hydrogenation hardly occurs, the valve (not shown) of the outer chamber gas introduction pipe 8 is switched to introduce the argon gas to promote cooling. In the steps (a), (b) and (c), the inside of the inner chamber 2 may be evacuated and evacuated, but it is better to fill it with argon gas as described above because the thermal efficiency is better. It is preferable because it is easily heated.

【0013】請求項3の具体的方法は、図2のような装
置により行うことができる。まず外室3に原料チタン
を、内室2に水素化チタン粉末を装入し、内室排気管7
および外室排気管9により両室の空気を排気する。その
後の工程は、上記請求項2の場合と同様であるが、
(d)および(e)において、内室2内の水素化チタン
粉末は、中心部に設けられた内室ヒーター4によって、
より効果的に加熱される。また(f)においては、内室
2内のチタン粉末の熱が外室3へ逃げやすい。したがっ
て、合計の処理時間が請求項2の方法よりも短縮され
る。
The concrete method of claim 3 can be carried out by an apparatus as shown in FIG. First, raw material titanium is charged in the outer chamber 3, titanium hydride powder is charged in the inner chamber 2, and the inner chamber exhaust pipe 7 is charged.
The air in both chambers is exhausted through the outer chamber exhaust pipe 9. The subsequent steps are the same as in the case of claim 2 above,
In (d) and (e), the titanium hydride powder in the inner chamber 2 is heated by the inner chamber heater 4 provided at the center,
More effectively heated. Further, in (f), the heat of the titanium powder in the inner chamber 2 easily escapes to the outer chamber 3. Therefore, the total processing time is shorter than the method of claim 2.

【0014】請求項4の具体的方法は、図2のような装
置により行うことができる。まず内室2に原料チタン
を、外室3に水素化チタン粉末を、それぞれ装入し、内
室排気管7および外室排気管9により両室の空気を排気
する。その後の工程は、図4に示すように、 (a)内室ヒーター4をONにし、内室ガス導入管6よ
り内室2に水素ガスを導入する。外室3には外室ガス導
入管8よりアルゴンガスを導入し充満させ、外室ヒータ
ー5をONにする。 (b)内室2内の原料チタンが中心から加熱され水素化
が起こり、発熱して水素化が進行し始めたら、内室ヒー
ター4をOFFにする。外室3内の水素化チタン粉末
は、外室ヒーター5および内室2からの伝熱により加熱
される。 (c)内室2内の原料チタンは自己燃焼で外部に向かっ
て水素化が進行するとともに、その反応熱で、外室3内
の水素化チタン粉末がより高温に加熱される。水素化チ
タン粉末が脱水素可能な温度に加熱されたら、外室排気
管9から外室3内を排気し、水素化チタン粉末の脱水素
化が開始される。 (d)内室2内の原料チタンの水素化がほぼ完了し、温
度が低下し始める。外室3内では水素化チタン粉末の脱
水素化が進行している。 (e)外室3内の脱水素化が終了し、外室ヒーター5を
OFFにし、外室ガス導入管8からアルゴンガスを導入
してチタン粉末の冷却を開始する。内室2内では中心部
から外側に向かって冷却が進行している。 (f)内室2内の温度が、水素化が殆ど生じなくなる3
00℃以下になったら、内室ガス導入管6のバルブ(図
示せず)を切替えてアルゴンガスを導入し冷却を促進す
る。 なお、(a)および(b)の工程において、外室3内を
排気し真空にしておいてもよいが、上記のようにアルゴ
ンガスを充満させておいた方が、熱効率がよく加熱され
やすいので好ましい。
The concrete method of claim 4 can be carried out by an apparatus as shown in FIG. First, raw material titanium is charged into the inner chamber 2 and titanium hydride powder is charged into the outer chamber 3, and the air in both chambers is exhausted through the inner chamber exhaust pipe 7 and the outer chamber exhaust pipe 9. In the subsequent steps, as shown in FIG. 4, (a) the inner chamber heater 4 is turned on and hydrogen gas is introduced into the inner chamber 2 through the inner chamber gas introduction pipe 6. The outer chamber 3 is filled with argon gas from the outer chamber gas introduction pipe 8 and the outer chamber heater 5 is turned on. (B) When the raw material titanium in the inner chamber 2 is heated from the center and hydrogenation occurs and heat is generated to start hydrogenation, the inner chamber heater 4 is turned off. The titanium hydride powder in the outer chamber 3 is heated by heat transfer from the outer heater 5 and the inner chamber 2. (C) The raw material titanium in the inner chamber 2 is self-combusted to hydrogenate outward, and the heat of reaction heats the titanium hydride powder in the outer chamber 3 to a higher temperature. When the titanium hydride powder is heated to a temperature at which it can be dehydrogenated, the inside of the outer chamber 3 is evacuated from the outer chamber exhaust pipe 9, and the dehydrogenation of the titanium hydride powder is started. (D) Hydrogenation of the raw material titanium in the inner chamber 2 is almost completed, and the temperature starts to drop. In the outer chamber 3, dehydrogenation of titanium hydride powder is progressing. (E) After the dehydrogenation in the outer chamber 3 is completed, the outer chamber heater 5 is turned off, and argon gas is introduced from the outer chamber gas introduction pipe 8 to start cooling the titanium powder. In the inner chamber 2, cooling is progressing from the center toward the outside. (F) The temperature in the inner chamber 2 hardly causes hydrogenation 3
When the temperature falls below 00 ° C., the valve (not shown) of the inner chamber gas introduction pipe 6 is switched to introduce argon gas to promote cooling. In the steps (a) and (b), the inside of the outer chamber 3 may be evacuated and evacuated, but if the argon gas is filled as described above, the thermal efficiency is higher and the heating is easier. Therefore, it is preferable.

【0015】[0015]

【実施例】【Example】

(本発明例1) 図5に示すように、種々の形態の商用
純チタンスクラップからなる原料チタン12を外室3に
装入し、商用純チタンからなる水素化チタン粉末13を
皿状容器11に入れたものを内室2内に積重ねて装入
し、図3に示す工程により処理した。水素化チタン粉末
13を入れた皿状容器11は中央部が空胴になったドー
ナツ状で、内周および外周の縁に切欠14が設けてあ
り、空胴部に内室ガス導入管6を図のように通してあ
る。内室ガス導入管6には開口15が複数段設けてあ
り、開口15から皿状容器11の内周の切欠14を通し
て、冷却用のアルゴンガスを導入した。処理量は原料チ
タン12および水素化チタン粉末13ともに200kg
である。
(Invention Example 1) As shown in FIG. 5, raw material titanium 12 made of various types of commercial pure titanium scrap is charged into the outer chamber 3, and titanium hydride powder 13 made of commercial pure titanium is placed in the dish-shaped container 11. The materials put in the above were placed in the inner chamber 2 in a stacked manner, and processed by the process shown in FIG. The dish-shaped container 11 containing the titanium hydride powder 13 is in the shape of a donut with an empty central portion, has notches 14 on the inner and outer edges, and has an inner chamber gas introduction pipe 6 in the empty portion. Threaded as shown. A plurality of openings 15 are provided in the inner chamber gas introduction pipe 6, and an argon gas for cooling was introduced from the openings 15 through the notches 14 on the inner circumference of the dish-shaped container 11. The processing amount is 200 kg for both the raw material titanium 12 and the titanium hydride powder 13.
Is.

【0016】(本発明例2) 図5において、内室ヒー
ター4を内室ガス導入管6の周囲に巻付けたコイル状の
ものとし、上記本発明例1と同様に処理した。 (本発明例3) 図6に示すように、内室2に本発明例
1と同様の原料チタン12を装入し、外室3に本発明例
1と同様の水素化チタン粉末13を皿状容器11に入れ
たものを積重ねて装入し、図4に示す工程により処理し
た。皿状容器11は扇形で、縁に切欠14が設けてあ
り、外室3の周方向に並べ、境界に外室ガス導入管8を
図のように設けた。外室ガス導入管8に複数段に設けた
開口15から、切欠14を通して冷却用のアルゴンガス
を導入した。原料チタン12および水素化チタン粉末1
3の処理量は、本発明例1と同様である。
(Invention Example 2) In FIG. 5, the inner chamber heater 4 was coiled around the inner chamber gas introduction pipe 6 and treated in the same manner as in the first invention example. (Invention Example 3) As shown in FIG. 6, the same raw material titanium 12 as in Invention Example 1 was charged into the inner chamber 2, and the titanium hydride powder 13 similar to that of Invention Example 1 was placed in the outer chamber 3. What was put in the cylindrical container 11 was stacked and loaded, and processed by the process shown in FIG. The dish-shaped container 11 is fan-shaped, has a notch 14 at the edge thereof, is arranged in the circumferential direction of the outer chamber 3, and is provided with the outer chamber gas introduction pipe 8 at the boundary as shown in the drawing. Argon gas for cooling was introduced through the notches 14 from the openings 15 provided in the outer chamber gas introduction pipe 8 in multiple stages. Raw material titanium 12 and titanium hydride powder 1
The processing amount of No. 3 is the same as that of the first example of the present invention.

【0017】(従来例) 本発明例と同じ重量の原料チ
タンおよび水素化チタン粉末を、単一の処理炉により、
本発明例1と同様の条件で、別個に水素化および脱水素
処理した。 上記各例において、水素化処理は水素含有量3.8%、
脱水素化処理は水素含有量200ppm までとする処理時
間および消費電力を比較した結果を表1に示す。これか
ら明らかなように、本発明により、処理時間短縮および
省電力に顕著な効果が認められた。また、種々の形態の
チタン合金(Ti−6Al−4V)スクラップを原料チ
タンとした場合も、上記と同様の効果が得られた。
(Prior art example) Raw material titanium and titanium hydride powder of the same weight as the present invention example were treated in a single processing furnace.
Under the same conditions as in Inventive Example 1, hydrogenation and dehydrogenation treatments were separately performed. In each of the above examples, the hydrogenation treatment has a hydrogen content of 3.8%,
Table 1 shows the results of comparison of the processing time and the power consumption for the dehydrogenation treatment up to a hydrogen content of 200 ppm. As is clear from the above, the present invention has been found to have a remarkable effect in shortening the processing time and saving power. Also, when titanium alloy (Ti-6Al-4V) scraps of various forms were used as raw material titanium, the same effect as above was obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明によれば、水素化脱水素法による
チタン粉末の製造において、チタンの水素化および脱水
素化が、一体化された炉内で同時進行的に行われ、水素
化処理で発生する熱が脱水素化処理に有効利用される。
すなわち、発熱反応であるチタンの水素化処理が進行す
る室と隣接した室で、該反応熱を受け、吸熱反応である
脱水素処理が効率的に行われるとともに、水素化処理後
の冷却が、抜熱により効率的に行われる。このため、使
用エネルギーおよび設備費用の大幅な削減と生産性の著
しい向上が達成される。
According to the present invention, in the production of titanium powder by the hydrodehydrogenation method, the hydrogenation and dehydrogenation of titanium are simultaneously carried out in an integrated furnace, and the hydrotreatment is carried out. The heat generated in the process is effectively used for the dehydrogenation process.
That is, in the chamber adjacent to the chamber where the hydrogenation treatment of titanium which is an exothermic reaction proceeds, the reaction heat is received, the dehydrogenation treatment which is an endothermic reaction is efficiently performed, and the cooling after the hydrogenation treatment is performed. Efficiently done by removing heat. As a result, a significant reduction in energy consumption and equipment costs and a significant increase in productivity are achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の例を示す中央部断面斜視図であ
る。
FIG. 1 is a cross-sectional perspective view of a central portion showing an example of the device of the present invention.

【図2】本発明装置の別の例を示す中央部断面斜視図で
ある。
FIG. 2 is a perspective view of a cross section of a central portion showing another example of the device of the present invention.

【図3】本発明法の工程例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of steps of the method of the present invention.

【図4】本発明法の別の工程例を示す説明図である。FIG. 4 is an explanatory view showing another example of steps of the method of the present invention.

【図5】本発明の実施例を示す中央部断面斜視図であ
る。
FIG. 5 is a central cross-sectional perspective view showing an embodiment of the present invention.

【図6】本発明の別の実施例を示す中央部断面斜視図で
ある。
FIG. 6 is a cross-sectional perspective view of a central portion of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:円柱型炉 2:内室 3:外室 4:内室ヒーター 5:外室ヒーター 6:内室ガス導入管 7:内室排気管 8:外室ガス導入管 9:外室排気管 10:バルブ 11:皿状容器 12:原料チタン 13:水素化チタン粉末 14:切欠 15:開口 1: Cylindrical furnace 2: Inner chamber 3: Outer chamber 4: Inner chamber heater 5: Outer chamber heater 6: Inner chamber gas introduction pipe 7: Inner chamber exhaust pipe 8: Outer chamber gas introduction pipe 9: Outer chamber exhaust pipe 10 : Valve 11: Dish-shaped container 12: Raw material titanium 13: Titanium hydride powder 14: Notch 15: Opening

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山宮 昌夫 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 田村 道夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 籠橋 亘 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 村山 良治 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 深澤 英一 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Yamamiya 2-6-3 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Michio Tamura 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo New Nippon Steel Co., Ltd. Hirohata Works (72) Inventor Wataru Kagohashi 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Ryoji Murayama 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Titanium Co., Ltd. (72) Inventor Eiichi Fukasawa 3-3-5 Chigasaki, Chigasaki City, Kanagawa Toho Titanium Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法によりチタン粉末を製造
する方法において、内部が内室と外室に2分割された円
柱型炉の、一方の室に原料チタンを、他方の室に水素化
チタン粉末を装入し、両室間に熱移動を行わせて、原料
チタンには水素化処理を、水素化チタン粉末には脱水素
化処理を施すことを特徴とするチタン粉末の製造方法。
1. A method for producing titanium powder by a hydrodehydrogenation method, wherein in a cylindrical furnace whose inside is divided into an inner chamber and an outer chamber, titanium is used as a raw material in one chamber and hydrogenated in the other chamber. A method for producing titanium powder, characterized in that titanium powder is charged, heat is transferred between both chambers, and the raw material titanium is subjected to hydrogenation treatment and the titanium hydride powder is subjected to dehydrogenation treatment.
【請求項2】 外室に原料チタンを装入し、内室に水素
化チタン粉末を装入し、外室の外周部から加熱を開始し
て水素化処理の進行に伴い該加熱を停止し、その後、内
室の外周部から加熱を行いつつ脱水素化処理することを
特徴とする請求項1記載のチタン粉末の製造方法。
2. A raw material titanium is charged into the outer chamber, titanium hydride powder is charged into the inner chamber, heating is started from the outer peripheral portion of the outer chamber, and the heating is stopped as the hydrogenation process progresses. The method for producing titanium powder according to claim 1, wherein the dehydrogenation treatment is then performed while heating from the outer peripheral portion of the inner chamber.
【請求項3】 外室に原料チタンを装入し、内室に水素
化チタン粉末を装入し、外室の外周部から加熱を開始し
て水素化処理の進行に伴い該加熱を停止し、その後、内
室の中心部から加熱を行いつつ脱水素化処理することを
特徴とする請求項1記載のチタン粉末の製造方法。
3. A raw material titanium is charged into the outer chamber, titanium hydride powder is charged into the inner chamber, heating is started from the outer peripheral portion of the outer chamber, and the heating is stopped as the hydrogenation process progresses. Then, the method for producing titanium powder according to claim 1, wherein the dehydrogenation treatment is performed while heating from the center of the inner chamber.
【請求項4】 内室に原料チタンを装入し、外室に水素
化チタン粉末を装入し、内室の中心部から加熱を開始し
て水素化処理の進行に伴い該加熱を停止し、その後、外
室の外周部から加熱を行いつつ脱水素化処理することを
特徴とする請求項1記載のチタン粉末の製造方法。
4. A raw material titanium is charged into the inner chamber, titanium hydride powder is charged into the outer chamber, heating is started from the center of the inner chamber, and the heating is stopped as the hydrogenation process progresses. The method for producing titanium powder according to claim 1, wherein the dehydrogenation treatment is then performed while heating the outer peripheral portion of the outer chamber.
【請求項5】 円柱型炉の内部が内室と外室に2分割さ
れ、外室の外周部および内室の外周部にヒーターが設け
られ、内室および外室には、それぞれ排気管およびガス
導入管が設けられていることを特徴とするチタン粉末の
製造装置。
5. A cylindrical furnace is divided into an inner chamber and an outer chamber into two parts, a heater is provided at an outer peripheral portion of the outer chamber and an outer peripheral portion of the inner chamber, and an exhaust pipe and an outer pipe are provided in the inner chamber and the outer chamber, respectively. An apparatus for producing titanium powder, characterized in that a gas introduction pipe is provided.
【請求項6】 円柱型炉の内部が内室と外室に2分割さ
れ、外室の外周部および内室の中心部にヒーターが設け
られ、内室および外室には、それぞれ排気管およびガス
導入管が設けられていることを特徴とするチタン粉末の
製造装置。
6. The inside of a cylindrical furnace is divided into an inner chamber and an outer chamber, heaters are provided at an outer peripheral portion of the outer chamber and a central portion of the inner chamber, and an exhaust pipe and an outer chamber are provided in the inner chamber and the outer chamber, respectively. An apparatus for producing titanium powder, characterized in that a gas introduction pipe is provided.
JP20519993A 1993-08-19 1993-08-19 Method and apparatus for producing titanium powder Withdrawn JPH0754021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20519993A JPH0754021A (en) 1993-08-19 1993-08-19 Method and apparatus for producing titanium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20519993A JPH0754021A (en) 1993-08-19 1993-08-19 Method and apparatus for producing titanium powder

Publications (1)

Publication Number Publication Date
JPH0754021A true JPH0754021A (en) 1995-02-28

Family

ID=16503050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20519993A Withdrawn JPH0754021A (en) 1993-08-19 1993-08-19 Method and apparatus for producing titanium powder

Country Status (1)

Country Link
JP (1) JPH0754021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152553A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
WO2011152359A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152553A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
WO2011152359A1 (en) * 2010-05-31 2011-12-08 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
CN102905822A (en) * 2010-05-31 2013-01-30 东邦钛株式会社 Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
JPWO2011152359A1 (en) * 2010-05-31 2013-08-01 東邦チタニウム株式会社 Titanium alloy composite powder containing ceramics and production method thereof, densified titanium alloy material using the same, and production method thereof
JP5855565B2 (en) * 2010-05-31 2016-02-09 東邦チタニウム株式会社 Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
JP5889786B2 (en) * 2010-05-31 2016-03-22 東邦チタニウム株式会社 Titanium alloy mixed powder blended with copper powder, chromium powder or iron powder, method for producing the same, and method for producing titanium alloy material

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
EP3238825A1 (en) Application method for cold field plasma discharge assisted high energy ball milled powder and device
CN111549244A (en) Preparation method of Ti35 titanium alloy ingot
RU2002135197A (en) METHOD FOR PRODUCING HOMOGENEOUS FINE-GRAIN TITANIUM MATERIAL (OPTIONS)
CN108213440A (en) A kind of preparation method of Mo Re alloys tubing
CN110904364B (en) Preparation method of aluminum alloy target material
JPH0754021A (en) Method and apparatus for producing titanium powder
JP2003226964A (en) Method of producing tungsten target for sputtering
JP3332105B2 (en) Hydrothermal treatment method and apparatus for titanium powder production
CN107282854A (en) A kind of manufacturing process of nuclear power retaining ring
JPH0754017A (en) Method and apparatus for producing titanium powder
JPH07118710A (en) Hydrogenation method in production of titanium powder
JPH0776706A (en) Heating method and device for titanium powder production
JPH06264233A (en) Sputtering target for producing tft
CN106925791A (en) Metal powder preparation method and powder preparing unit
JPH0693400A (en) Production of electrodeposition drum made of titanium
JPH0776705A (en) Cooling method and device for dehydrogenation of titanium powder production
JPH0770613A (en) Dehydrogenation in production of titanium powder
JP2001226703A (en) Die for electric sintering and processing
CN111604498B (en) Preparation method of niobium-zirconium alloy powder
JP3063014B2 (en) Manufacturing method of titanium powder
CN109023185A (en) A kind of GH80A high temperature alloy part surface layer grain thinning method
EP3766601A1 (en) Titanium powder and method for producing same
CN111283127B (en) Forging method of alloy ingot
JPH06256918A (en) Production of molybdenum or molybdenum alloy sheet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031