JPH0776117B2 - Optical fiber coating method - Google Patents

Optical fiber coating method

Info

Publication number
JPH0776117B2
JPH0776117B2 JP61276718A JP27671886A JPH0776117B2 JP H0776117 B2 JPH0776117 B2 JP H0776117B2 JP 61276718 A JP61276718 A JP 61276718A JP 27671886 A JP27671886 A JP 27671886A JP H0776117 B2 JPH0776117 B2 JP H0776117B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
curing
coating
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61276718A
Other languages
Japanese (ja)
Other versions
JPS63134538A (en
Inventor
正克 菅井
祐司 亀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61276718A priority Critical patent/JPH0776117B2/en
Publication of JPS63134538A publication Critical patent/JPS63134538A/en
Publication of JPH0776117B2 publication Critical patent/JPH0776117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 <発明の属する技術分野> この発明は光ファイバの被覆方法に関し、更に詳しくは
加熱軟化した光ファイバ母材先端に一定の張力を加えて
線引きした光ファイバ(以下、この線引きした光ファイ
バを「線引きファイバ」という。)の表面に樹脂層を被
覆するコーティング方法の改良に関する。
Description: TECHNICAL FIELD The present invention relates to an optical fiber coating method, and more particularly, to an optical fiber drawn by applying a certain tension to the tip of a heat-softened optical fiber preform (hereinafter referred to as An improved coating method for coating the surface of a drawn optical fiber with a resin layer.

<技術的背景> 光ファイバ母材から光ファイバを製造するときは、第5
図に示すように光ファイバ母材1を加熱炉2で加熱軟化
させながら、その先端に張力を加えて線引きし、生成す
る線引きファイバ3を樹脂液槽4中を通して表面に樹脂
液を塗布させ、引き続き硬化炉5に送り、塗布した樹脂
液を硬化し、かくして得られた被覆済光ファイバ(以
下、「被覆ファイバ」という)6を作製した後、キャプ
スタン7を介して巻取ボビン8に巻き取るようにしてい
た。しかも、このような製造過程において、線引きファ
イバ3および被覆ファイバ6の線径は、それぞれレーザ
外径モニタ9および10によりモニタされ、線引きファイ
バ3に関しては一定の外径が得られるように線引き速度
を調節するようにしていた。
<Technical background> When manufacturing an optical fiber from an optical fiber preform,
As shown in the drawing, while heating and softening the optical fiber preform 1 in the heating furnace 2, tension is applied to the tip of the optical fiber preform 1 to draw it, and the drawn fiber 3 is passed through the resin liquid tank 4 to apply the resin liquid to the surface, Subsequently, it is sent to a curing oven 5, the applied resin liquid is cured, and a coated optical fiber (hereinafter referred to as “coated fiber”) 6 thus obtained is manufactured, and then wound on a winding bobbin 8 via a capstan 7. I was trying to take it. Moreover, in such a manufacturing process, the diameters of the drawn fiber 3 and the coated fiber 6 are monitored by the laser outer diameter monitors 9 and 10, respectively, and the drawing speed of the drawn fiber 3 is adjusted so that a constant outer diameter can be obtained. I was adjusting it.

一方、被覆ファイバ6の樹脂層の硬化度は最終製品とし
ての光ファイバの伝送特性、機械的強度および長期信頼
性等と直接関係があるため、光ファイバの製造において
は、その硬化度を測定する必要がある。
On the other hand, since the degree of cure of the resin layer of the coated fiber 6 is directly related to the transmission characteristics, mechanical strength, long-term reliability, etc. of the final optical fiber, the degree of cure is measured in the manufacture of the optical fiber. There is a need.

硬化度の目安として、通常ヤング率が採用される。従来
は光ファイバの樹脂被覆層のヤング率を測定するには、
被覆ファイバから樹脂被覆層を取り出して、そのヤング
率を測っていた。
Young's modulus is usually adopted as a measure of the degree of curing. Conventionally, to measure the Young's modulus of the resin coating layer of an optical fiber,
The Young's modulus was measured by taking out the resin coating layer from the coated fiber.

<発明が解決しようとする問題点> ところが、上述した従来の被覆ファイバの樹脂被覆層の
ヤング率測定は、被覆ファイバから剥がした樹脂被覆層
について測定するから、剥がす際に均一の厚みを維持し
た状態で取り出すことは難かしく測定誤差が大きかっ
た。
<Problems to be Solved by the Invention> However, since the Young's modulus of the resin coating layer of the conventional coated fiber described above is measured for the resin coating layer peeled from the coated fiber, a uniform thickness is maintained when peeling. It was difficult to take it out in the state, and the measurement error was large.

また、測定に長時間必要とし、線引きファイバに樹脂液
被覆し、それが硬化する状態のものを測定できないた
め、被覆ファイバを構成している状態での樹脂被覆層の
ヤング率測定が行ない得ない不都合があった。
In addition, it takes a long time for measurement, and it is impossible to measure the Young's modulus of the resin coating layer in the state of forming the coated fiber because the drawn fiber is coated with the resin liquid and cannot be measured in the cured state. There was an inconvenience.

この発明はこのような従来の光ファイバ被覆におけるヤ
ング率の実体把握が不満足な状態で光ファイバが製造さ
れることの欠点を除去しようとしてなされたものであっ
て、被覆ファイバの樹脂被覆層のヤング率を十分に正確
に測定でき、かつ樹脂被覆層を被覆ファイバから取り出
すことなく測定できる光ファイバの被覆方法を提供しよ
うとするものである。
The present invention was made in an effort to eliminate the drawback of manufacturing an optical fiber in such a state that the conventional grasp of the Young's modulus in the optical fiber coating is unsatisfactory. An object of the present invention is to provide an optical fiber coating method capable of measuring the ratio sufficiently accurately and measuring without taking out the resin coating layer from the coated fiber.

<問題点を解決するための手段> 上述の目的を達成するため、この発明の光ファイバの被
覆方法は、加熱軟化した光ファイバ母材から線引きして
得られた線引きファイバ樹脂液を塗布し、硬化せしめて
被覆ファイバを作製する光ファイバの被覆方法におい
て、線引きファイバに塗布した樹脂液硬化前および硬化
後の被覆ファイバの外径をそれぞれモニタし、樹脂液硬
化前後の外径比を一定に保持しながら線引きすることを
特徴とするものである。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the coating method of the optical fiber of the present invention is applied with a drawn fiber resin liquid obtained by drawing from a heat-softened optical fiber preform, In an optical fiber coating method that cures to produce a coated fiber, the outer diameter of the coated fiber applied to the drawn fiber before and after the resin solution cures is monitored, and the outer diameter ratio before and after the resin solution cures is kept constant. It is characterized by drawing while drawing.

<作用> 以上のように、線引きファイバに塗布した樹脂液の硬化
前および後の被覆ファイバの外径をモニタし、その比が
一定となるように保持しながら線引きするから、塗布樹
脂液層の硬化収縮率x(%)は、 となる。ただし、 Rは塗布樹脂液層の硬化前の外径 rは硬化後の外径、 aは線引きファイバの線径。
<Operation> As described above, since the outer diameter of the coated fiber before and after the resin liquid applied to the drawn fiber is cured is monitored, and the drawing is performed while maintaining the ratio to be constant, the coated resin liquid layer Curing shrinkage x (%) is Becomes Here, R is the outer diameter of the applied resin liquid layer before curing, r is the outer diameter of the resin after curing, and a is the wire diameter of the drawn fiber.

硬化収縮率xは、樹脂の硬化度と比例することは知られ
ているから、硬化収縮率を求めることは樹脂の硬化度を
求めたことになる。そして、上述した式(1)にしたが
って線引きファイバの樹脂液被覆層の硬化前後の外径か
ら硬化収縮率を求めることができる。これらの値はレー
ザ外径測定装置によって求めることができ、測定精度が
0.2μmと高く、かつ非破壊分析のため、樹脂被覆層を
除く必要もないから、被覆加工中に迅速に、しかも高精
度に硬化収縮率、つまり硬化度を求めることができる。
It is known that the cure shrinkage rate x is proportional to the degree of cure of the resin, and thus the determination of the cure shrinkage rate means the determination of the degree of cure of the resin. Then, the curing shrinkage ratio can be obtained from the outer diameter of the resin liquid coating layer of the drawn fiber before and after the curing according to the above-mentioned formula (1). These values can be obtained by a laser outer diameter measuring device, and the measurement accuracy is
Since it is as high as 0.2 μm and there is no need to remove the resin coating layer because of non-destructive analysis, the cure shrinkage, that is, the degree of cure, can be obtained quickly and highly accurately during the coating process.

また、樹脂液の硬化収縮率、つまり硬化度に変化が生じ
た場合は、その偏差信号は直ちにキャプスタンへ送ら
れ、たとえば単位面積当りの被覆ファイバへの総照射光
量を調節することによって、常に一定のヤング率をもっ
た被覆層を有する光ファイバを製造することができる。
Further, when the curing shrinkage rate of the resin liquid, that is, the degree of curing changes, the deviation signal is immediately sent to the capstan, and for example, by adjusting the total irradiation light amount to the coated fiber per unit area, An optical fiber having a coating layer with a constant Young's modulus can be manufactured.

<実 施 例> つぎに、この発明の代表的な実施例について説明する。<Examples> Next, typical examples of the present invention will be described.

第1図は実施例の光ファイバの被覆方法の実施に使用す
る被覆装置の概略構成図であって、従来の被覆装置(第
5図参照)との違いは樹脂液層4と硬化炉5との間に線
引きファイバ3に被覆した樹脂液層の硬化前の外径測定
のためのレーザ外径測定器11を設けた点にある。
FIG. 1 is a schematic configuration diagram of a coating device used for carrying out the optical fiber coating method of the embodiment. The difference from the conventional coating device (see FIG. 5) is that the resin liquid layer 4 and the curing furnace 5 are different from each other. A laser outer diameter measuring device 11 for measuring the outer diameter of the resin liquid layer coated on the drawn fiber 3 before curing is provided between the two.

また、本実施例において使用した硬化炉5は紫外線照射
炉であり、図示外の電力源から供給される電力によって
照射光のパワを調整可能になっている。樹脂液槽4の樹
脂は紫外線照射によって硬化するアクリレート樹脂が収
納され、線引きファイバ3が槽内を通過するときに、そ
の表面に付着する構造になっている。
The curing furnace 5 used in this embodiment is an ultraviolet irradiation furnace, and the power of irradiation light can be adjusted by electric power supplied from a power source (not shown). The resin in the resin liquid tank 4 contains an acrylate resin that is cured by irradiation with ultraviolet rays, and has a structure that adheres to the surface of the drawn fiber 3 when the drawn fiber 3 passes through the tank.

本実施例によって線引きファイバ3表面に塗布されたア
クリレート樹脂の硬化前後における被覆ファイバのヤン
グ率変化量と硬化収縮率の関係を示せば、第2図のよう
な特性図が得られる。
If the relationship between the Young's modulus change amount of the coated fiber before and after the curing of the acrylate resin coated on the surface of the drawn fiber 3 and the curing shrinkage rate is shown in this example, the characteristic diagram as shown in FIG. 2 can be obtained.

第2図の特性曲線からヤング率変化量と樹脂液被覆層の
硬化前後での硬化収縮率は比例関係にあり、1%の収縮
率増大はほぼ5kg/mm2のヤング率増加に相当することが
わかる。
From the characteristic curve in Fig. 2, the Young's modulus change amount and the curing shrinkage before and after curing the resin liquid coating layer are in a proportional relationship, and an increase in shrinkage of 1% corresponds to an increase in Young's modulus of approximately 5 kg / mm 2. I understand.

また、硬化収縮率と被覆径の変化量の関係は第3図に示
す関係にあり、1%の硬化収縮率増大があると、被覆径
はほぼ1μm減少する。したがって、1μmの被覆径の
減少は5kg/mm2のヤング率増大に相当することがわかっ
た。
Further, the relationship between the cure shrinkage and the change amount of the coating diameter is as shown in FIG. 3, and when the cure shrinkage is increased by 1%, the coating diameter is reduced by about 1 μm. Therefore, it was found that a decrease in coating diameter of 1 μm corresponds to an increase in Young's modulus of 5 kg / mm 2 .

本実施例ではレーザ外径モニターに測定精度0.2μmの
ものを使用することにより、樹脂被覆のヤング率1kg/mm
2までを高精度に測定可能であることがわかった。
In this embodiment, the Young's modulus of the resin coating is 1 kg / mm by using a laser outer diameter monitor with a measurement accuracy of 0.2 μm.
It was found that up to 2 can be measured with high accuracy.

次に、樹脂被覆層のヤング率と塗布樹脂液層への紫外線
照射光量との関係を示せば第4図の関係になり、これら
両者は比例関係にあり、1kg/mm2のヤング率を増大させ
るには、ほぼ2mJ/cm2の照射光量を増やせばよいことが
判明した。実際、被覆のヤング率が1kg/mm2増大したと
き、照射光量を2mJ/cm2減少させることで、ヤング率は1
kg/mm2減少した。このとき、照射光量を減少させる方法
としては、単位面積当りの被覆への総照射光量が光ファ
イバの線速に反比例することを利用した。通常の被覆に
おいて用いられる単位面積当りの被覆への照射光量は、
約100mJ/cm2であるので2mJ/cm2の照射光量を減少させる
には、照射光量を0.98倍に小さくすればよく、そのため
には光ファイバの線速を1.02倍速くすればよい。実際、
キャプスタンの回転速度にフィードバックし、線引速度
を1.02倍速くした結果、被覆のヤング率を1kg/mm2下げ
ることが可能となった。
Next, if the relationship between the Young's modulus of the resin coating layer and the amount of UV irradiation light on the coating resin liquid layer is shown, the relationship shown in Fig. 4 is established, and both are in a proportional relationship, increasing the Young's modulus of 1 kg / mm 2. It was found that the irradiation light amount of about 2 mJ / cm 2 should be increased in order to make it. In fact, when the Young's modulus of the coating increased by 1 kg / mm 2 , the Young's modulus decreased by 2 mJ / cm 2 and
kg / mm 2 decreased. At this time, as a method of reducing the irradiation light amount, it was used that the total irradiation light amount per unit area was inversely proportional to the linear velocity of the optical fiber. The irradiation light amount per unit area used in ordinary coating is
Since it is approximately 100 mJ / cm 2 , the irradiation light amount of 2 mJ / cm 2 can be reduced by 0.98 times, and the linear velocity of the optical fiber can be increased by 1.02 times in order to reduce the irradiation light amount. In fact
As a result of feeding back the rotation speed of the capstan and increasing the drawing speed by 1.02 times, it became possible to lower the Young's modulus of the coating by 1 kg / mm 2 .

<発明と効果> 以上の説明から明らかなように、この発明の光ファイバ
の被覆方法によれば、線引きファイバに対し樹脂被覆作
業中に、硬化度を迅速にしかも精度よく測定できるの
で、被覆層への照射光量や、線引き速度を調節すること
によって、常に一定の硬化度を有する被覆をすることが
できる。
<Invention and Effect> As is clear from the above description, according to the optical fiber coating method of the present invention, the degree of cure can be measured quickly and accurately during the resin coating operation on the drawn fiber. By adjusting the amount of irradiation light to and the drawing speed, it is possible to always provide a coating having a constant degree of curing.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の光ファイバの被覆方法の実際に使用
する光ファイバの被覆装置の概略構成図、第2図は線引
きファイバ表面に塗布した樹脂液被覆層のヤング率変化
量対硬化収縮率の関係を示す特性図、第3図は被覆ファ
イバの外径変化量対硬化収縮率の関係を示す特性図、第
4図は被覆ファイバの樹脂液被覆層への総照射光量対ヤ
ング率の変化量の関係を示す特性図、第5図は従来の光
ファイバの被覆方法に使用した被覆装置の概略構成図で
ある。 図中、1……光ファイバ母材、2……加熱炉、3……線
引きファイバ、4……樹脂液槽、5……赤外線(又は紫
外線)照射装置、6……被覆ファイバ、7……キャプス
タン、8……巻取ボビン、9,10,11……レーザ外径測定
器。
FIG. 1 is a schematic configuration diagram of an optical fiber coating apparatus which is actually used in the optical fiber coating method of the present invention, and FIG. 2 is a Young's modulus change amount vs. curing shrinkage rate of a resin liquid coating layer applied to the surface of a drawn fiber. FIG. 3 is a characteristic diagram showing the relationship between the outer diameter change amount of the coated fiber and the curing shrinkage ratio, and FIG. 4 is a change of the total irradiation light amount to the resin liquid coating layer of the coated fiber versus the Young's modulus. FIG. 5 is a characteristic diagram showing the relationship between the amounts, and FIG. 5 is a schematic configuration diagram of a coating device used in a conventional optical fiber coating method. In the figure, 1 ... Optical fiber base material, 2 ... Heating furnace, 3 ... Drawing fiber, 4 ... Resin solution tank, 5 ... Infrared (or ultraviolet) irradiation device, 6 ... Coated fiber, 7 ... Capstan, 8 ... Winding bobbin, 9, 10, 11 ... Laser outer diameter measuring instrument.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】加熱軟化した光ファイバ母材から線引きし
て得られた線引きファイバに樹脂液を塗布し、硬化せし
めて被覆ファイバを作製する光ファイバの被覆方法にお
いて、線引きファイバに塗布した樹脂液硬化前および硬
化後の被覆ファイバ外径をそれぞれモニタし、樹脂液硬
化前後の外径比を一定に保持しながら線引きすることを
特徴とする光ファイバの被覆方法。
1. A method for coating an optical fiber, which comprises applying a resin solution to a drawn fiber obtained by drawing from a heat-softened optical fiber preform and curing it to produce a coated fiber. A method for coating an optical fiber, which comprises monitoring the outer diameters of the coated fiber before and after curing and drawing the fiber while keeping the outer diameter ratio before and after curing the resin liquid constant.
【請求項2】樹脂液硬化速度および/又は線引きファイ
バの線引き速度を調節することにより、樹脂液硬化前後
の外径比を一定にすることを特徴とする特許請求の範囲
第(1)項記載の光ファイバの被覆方法。
2. The outer diameter ratio before and after curing the resin liquid is made constant by adjusting the resin liquid curing speed and / or the drawing speed of the drawn fiber. Optical fiber coating method.
JP61276718A 1986-11-21 1986-11-21 Optical fiber coating method Expired - Fee Related JPH0776117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61276718A JPH0776117B2 (en) 1986-11-21 1986-11-21 Optical fiber coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276718A JPH0776117B2 (en) 1986-11-21 1986-11-21 Optical fiber coating method

Publications (2)

Publication Number Publication Date
JPS63134538A JPS63134538A (en) 1988-06-07
JPH0776117B2 true JPH0776117B2 (en) 1995-08-16

Family

ID=17573363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276718A Expired - Fee Related JPH0776117B2 (en) 1986-11-21 1986-11-21 Optical fiber coating method

Country Status (1)

Country Link
JP (1) JPH0776117B2 (en)

Also Published As

Publication number Publication date
JPS63134538A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
JP2765033B2 (en) Optical fiber drawing method
JP2950264B2 (en) Manufacturing method of optical fiber ribbon
JPS5888131A (en) Method of obtaining substance having chiral structure by drawing from soft material source and device therefor
JPH09132424A (en) Method for drawing optical fiber
JPS638233A (en) Optical fiber drawing device
JPH0776117B2 (en) Optical fiber coating method
JP2001031440A (en) Measurement of distortion in optical fiber, production of optical fiber and installation therefor
JP2614949B2 (en) Optical fiber coating forming method and coating forming apparatus
JP2928723B2 (en) Optical fiber manufacturing method
JP2003226559A (en) Method of manufacturing optical fiber
JP2583996B2 (en) Optical fiber coating equipment
JPS6229377B2 (en)
JPH0337129A (en) Production of optical glass fiber
JP3301136B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP2683278B2 (en) A method for measuring the cured state of optical fiber coatings.
JPS60186431A (en) Apparatus for drawing optical fiber preform
JP2968680B2 (en) Optical fiber manufacturing method
JPH02212328A (en) Production of optical fiber
JPS5941936B2 (en) Optical fiber coating method
JPH0597459A (en) Drawing device for base material of optical fiber
JP2951415B2 (en) Method for drawing silica-based dispersion-shifted optical fiber
JPH0797232A (en) Filament drawing of optical fiber
JPS63215531A (en) Production of optical fiber
JPH01150107A (en) Apparatus for producing optical tape fiber
JPS5843338B2 (en) Optical fiber manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees