JPH0775884A - Method for joining dissimilar material by detonation - Google Patents

Method for joining dissimilar material by detonation

Info

Publication number
JPH0775884A
JPH0775884A JP6161786A JP16178694A JPH0775884A JP H0775884 A JPH0775884 A JP H0775884A JP 6161786 A JP6161786 A JP 6161786A JP 16178694 A JP16178694 A JP 16178694A JP H0775884 A JPH0775884 A JP H0775884A
Authority
JP
Japan
Prior art keywords
joining
explosive
dissimilar materials
base material
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6161786A
Other languages
Japanese (ja)
Inventor
Hideaki Kazama
英明 風間
Yukio Yanokura
幸夫 矢野倉
Tsutomu Konuma
勉 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6161786A priority Critical patent/JPH0775884A/en
Publication of JPH0775884A publication Critical patent/JPH0775884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To improve the joinability by detonation in manufacturing a joint by dissimilar materials. CONSTITUTION:A joint of dissimilar materials where the ductility is improved and the excellent interface condition without surface oxidation is obtained can be manufactured by preliminarily heating and keeping the material 1 to be joined by detonation by a heater 4 in the temperature range where the elongation is increased and executing the detonation joining of the material 1 to be joined to the base metal 2 by the explosive 5 within an atmosphere shut-off case 7 which is in the inert gas atmosphere or in the vacuum condition. The ductility in the joining can be improved without reduction of the mechanical strength due to the adjustment of the material composition, and the dissimilar materials having excellent interface condition with little residual stress can be joined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、爆着による異種材料の
接合方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining dissimilar materials by bombardment.

【0002】[0002]

【従来の技術】爆発接合法は、爆発の高エネルギーによ
り接合材が母材面に瞬時に圧着されるため、爆発時の熱
が接合材に影響を及ぼすことがほとんどなく、結果とし
て冷間圧着となる。このため、接合時の爆発力による接
合材の変形,加工硬化,異材界面の接合不良などに配慮
する必要がある。
2. Description of the Related Art In the explosive joining method, the joining material is instantly pressure-bonded to the base metal surface by the high energy of the explosion, so that the heat at the time of the explosion hardly affects the joining material, and as a result, the cold-bonding is performed. Becomes Therefore, it is necessary to consider deformation of the joining material due to explosive force during joining, work hardening, joining failure at the interface of different materials, and the like.

【0003】この問題を解決するため、従来の爆発接合
法は、接合不良防止等の観点から接合材を薄くし幾層に
も重ねたり、接合材の加工硬化を緩和するために接合後
に熱処理を実施していた。
In order to solve this problem, in the conventional explosive joining method, from the viewpoint of prevention of joining defects, the joining material is thinned and laminated in multiple layers, or heat treatment is performed after joining in order to alleviate work hardening of the joining material. It was carried out.

【0004】ジルコニウムを使用した異材接合方法を例
に採ると、小沼,舟本他「ステンレス鋼、タンタル、ジ
ルコニウム爆発接合材の特性」日本原子力学会誌,Vol.
32,No.8,pp803−812(1990)は、接
合後に熱処理を実施することによりジルコニウム部分の
延性と衝撃特性が改善でき、良好な接合ができると記述
する。
Taking the dissimilar material joining method using zirconium as an example, Onuma, Funamoto et al. "Characteristics of stainless steel, tantalum, and zirconium explosive joining materials", Atomic Energy Society of Japan, Vol.
32, No. 8, pp 803-812 (1990), it is described that the ductility and impact characteristics of the zirconium part can be improved by performing a heat treatment after joining, and good joining can be achieved.

【0005】また、小沼,舟本他「爆発接合法によるス
テンレス鋼とジルコニウムの異材接合方法の開発」日本
原子力学会誌,Vol.30,No.9,pp793−801
(1988)は、接合材は大きな塑性変形を伴って接合
されるので、特にヤング率の小さい材料を接合する場合
には化学成分を調整し伸びの良い材料を使用して接合性
の改善を図ることを記載する。
Onuma, Funamoto et al., "Development of dissimilar material joining method of stainless steel and zirconium by explosive joining method", Atomic Energy Society of Japan, Vol. 30, No. 9, pp. 793-801.
According to (1988), since the joining material is joined with a large plastic deformation, particularly when joining a material having a small Young's modulus, the chemical composition is adjusted to improve the joining ability by using a material having good elongation. Describe that.

【0006】特公平4−71636号公報は、接合性の観点か
ら接合材としてのジルコニウムの伸びは少なくとも25
%以上、望ましくは30%以上のものが良く、伸び率の
良いものほど接合材を厚くできることを開示している。
Japanese Patent Publication No. 4-71636 discloses that the elongation of zirconium as a bonding material is at least 25 from the viewpoint of bondability.
% Or more, preferably 30% or more, and it is disclosed that the better the elongation, the thicker the bonding material.

【0007】しかし、図5に示すようにジルコニウムの
伸びを高めるためには、構成元素である酸素と窒素の含
有量を低く抑える必要があり、これにより接合材の機械
的強度が低下することが明らかにされている。
However, as shown in FIG. 5, in order to increase the elongation of zirconium, it is necessary to keep the contents of the constituent elements oxygen and nitrogen low, which may lower the mechanical strength of the bonding material. Has been revealed.

【0008】[0008]

【発明が解決しようとする課題】上記した各従来技術の
熱処理は、何れも接合後に実施され、熱間圧延をした異
材複合板の機械的性質の改善を目的としたものである。
しかし、従来の異種材料接合方法は、爆発接合により瞬
時に圧着が完了するため爆発時の熱が材料に影響を及ぼ
すことがほとんどなく、結果として冷間接合となり、延
性の低い材料を接合する場合、冶金学的接合性が低下す
るため材料組成等の調整による延性改善が望ましいとさ
れていた。
Each of the above-mentioned heat treatments of the prior art is intended to improve the mechanical properties of the hot-rolled dissimilar material composite sheet, which is carried out after joining.
However, in the conventional dissimilar material joining method, the pressure at the time of explosion hardly affects the material because the crimping is completed instantly by the explosive joining, and as a result, the cold joining is performed and the material with low ductility is joined. However, it has been considered desirable to improve ductility by adjusting the material composition, etc., since the metallurgical bondability decreases.

【0009】本発明の目的は、材料組成等の調整をする
ことなく材料の延性を改善するとともに継手強度を確保
し、良好な異材接合部を得ることができる爆着による異
種材料の接合方法を提供することにある。
An object of the present invention is to provide a method for joining dissimilar materials by explosive bonding, which can improve the ductility of the material without adjusting the material composition and the like, ensure the joint strength, and obtain a good dissimilar material joint. To provide.

【0010】また、本発明の他の目的は、接合時の周辺
環境による材料表面の酸化を防止できる爆着による異種
材料の接合方法を提供することにある。
Another object of the present invention is to provide a method for joining dissimilar materials by explosive deposition which can prevent the oxidation of the material surfaces due to the surrounding environment at the time of joining.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、母材及
びこれに接合する、前記母材とは材質の異なる接合材料
の少なくとも一方を加熱して延性を改善した後、爆薬を
爆発させそれらの材料を接合することによって達成でき
る。
An object of the present invention is to explode an explosive after heating at least one of a base material and a bonding material which is different from the base material and which is bonded to the base material to improve ductility. This can be achieved by joining those materials.

【0012】本発明の他の目的は、加熱及び爆薬の爆発
を不活性ガス雰囲気または真空環境下で行うことにより
達成される。
Another object of the present invention is achieved by heating and detonating explosives in an inert gas atmosphere or a vacuum environment.

【0013】[0013]

【作用】一般に材料の機械的性質は、材料組成と周辺環
境がもたらす材料温度によって変化し、特に伸びについ
てはある特定の温度範囲において高い値を示す傾向があ
る。そのため、伸びが高くなる温度範囲で爆発接合を実
施することにより、接合時の材料の延性が改善されるこ
とになる。これにより、延性改善を目的とした材料組成
の調整が不要となり、接合後の機械的強度の低下がな
く、残留応力の少ない良好な界面状態を持った異種材料
の接合を実施することが可能となる。
In general, the mechanical properties of a material change depending on the material composition and the material temperature brought about by the surrounding environment, and particularly the elongation tends to show a high value in a certain temperature range. Therefore, the ductility of the material at the time of joining is improved by performing the explosive joining in the temperature range where the elongation becomes high. This eliminates the need to adjust the material composition for the purpose of improving ductility, makes it possible to carry out the joining of dissimilar materials with good interfacial state with little residual stress without deterioration of mechanical strength after joining. Become.

【0014】また、大気遮断ケースを使用して接合時の
周辺環境を真空或いは不活性ガス下雰囲気にすることに
より、接合材料の酸化等が防止できるため、温間で接合
を実施しても材料表面温度が高いことによる接合時の周
辺環境が材料に与える影響を防止することが出来る。
In addition, since the ambient environment at the time of bonding is set to a vacuum or an atmosphere under an inert gas by using an air shutoff case, it is possible to prevent the bonding material from being oxidized and the like. It is possible to prevent the influence of the surrounding environment at the time of joining on the material due to the high surface temperature.

【0015】なお、接合材と接合に使用する爆薬との間
は、真空環境下或いは断熱材を使用することによる断熱
効果があるため、材料表面温度が爆薬に伝わることによ
る起爆の恐れはなく機能上の問題はない。
Since there is a heat insulating effect between the joining material and the explosive used for joining in a vacuum environment or by using a heat insulating material, there is no fear of initiation due to the surface temperature of the material being transmitted to the explosive. There is no problem above.

【0016】[0016]

【実施例】以下、本発明の一実施例である爆着による異
種材料の接合方法を図1により手順を追って詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for joining dissimilar materials by bombardment, which is an embodiment of the present invention, will be described in detail below with reference to FIG.

【0017】まず、始めに爆発接合材1及び母材2を所
定の寸法に切断後、両材を重ねたときに隙間なく合わさ
るように平坦度を修正すると共に表面研磨を実施する。
First, after the explosive bonding material 1 and the base material 2 are cut into a predetermined size, the flatness is corrected and the surface is polished so that they are fitted together without a gap when the two materials are stacked.

【0018】表面研磨実施後、母材2の上に数ミリ隙間
をあけて爆発接合材1を重ねる。重ねた爆発接合材1に
ヒータ3及び表面温度測定用の温度計4を取り付ける。
また、爆発接合材1の上に全面を覆うように爆薬5をセ
ットし、その間に断熱材6を挿入後、これらを全て大気
遮断ケース7の中に設置する。大気遮断ケース7は、爆
発接合材1の高温時の表面酸化防止の観点から、ケース
内を真空状態にするもので、気密保持機能を有した耐圧
構造で、圧力計8,ガス入口9,ガス出口10を取り付
けたものを使用する。
After the surface is polished, the explosive bonding material 1 is stacked on the base material 2 with a gap of several millimeters. A heater 3 and a thermometer 4 for measuring the surface temperature are attached to the stacked explosive joining materials 1.
Further, the explosive 5 is set on the explosive bonding material 1 so as to cover the entire surface thereof, and the heat insulating material 6 is inserted therebetween, and then all of them are placed in the atmosphere blocking case 7. From the viewpoint of preventing surface oxidation of the explosive bonding material 1 at a high temperature, the air shutoff case 7 has a pressure-proof structure having a function of maintaining airtightness, and has a pressure gauge 8, a gas inlet 9, and a gas. The one equipped with the outlet 10 is used.

【0019】次に、大気遮断ケース7のガス入口9を閉
じ、ガス出口10から真空ポンプ11により内部の空気
を外部に吸い出して真空状態にする。圧力計8で内部の
真空状態を確認後、温度計4で爆発接合材1の表面温度
を測定しながらヒータ3で爆発接合材1を加熱し、延性
が改善される温度に加熱保持する。
Next, the gas inlet 9 of the atmosphere shutoff case 7 is closed, and the air inside is sucked out from the gas outlet 10 by the vacuum pump 11 to the outside to bring it into a vacuum state. After confirming the internal vacuum state with the pressure gauge 8, the explosive bonding material 1 is heated with the heater 3 while measuring the surface temperature of the explosive bonding material 1 with the thermometer 4 and heated and maintained at a temperature at which the ductility is improved.

【0020】加熱後、雷管12により爆薬5を一端から
起爆させる。起爆した爆薬5は、その爆発力により断熱
材6の上から爆発接合材1を母材2と瞬時に衝突させて
圧着が行われる。
After heating, the detonator 12 detonates the explosive 5 from one end. The explosive 5 that has been detonated is crimped by the explosive force of the explosive joining material 1 to instantly collide with the base material 2 from above the heat insulating material 6.

【0021】圧着後は、温度計4で爆発接合材1の表面
温度が室温になるまで大気遮断ケース7内にて真空状態
で冷却する。
After the pressure bonding, the explosive bonding material 1 is cooled with a thermometer 4 in a vacuum state in the air shielding case 7 until the surface temperature thereof reaches room temperature.

【0022】冷却後、ガス入口9を開き圧力計8で大気
遮断ケース7内が大気圧になったことを確認し、母材2
と圧着した爆発接合材1を取り出して接合による歪をプ
レスで修正し、必要な継手形状に切断する。
After cooling, the gas inlet 9 was opened and the pressure gauge 8 was used to confirm that the inside of the atmosphere blocking case 7 was at atmospheric pressure.
The explosive joining material 1 that has been crimped with is taken out, the distortion caused by joining is corrected by a press, and the joint is cut into a required joint shape.

【0023】以上の接合方法により、爆発接合材1は表
面酸化を防止しつつ爆発接合時は延性が改善され圧着し
やすく、また、接合後は接合前の素材強度を確保でき、
良好な異材継手が得られる。
By the above joining method, the explosive joining material 1 has improved ductility during explosive joining and can be easily pressure-bonded while preventing surface oxidation, and after joining, the material strength before joining can be secured.
A good dissimilar material joint can be obtained.

【0024】なお、上記実施例のような真空状態での爆
発接合では、圧着後の接合材の冷却時間を短縮する場
合、不活性ガスを大気遮断ケース7内に吹き込むことで
冷却効率の向上を図る。
In the case of explosive bonding in a vacuum state as in the above embodiment, in order to shorten the cooling time of the bonding material after pressure bonding, an inert gas is blown into the atmosphere blocking case 7 to improve the cooling efficiency. Try.

【0025】次に、本発明の他の実施例である爆着によ
る異種材料の接合方法を図2により説明する。本実施例
は、真空状態で母材側を加熱して爆発接合する例を示
す。
Next, a method of joining dissimilar materials by bombardment, which is another embodiment of the present invention, will be described with reference to FIG. This example shows an example in which the base material side is heated in a vacuum state to perform explosive bonding.

【0026】前述と同様に、平坦度修正及び表面研磨後
に、爆発接合材1を母材2の上に数ミリ隙間をあけて重
ねる。この時母材2にヒータ3及び表面温度測定用の温
度計4を取り付ける。また、爆発接合材1の上に、全面
を覆うように爆薬5をセットし、これらを全て大気遮断
ケース6の中に設置する。大気遮断ケース6は、爆発接
合材1の高温時の表面酸化防止の観点から、ケース内を
真空状態にするもので、気密保持機能を有した耐圧構造
で、圧力計7,ガス入口8,ガス出口9を取り付けたも
のを使用する。
After the flatness correction and the surface polishing, the explosive bonding material 1 is superposed on the base material 2 with a gap of several millimeters therebetween, as in the above. At this time, the heater 3 and the thermometer 4 for measuring the surface temperature are attached to the base material 2. Further, the explosive 5 is set on the explosive bonding material 1 so as to cover the entire surface thereof, and all of them are placed in the air shielding case 6. From the viewpoint of preventing surface oxidation of the explosive bonding material 1 at a high temperature, the atmosphere shutoff case 6 has a pressure-resistant structure having a function of keeping airtightness, and has a pressure gauge 7, a gas inlet 8, and a gas. Use the one with the outlet 9 attached.

【0027】次に、大気遮断ケース6のガス入口8を閉
じ、ガス出口9から真空ポンプ10により内部の空気を
外部に吸い出して真空状態にする。圧力計7で内部の真
空状態を確認後、温度計4で爆発接合材1の表面温度を
測定しながらヒータ3で爆発接合材1を加熱し、延性が
改善される温度に加熱保持する。
Next, the gas inlet 8 of the atmosphere shutoff case 6 is closed, and the air inside is sucked out from the gas outlet 9 by the vacuum pump 10 to the outside to bring it into a vacuum state. After confirming the internal vacuum state with the pressure gauge 7, the explosive bonding material 1 is heated with the heater 3 while measuring the surface temperature of the explosive bonding material 1 with the thermometer 4, and is heated and maintained at a temperature at which the ductility is improved.

【0028】加熱後、雷管11により爆薬5を一端から
起爆させる。起爆した爆薬5は、その爆発力により爆発
接合材1を母材2と瞬時に衝突させて圧着が行われる。
After heating, the detonator 11 detonates the explosive 5 from one end. The explosive 5 that has been detonated is crimped by the explosive force causing the explosive joining material 1 to instantly collide with the base material 2.

【0029】圧着後は、温度計4で爆発接合材1の表面
温度が室温になるまで大気遮断ケース6内にて真空状態
で冷却する。
After the pressure bonding, the explosive bonding material 1 is cooled with a thermometer 4 in a vacuum state in the air shielding case 6 until the surface temperature thereof reaches room temperature.

【0030】冷却後、ガス入口8を開き圧力計7で大気
遮断ケース6内が大気圧になったことを確認し、母材2
と圧着した爆発接合材1を取り出して接合による歪をプ
レスで修正し、必要な継手形状に切断する。
After cooling, the gas inlet 8 was opened and the pressure gauge 7 was used to confirm that the atmosphere shut-off case 6 was at atmospheric pressure.
The explosive joining material 1 that has been crimped with is taken out, the distortion caused by joining is corrected by a press, and the joint is cut into a required joint shape.

【0031】以上の接合方法により、爆発接合材1は表
面酸化を防止しつつ爆発接合時は延性が改善され圧着し
やすく、また、接合後は接合前の素材強度を確保でき、
良好な異材継手が得られる。
By the above-described joining method, the explosive joining material 1 has improved ductility during explosive joining and can be easily crimped while preventing surface oxidation, and after joining, the material strength before joining can be secured.
A good dissimilar material joint can be obtained.

【0032】なお、上記実施例では、真空中で母材2を
加熱するため、その熱が爆薬5に伝わることがなく、加
熱時の起爆を防止する断熱材が不要となる。
In the above embodiment, since the base material 2 is heated in a vacuum, the heat is not transferred to the explosive 5 and a heat insulating material for preventing initiation during heating is unnecessary.

【0033】次に、本発明の他の実施例である不活性ガ
ス下雰囲気で爆発接合材を加熱する場合の一実施例を図
3により説明する。
Next, another embodiment of the present invention in which the explosive bonding material is heated in an atmosphere of an inert gas will be described with reference to FIG.

【0034】前述と同様に、平坦度修正及び表面研磨後
に、爆発接合材1を母材2の上に数ミリ隙間をあけて重
ねる。この時爆発接合材2にヒータ3及び表面温度測定
用の温度計4を取り付ける。また、爆発接合材1の上
に、全面を覆うように爆薬5をセットし、その間に断熱
材6を挿入後、これらを全て大気遮断ケース7の中に設
置する。大気遮断ケース7は、爆発接合材1の高温時の
表面酸化防止の観点から、ケース内を不活性ガス下雰囲
気にするもので、気密保持機能を有した耐圧構造で、圧
力計8,酸素濃度計9,ガス入口10,ガス出口11を
取り付けたものを使用する。
Similarly to the above, after the flatness correction and the surface polishing, the explosive bonding material 1 is superposed on the base material 2 with a gap of several millimeters. At this time, the heater 3 and the thermometer 4 for measuring the surface temperature are attached to the explosive bonding material 2. Further, the explosive 5 is set on the explosive bonding material 1 so as to cover the entire surface thereof, and the heat insulating material 6 is inserted therebetween, and then all of them are placed in the atmosphere blocking case 7. From the viewpoint of preventing surface oxidation of the explosive bonding material 1 at a high temperature, the atmosphere shutoff case 7 has an inert gas atmosphere inside the case, has a pressure resistant structure having a function of maintaining airtightness, and has a pressure gauge 8 and an oxygen concentration. The one equipped with a total of 9, a gas inlet 10 and a gas outlet 11 is used.

【0035】次に、大気遮断ケース7のガス入口10を
閉じ、ガス出口11から真空ポンプ12により内部の空
気を外部に吸い出して真空状態にする。圧力計8で内部
の真空状態を確認後、真空ポンプ12を取外してガス出
口11を閉じ、ガス入口10から不活性ガスを大気遮断
ケース7内に吹き込む。圧力計8で大気遮断ケース7内
の不活性ガスの圧力が大気圧以上になったことを確認し
た後、ガス入口10から不活性ガスを供給しながらガス
出口11を徐々に開く。常に大気遮断ケース7内の不活
性ガス圧力が大気圧以上になるようにガス出口11の開
度を調整し、大気遮断ケース7に残留する空気を不活性
ガスと共に外部へ放出して大気遮断ケース7内の不活性
ガス純度を一定に保つ。
Next, the gas inlet 10 of the atmosphere shutoff case 7 is closed, and the air inside is sucked out to the outside from the gas outlet 11 by the vacuum pump 12 to create a vacuum state. After confirming the internal vacuum state with the pressure gauge 8, the vacuum pump 12 is removed, the gas outlet 11 is closed, and an inert gas is blown into the atmosphere blocking case 7 from the gas inlet 10. After confirming with the pressure gauge 8 that the pressure of the inert gas in the atmosphere shutoff case 7 is equal to or higher than the atmospheric pressure, the gas outlet 11 is gradually opened while supplying the inert gas from the gas inlet 10. The opening of the gas outlet 11 is constantly adjusted so that the inert gas pressure in the atmosphere blocking case 7 is always equal to or higher than the atmospheric pressure, and the air remaining in the atmosphere blocking case 7 is discharged to the outside together with the inert gas to remove the atmosphere blocking case. Keep the inert gas purity in 7 constant.

【0036】酸素濃度計9で大気遮断ケース7内の不活
性ガス純度を確認後、温度計4で爆発接合材1の表面温
度を測定しながらヒータ3で加熱し、延性が改善される
温度に加熱保持する。
After confirming the purity of the inert gas in the atmosphere blocking case 7 with the oxygen concentration meter 9, the surface temperature of the explosive bonding material 1 is measured with the thermometer 4 while heating with the heater 3 to a temperature at which the ductility is improved. Keep heating.

【0037】加熱後、雷管13により爆薬5を一端から
起爆させる。起爆した爆薬5は、その爆発力により断熱
材6の上から爆発接合材1を母材2と瞬時に衝突させて
圧着が行われる。
After heating, the detonator 13 detonates the explosive 5 from one end. The explosive 5 that has been detonated is crimped by the explosive force of the explosive joining material 1 to instantly collide with the base material 2 from above the heat insulating material 6.

【0038】圧着後は、温度計4で爆発接合材1の表面
温度が室温になるまで大気遮断ケース7内にて不活性ガ
スで冷却する。
After the pressure bonding, the explosive bonding material 1 is cooled by the thermometer 4 with the inert gas in the air blocking case 7 until the surface temperature of the explosive bonding material 1 reaches the room temperature.

【0039】冷却後、ガス入口10を開き圧力計8で大
気遮断ケース7内が大気圧になったことを確認し、母材
2と圧着した爆発接合材1を取り出して接合による歪を
プレスで修正し、必要な継手形状に切断する。
After cooling, the gas inlet 10 was opened and the pressure gauge 8 was used to confirm that the inside of the atmosphere blocking case 7 was at atmospheric pressure. Then, the base material 2 and the explosive bonding material 1 that had been crimped were taken out and the distortion caused by the joining was pressed. Correct and cut to desired joint shape.

【0040】以上の接合方法により、爆発接合材1は表
面酸化を防止しつつ爆発接合時は延性が改善され圧着し
やすく、また、接合後は接合前の素材強度を確保でき、
良好な異材継手が得られる。
By the above-mentioned joining method, the explosive joining material 1 has improved ductility during explosive joining and can be easily crimped while preventing surface oxidation, and after joining, the material strength before joining can be secured.
A good dissimilar material joint can be obtained.

【0041】なお、使用する不活性ガスの一例としてア
ルゴンガス,ヘリウムガスなどがある。
Argon gas and helium gas are examples of the inert gas used.

【0042】次に、本発明の他の実施例である不活性ガ
ス下雰囲気で母材を加熱する場合の一実施例を図4によ
り説明する。
Next, another embodiment of the present invention, in which the base material is heated in an atmosphere of an inert gas, will be described with reference to FIG.

【0043】前述と同様に、平坦度修正及び表面研磨後
に、爆発接合材1を母材2の上に数ミリ隙間をあけて重
ねる。この時母材2にヒータ3及び表面温度測定用の温
度計4を取り付ける。また、爆発接合材1の上に、全面
を覆うように爆薬5をセットし、これらを全て大気遮断
ケース6の中に設置する。大気遮断ケース6は、母材2
の高温時の表面酸化防止の観点から、ケース内を不活性
ガス下雰囲気にするもので、気密保持機能を有した耐圧
構造で、圧力計7,酸素濃度計8,ガス入口9,ガス出
口10を取り付けたものを使用する。
Similarly to the above, after the flatness correction and the surface polishing, the explosive bonding material 1 is superposed on the base material 2 with a gap of several millimeters. At this time, the heater 3 and the thermometer 4 for measuring the surface temperature are attached to the base material 2. Further, the explosive 5 is set on the explosive bonding material 1 so as to cover the entire surface thereof, and all of them are placed in the air shielding case 6. Atmosphere shutoff case 6 consists of base material 2
From the viewpoint of preventing surface oxidation at high temperatures, the case is made to have an atmosphere under an inert gas, and has a pressure resistant structure having an airtight holding function, and has a pressure gauge 7, an oxygen concentration meter 8, a gas inlet 9, a gas outlet 10 Use with the attached.

【0044】次に、大気遮断ケース6のガス入口9を閉
じ、ガス出口10から真空ポンプ11により内部の空気
を外部に吸い出して真空状態にする。圧力計7で内部の
真空状態を確認後、真空ポンプ11を取外してガス出口
10を閉じ、ガス入口9から不活性ガスを大気遮断ケー
ス6内に吹き込む。圧力計7で大気遮断ケース6内の不
活性ガスの圧力が大気圧以上になったことを確認した
後、ガス入口9から不活性ガスを供給しながらガス出口
10を徐々に開く。常に大気遮断ケース6内の不活性ガ
ス圧力が大気圧以上になるようにガス出口10の開度を
調整し、大気遮断ケース6に残留する空気を不活性ガス
と共に外部へ放出して大気遮断ケース6内の不活性ガス
純度を一定に保つ。
Next, the gas inlet 9 of the atmosphere shutoff case 6 is closed, and the air inside is sucked out from the gas outlet 10 by the vacuum pump 11 to the outside to bring it into a vacuum state. After confirming the internal vacuum state with the pressure gauge 7, the vacuum pump 11 is removed, the gas outlet 10 is closed, and an inert gas is blown into the atmosphere blocking case 6 through the gas inlet 9. After confirming with the pressure gauge 7 that the pressure of the inert gas in the atmosphere shutoff case 6 has reached the atmospheric pressure or higher, the gas outlet 10 is gradually opened while supplying the inert gas from the gas inlet 9. The opening of the gas outlet 10 is adjusted so that the inert gas pressure in the atmosphere blocking case 6 is always equal to or higher than the atmospheric pressure, and the air remaining in the atmosphere blocking case 6 is discharged to the outside together with the inert gas to remove the atmosphere blocking case. Keep the inert gas purity in 6 constant.

【0045】酸素濃度計8で大気遮断ケース6内の不活
性ガス純度を確認後、温度計4で母材2の表面温度を測
定しながらヒータ3で加熱し、延性が改善される温度に
加熱保持する。
After confirming the purity of the inert gas in the air-shielding case 6 with the oxygen concentration meter 8, the temperature is measured by the heater 3 while the surface temperature of the base material 2 is being measured with the thermometer 4 so that the ductility is improved. Hold.

【0046】加熱後、雷管12により爆薬5を一端から
起爆させる。起爆した爆薬5は、その爆発力により爆発
接合材1を母材2と瞬時に衝突させて圧着が行われる。
After heating, the detonator 12 detonates the explosive 5 from one end. The explosive 5 that has been detonated is crimped by the explosive force causing the explosive joining material 1 to instantly collide with the base material 2.

【0047】圧着後は、温度計4で母材1の表面温度が
室温になるまで大気遮断ケース6内にて不活性ガスで冷
却する。
After the pressure bonding, the thermometer 4 cools the base material 1 with an inert gas in the air shielding case 6 until the surface temperature of the base material 1 reaches room temperature.

【0048】冷却後、ガス入口9を開き圧力計7で大気
遮断ケース6内が大気圧になったことを確認し、母材2
と圧着した爆発接合材1を取り出して接合による歪をプ
レスで修正し、必要な継手形状に切断する。
After cooling, the gas inlet 9 was opened and the pressure gauge 7 was used to confirm that the atmosphere shut-off case 6 was at atmospheric pressure.
The explosive joining material 1 that has been crimped with is taken out, the distortion caused by joining is corrected by a press, and the joint is cut into a required joint shape.

【0049】以上の接合方法により、母材1は表面酸化
を防止しつつ爆発接合時は延性が改善され圧着しやす
く、また、接合後は接合前の素材強度を確保でき、良好
な異材継手が得られる。
By the above-mentioned joining method, the base material 1 has improved ductility during explosion joining while preventing surface oxidation, and is easily pressure-bonded, and after joining, the material strength before joining can be secured, and a good dissimilar joint can be obtained. can get.

【0050】また、本発明の他の実施例として、特に延
性が低い材料同志を爆発接合する場合は、爆発接合材と
母材の両方を以上の実施例と同様に加熱して爆発接合す
る。なお、爆発接合の代表的な例として、爆発接合材1
に純ジルコニウム(ASTMGrade R60702 ),中間接合材
にタンタル,母材2にステンレス鋼を適用した例があ
る。この場合、図6に示すように200℃から延性が改
善される傾向にあり、純ジルコニウムの場合、再結晶化
温度以下にするため450℃以下にする必要がある。従
って、200℃から450℃までが加熱の温度範囲とな
る。
Further, as another embodiment of the present invention, in the case of explosively joining materials having particularly low ductility, both the explosive joining material and the base material are heated and explosively joined as in the above embodiments. As a typical example of explosive joining, explosive joining material 1
There is an example in which pure zirconium (ASTM Grade R60702) is applied, tantalum is used as the intermediate joining material, and stainless steel is used as the base material 2. In this case, as shown in FIG. 6, the ductility tends to be improved from 200 ° C., and in the case of pure zirconium, the temperature needs to be 450 ° C. or lower in order to keep the recrystallization temperature or lower. Therefore, the heating temperature range is from 200 ° C to 450 ° C.

【0051】本発明の他の実施例を図7により説明す
る。図1において特に加工硬化の低い材料を爆発接合材
1とする。また、爆発接合材1と接合しようとする母材
2の結晶構造,熱膨張率が極端に異なる場合は、両材料
の中間的性質を持つ材料を中間材17とし、接合材1と
同様の接合方法であらかじめ母材2と接合する。
Another embodiment of the present invention will be described with reference to FIG. In FIG. 1, an explosive bonding material 1 is a material having a particularly low work hardening. When the crystal structure and the coefficient of thermal expansion of the base material 2 to be joined to the explosive joining material 1 are extremely different, a material having intermediate properties between the two materials is used as the intermediate material 17, and the same joining material as the joining material 1 is used. It joins with the base material 2 beforehand by the method.

【0052】接合は、ヒータ4で爆発接合材1を、延性
が改善される温度に加熱して延性改善を図った上で実施
する。また、これらの作業は、接合材1の表面酸化防止
の観点から、大気遮断ケース7内を真空環境或いは不活
性ガス雰囲気にして実施する。
The joining is carried out after the explosive joining material 1 is heated by the heater 4 to a temperature at which the ductility is improved to improve the ductility. In addition, these operations are performed in a vacuum environment or an inert gas atmosphere in the air shutoff case 7 from the viewpoint of preventing surface oxidation of the bonding material 1.

【0053】次に、ヒータ4で接合材1を加熱保持しな
がら、必要により接合材1と爆薬5の間に断熱材6を装
着しながら、接合材1の直上で爆薬5を雷管12で爆発
させる。
Next, while the bonding material 1 is heated and held by the heater 4, and the heat insulating material 6 is mounted between the bonding material 1 and the explosive 5 if necessary, the explosive 5 is exploded right above the bonding material 1 by the detonator 12. Let

【0054】爆薬5を一端から起爆させると、その爆発
力により接合材1は、中間接合材17がある場合はそれ
を伴って、爆薬5の爆発の進行方向と同時に母材2と瞬
時に衝突,圧着が行われる。圧着後は、表面酸化防止の
観点から、接合材1の表面温度が室温になるまで大気遮
断ケース7内で冷却する。
When the explosive 5 is detonated from one end, the explosive force causes the joining material 1 to instantly collide with the base material 2 at the same time as the explosion of the explosive 5 is accompanied by the intermediate joining material 17, if any. , Crimping is performed. After the pressure bonding, from the viewpoint of preventing surface oxidation, the bonding material 1 is cooled in the air blocking case 7 until the surface temperature reaches room temperature.

【0055】以上の接合方法により、接合材1は表面酸
化を防止しつつ爆発接合時は延性が改善され圧着しやす
く、また、接合後は接合前の素材強度を確保できるよう
になり、良好な異材継手が得られる。
By the above-described joining method, the joining material 1 has improved ductility during explosive joining and can be easily pressure-bonded while preventing surface oxidation, and after joining, the material strength before joining can be secured, which is excellent. A dissimilar joint can be obtained.

【0056】[0056]

【発明の効果】本発明によれば、材料組成の調整による
接合材の機械的強度を低下させることなく接合時の延性
改善が図れるため、残留応力の少ない良好な界面状態を
持った異種材料の接合を可能にする効果がある。
According to the present invention, since the ductility at the time of joining can be improved without lowering the mechanical strength of the joining material by adjusting the material composition, it is possible to obtain a different material having a small residual stress and having a good interface state. It has the effect of enabling joining.

【0057】また、接合時の周辺環境を真空或いは不活
性ガス雰囲気にすることにより、爆発接合時の酸化皮膜
等に起因する接合不良を防止する効果がある。
Further, by making the surrounding environment at the time of joining a vacuum or an inert gas atmosphere, there is an effect of preventing a joining failure due to an oxide film or the like at the time of explosive joining.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好適な一実施例である爆着による異種
材料の接合方法を示す説明図である。
FIG. 1 is an explanatory view showing a method for joining dissimilar materials by explosive bonding, which is a preferred embodiment of the present invention.

【図2】本発明の他の実施例である爆着による異種材料
の接合方法を示す説明図である。
FIG. 2 is an explanatory view showing a method of joining dissimilar materials by bombardment, which is another embodiment of the present invention.

【図3】本発明の他の実施例である爆着による異種材料
の接合方法を示す説明図である。
FIG. 3 is an explanatory view showing a method of joining dissimilar materials by bombardment, which is another embodiment of the present invention.

【図4】本発明の他の実施例である爆着による異種材料
の接合方法を示す説明図である。
FIG. 4 is an explanatory view showing a method of joining dissimilar materials by explosive deposition which is another embodiment of the present invention.

【図5】ジルコニウムの機械的性質に及ぼす酸素と窒素
の影響を示す説明図である。
FIG. 5 is an explanatory diagram showing the influence of oxygen and nitrogen on the mechanical properties of zirconium.

【図6】ジルコニウムの機械的性質に及ぼす温度の影響
を示す説明図である。
FIG. 6 is an explanatory diagram showing the effect of temperature on the mechanical properties of zirconium.

【図7】本発明の他の実施例である爆着による異種材料
の接合方法を示す説明図である。
FIG. 7 is an explanatory view showing a method of joining dissimilar materials by explosion bonding which is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…爆発接合材、2…母材、3…ヒータ、4…温度計、
5…爆薬、6…断熱材、7…大気遮断ケース、8…圧力
計、9…ガス入口、10…ガス出口、11…真空ポン
プ、12…雷管。
1 ... Explosive joining material, 2 ... Base material, 3 ... Heater, 4 ... Thermometer,
5 ... Explosive, 6 ... Insulating material, 7 ... Atmosphere blocking case, 8 ... Pressure gauge, 9 ... Gas inlet, 10 ... Gas outlet, 11 ... Vacuum pump, 12 ... Detonator.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】異種材料を爆発接合する方法で、母材及び
これに接合する、前記母材とは材質の異なる接合材料の
少なくとも一方を加熱して延性を改善した後、爆薬を爆
発させそれらの材料を接合する爆着による異種材料の接
合方法。
1. A method for explosively joining dissimilar materials, wherein at least one of a base material and a joining material different from the base material, which is joined to the base material, is heated to improve ductility, and then explosives are exploded. Method for joining dissimilar materials by explosive welding to join the above materials.
【請求項2】前記加熱及び爆薬の爆発は不活性ガス雰囲
気内で行う請求項1の爆着による異種材料の接合方法。
2. The method for joining dissimilar materials according to claim 1, wherein the heating and the explosion of the explosive are performed in an inert gas atmosphere.
【請求項3】前記加熱及び爆薬の爆発は真空環境下で行
う請求項1の爆着による異種材料の接合方法。
3. The method for joining dissimilar materials according to claim 1, wherein the heating and the explosion of the explosive are performed in a vacuum environment.
【請求項4】爆薬を断熱材を介して前記接合材に取り付
ける請求項1の爆着による異種材料の接合方法。
4. The method for joining dissimilar materials by explosive deposition according to claim 1, wherein an explosive is attached to the joining material via a heat insulating material.
【請求項5】前記接合材として純ジルコニウムを用い、
200℃から450℃に加熱した後、前記接合材を前記
母材に爆着する請求項1の爆着による異種材料の接合方
法。
5. Pure zirconium is used as the bonding material,
The method for joining dissimilar materials by bombarding according to claim 1, wherein the joining material is bombarded to the base material after being heated from 200 ° C to 450 ° C.
JP6161786A 1993-07-14 1994-07-14 Method for joining dissimilar material by detonation Pending JPH0775884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161786A JPH0775884A (en) 1993-07-14 1994-07-14 Method for joining dissimilar material by detonation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-173950 1993-07-14
JP17395093 1993-07-14
JP6161786A JPH0775884A (en) 1993-07-14 1994-07-14 Method for joining dissimilar material by detonation

Publications (1)

Publication Number Publication Date
JPH0775884A true JPH0775884A (en) 1995-03-20

Family

ID=26487789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161786A Pending JPH0775884A (en) 1993-07-14 1994-07-14 Method for joining dissimilar material by detonation

Country Status (1)

Country Link
JP (1) JPH0775884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907441A (en) * 2018-10-18 2018-11-30 郑州宇光复合材料有限公司 A kind of metallic composite vacuum explosion welding apparatus
CN110593615A (en) * 2019-07-22 2019-12-20 安徽理工大学 Vacuum environment-friendly explosive welding workshop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907441A (en) * 2018-10-18 2018-11-30 郑州宇光复合材料有限公司 A kind of metallic composite vacuum explosion welding apparatus
CN110593615A (en) * 2019-07-22 2019-12-20 安徽理工大学 Vacuum environment-friendly explosive welding workshop
CN110593615B (en) * 2019-07-22 2020-11-17 安徽理工大学 Vacuum environment-friendly explosive welding workshop

Similar Documents

Publication Publication Date Title
US6780794B2 (en) Methods of bonding physical vapor deposition target materials to backing plate materials
EP0135937B1 (en) Method of bonding alumina to metal
JPH06189861A (en) Vacuum double wall container made of metal and its production
US20050257877A1 (en) Bonded assemblies
US5277045A (en) Superplastic forming of metals at temperatures greater than 1000 degree C
US20070023489A1 (en) Method of joining components using amorphous brazes and reactive multilayer foil
US5579988A (en) Clad reactive metal plate product and process for producing the same
EP0350329B1 (en) Process for producing composite metallic structures
JPH0775884A (en) Method for joining dissimilar material by detonation
JPH02122003A (en) Raw material for manufacture of composite material member
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JP4281881B2 (en) Heating furnace tube and manufacturing method of heating furnace tube
EP0353022B1 (en) A process for producing a clad plate
JPH06328271A (en) Pipe joint for connecting aluminum pipe and copper pipe
JP3245477B2 (en) Thick plate clad material
JPH01308884A (en) Material-bonding process and bonded product
JP3241524B2 (en) Metal integral molding method
KR930009665B1 (en) Ceramics/metal composite and production thereof
JPS63210286A (en) Treatment of ti alloy for providing resistance to hydrogen embrittlement
JPS6329636B2 (en)
JPS61284531A (en) Heat treatment of clad steel joint product
JP6419657B2 (en) Material for lid of electronic component package and manufacturing method thereof
JPS6293090A (en) Production of titanium clad steel
JPS63188484A (en) Solid phase joining method for different kinds of materials
JPH05386A (en) Manufacture of aluminum/invar/aluminum clad material