JPH0775718B2 - Sludge oil conversion reactor - Google Patents
Sludge oil conversion reactorInfo
- Publication number
- JPH0775718B2 JPH0775718B2 JP6723086A JP6723086A JPH0775718B2 JP H0775718 B2 JPH0775718 B2 JP H0775718B2 JP 6723086 A JP6723086 A JP 6723086A JP 6723086 A JP6723086 A JP 6723086A JP H0775718 B2 JPH0775718 B2 JP H0775718B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- reactor
- valve
- tank
- mixture slurry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Sludge (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は活性汚泥処理装置などの微生物処理装置から発
生する余剰汚泥等の有機性汚泥を高温高圧の条件下で熱
化学的に反応させ、可燃性液体を得るとともに該汚泥の
処理を行い、かつ当該可燃性液体を前記熱化学的反応の
熱エネルギー源や電気エネルギー源として用いる、汚泥
油化装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention thermochemically reacts organic sludge such as excess sludge generated from a microorganism treatment apparatus such as an activated sludge treatment apparatus under high temperature and high pressure conditions, The present invention relates to a sludge oiling apparatus which obtains a combustible liquid and treats the sludge, and uses the combustible liquid as a thermal energy source or an electric energy source for the thermochemical reaction.
各種の微生物処理装置から発生する余剰汚泥等の有機性
汚泥を処理する方法の一つとして、汚泥油化技術が提案
されている。A sludge oil conversion technology has been proposed as one of methods for treating organic sludge such as surplus sludge generated from various microbial treatment devices.
すなわち有機性汚泥を高温高圧の条件下で熱化学的に反
応せしめ、バイオマスから燃料油を得る技術である。In other words, it is a technology to obtain fuel oil from biomass by thermochemically reacting organic sludge under high temperature and high pressure conditions.
従来からこの種の技術として下水汚泥から、アスファル
トと燃料油を得る装置が提案(EPA Project Summary EP
A−600/S2−81−242 Dec,1981)されているが、概念的
なフローだけであり、具体的な反応器型式、形状等の記
述は全くなされていない。Conventionally, a device for obtaining asphalt and fuel oil from sewage sludge has been proposed as this type of technology (EPA Project Summary EP
A-600 / S2-81-242 Dec, 1981), but it is only a conceptual flow, and no concrete description of reactor type, shape, etc. is made.
一方、木材から燃料油を得るという研究が、米国鉱山局
で行われており、ベンチスケール規模の実験が行われて
いる。同方法における反応器は完全混合型反応器(CST
R)であり、その前段にプレヒータとして掻面式予熱器
を設置している。プレヒータ、反応器に送り込まれる木
材はあらかじめオイルスラリー化(Wood:Oil=2:8)又
は酸加水分解等の前処理により流動性をもたせている。On the other hand, research on obtaining fuel oil from wood is being conducted at the US Mining Bureau, and bench-scale experiments are being conducted. The reactor in this method is a fully mixed reactor (CST
R), and a scraping surface type preheater is installed as a preheater in the preceding stage. The wood sent to the preheater and reactor has been made fluid by pretreatment such as oil slurry (Wood: Oil = 2: 8) or acid hydrolysis.
従来から提案されている第1図に示した掻面式熱交換型
汚染油化反応器6においては、外周にジャケット管Jを
設け、ジャケット管J内に後述する熱媒体8を流入し、
反応器6の内部全域にスクレーパBを設けており、それ
で内壁面を掻き取ることにより、伝熱係数の増加ならび
に閉塞防止を図っている。しかしながら、本発明者らの
実験によれば、同反応器の前段部すなわち温度の低い未
反応部に汚泥が閉塞し、圧入装置の吐出圧力が異常に上
昇するというトラブルを経験している。本現象は汚泥中
に含まれる繊維状物質(下水汚泥の場合には、髪の毛
等)が、スクレーパ自身にからまりついて、これが成長
して閉塞をひきおこしたものと考えられる。In the conventionally proposed scraping surface heat exchange type pollutant oilification reactor 6 shown in FIG. 1, a jacket pipe J is provided on the outer periphery, and a heat medium 8 described later flows into the jacket pipe J,
A scraper B is provided all over the inside of the reactor 6 to scrape the inner wall surface to increase the heat transfer coefficient and prevent clogging. However, according to the experiments conducted by the present inventors, sludge is clogged in the front stage part of the reactor, that is, the unreacted part having a low temperature, and the discharge pressure of the press-fitting device is abnormally increased. It is considered that this phenomenon was caused by the fact that fibrous substances contained in sludge (in the case of sewage sludge, hair, etc.) were entangled with the scraper itself, which grew and caused blockage.
本発明は上述した点に鑑みてなされたもので、その目的
とするところは、有機性汚泥を高温高圧下の条件下で熱
化学的に反応せしめ、可燃性液体を得る技術において、
閉塞問題等のトラブルを起こさず、長時間安定して有機
性汚泥を処理する汚泥油化反応器を提供するところにあ
る。The present invention has been made in view of the above points, and its purpose is to thermochemically react organic sludge under conditions of high temperature and high pressure to obtain a flammable liquid.
An object of the present invention is to provide a sludge oilification reactor that stably treats organic sludge for a long time without causing troubles such as a clogging problem.
本発明は汚泥油化反応器において、該油化反応器の内部
の後段部にはスクレーパを、その前段部にはスクリュ機
構をそれぞれ設置し必要に応じて、反応器の出口部から
入口部へ循環ラインを設けることを特徴とする汚泥油化
反応器に関するものである。The present invention is a sludge oil conversion reactor, a scraper is installed in the latter part of the inside of the oil conversion reactor, and a screw mechanism is installed in the front part of the oil conversion reactor, and if necessary, from the outlet to the inlet of the reactor. The present invention relates to a sludge oil conversion reactor characterized by having a circulation line.
以下に本発明の詳細を図面に示す実施態様を用いて説明
する。The details of the present invention will be described below with reference to the embodiments shown in the drawings.
第2図は本発明に係る汚泥油化反応のフローを示す説明
図であり、有機性汚泥1をまず脱水装置2例えば遠心分
離機、ベルトプレス式脱水機などにより予かじめ脱水
し、当該脱水汚泥3を圧入装置4により予熱部5Aと反応
部5Bを有する反応器6に供給する。なお有機性汚泥に余
り多量の水分が含まれていると後述する熱科学的反応に
おいて多量の熱量を消費するので、当該脱水装置2で水
分含有率80%以下に脱水することが望ましい。さらに後
述する熱化学的反応において有機性汚泥にアルカリ成分
を共存させた方が反応効率がよく進むので、有機性汚泥
に予かじめ炭酸ナトリウム、炭酸カリウム、ギ酸ナトリ
ウム、ギ酸カリウム、水酸化カリウム、水酸化ナトリウ
ム、石灰などのアルカリ成分を添加することが好まし
い。前述の圧入装置4としては高圧スラリーポンプは当
然使用できるが、かなり高下にて脱水汚泥を供給せねば
ならないので、以下に説明するシリンダーとピストンを
組み合わせた圧入装置を使用した方が好ましい。FIG. 2 is an explanatory view showing the flow of sludge oilification reaction according to the present invention, in which the organic sludge 1 is first pre-dehydrated by a dehydrator 2 such as a centrifuge or a belt press type dehydrator, and the dehydration is performed. The sludge 3 is supplied by a press-fitting device 4 to a reactor 6 having a preheating section 5A and a reaction section 5B. If the organic sludge contains an excessively large amount of water, a large amount of heat is consumed in the thermochemical reaction described later. Therefore, it is desirable that the water content in the dehydrating device 2 be 80% or less. Furthermore, in the thermochemical reaction to be described later, it is better to allow an organic sludge to coexist with an alkaline component, so that the reaction efficiency is improved, so that the organic sludge is pre-cured with sodium carbonate, potassium carbonate, sodium formate, potassium formate, potassium hydroxide, It is preferable to add an alkaline component such as sodium hydroxide or lime. A high-pressure slurry pump can of course be used as the press-fitting device 4 described above, but since dehydrated sludge must be supplied at a considerably high temperature, it is preferable to use a press-fitting device that combines a cylinder and a piston as described below.
すなわち第3図に示したごとくピストン32を内蔵したシ
リンダー33を設置するとともに水位計34A,34Bを付設し
た水槽35を設置し、当該水槽35の下方部のシリンダー33
の上方部とを例えば往復動ポンプ36を介して配管37で連
通し、シリンダー33の下方部に脱水汚泥の供給管38と排
出管39を連通したものである。That is, as shown in FIG. 3, a cylinder 33 having a built-in piston 32 is installed, and a water tank 35 having water level gauges 34A and 34B is installed. The cylinder 33 at the lower part of the water tank 35 is installed.
The upper part of the cylinder is communicated with a pipe 37 via, for example, a reciprocating pump, and the lower part of the cylinder 33 is connected with a supply pipe 38 and a discharge pipe 39 for the dehydrated sludge.
第3図に示した圧入装置4の操作は、まず図に示したご
とくピストン32の上方部に水を満たした状態で弁40、41
を開口して供給ポンプ42を駆動して脱水汚泥3を供給管
38からシリンダー33の下方部から流入する。当該流入に
伴いピストン32が上昇し、かつピストン32の上部の水は
配管37、弁41を介して水槽35内に流入する。当該水槽35
内の水位は供給した脱水汚泥3の容量に応じて上昇する
ので、当該水位が水位計34Aに達した点で脱水汚泥3の
供給を止める。次いで弁41、40を閉じ往復動ポンプ36を
駆動して、水槽35内の水を圧入し、ピストン32を介して
シリンダー33内の圧力を加圧する。次いでシリンダー33
内の圧力を充分に高めた後、弁43を開口しシリンダー33
内の脱水汚泥3を水およびピストン32を介して圧入す
る。当該圧入に伴いピストン32が下降しシリンダー内の
脱水汚泥3は後述する反応器6に供給される。なお水槽
内の水位が水位計34Bに達した点で圧入を止め、前述し
た操作を繰り返す。The operation of the press-fitting device 4 shown in FIG. 3 is carried out by operating the valves 40, 41 with the upper portion of the piston 32 filled with water as shown in the figure.
Opening the opening and driving the supply pump 42 to supply the dehydrated sludge 3
It flows from 38 through the lower part of the cylinder 33. With the inflow, the piston 32 rises, and the water above the piston 32 flows into the water tank 35 via the pipe 37 and the valve 41. The water tank 35
Since the water level inside rises according to the capacity of the supplied dehydrated sludge 3, the supply of the dehydrated sludge 3 is stopped at the point when the water level reaches the water level meter 34A. Then, the valves 41 and 40 are closed and the reciprocating pump 36 is driven to press-fit the water in the water tank 35 and pressurize the pressure in the cylinder 33 via the piston 32. Then cylinder 33
After sufficiently increasing the internal pressure, open the valve 43 and open the cylinder 33.
The dewatered sludge 3 therein is press-fitted through water and the piston 32. With the press-fitting, the piston 32 descends and the dehydrated sludge 3 in the cylinder is supplied to the reactor 6 described later. When the water level in the water tank reaches the water level gauge 34B, press-fitting is stopped and the above operation is repeated.
圧入装置4として以上のような装置を用いれば、高圧で
脱水汚泥を供給することができ、かつ製造コストも安価
であり操作が簡単で自動制御も容易であるという利点を
有している。The use of the above-mentioned device as the press-fitting device 4 has the advantages that the dehydrated sludge can be supplied at a high pressure, the manufacturing cost is low, the operation is simple, and the automatic control is easy.
反応器6には掻面式熱交換器を用いることができ前段の
予熱部5Aは後述する冷却器7によって熱を与えられた熱
媒体8を用いて脱水汚泥3を間接的に予熱するものであ
り、後段の反応部5Bは後述する第1熱交換器24により加
熱された熱媒体8により間接的に脱水汚泥3を加熱する
もので、通常250℃〜350℃の温度および当該温度の水蒸
気圧力に相当する圧力あるいはそれ以上の圧力で有機性
汚泥3を熱化学的に反応させるものである。A scraped surface heat exchanger can be used for the reactor 6, and the preheating section 5A in the preceding stage indirectly preheats the dehydrated sludge 3 by using a heat medium 8 to which heat is given by a cooler 7 described later. The latter reaction section 5B indirectly heats the dehydrated sludge 3 by the heat medium 8 heated by the first heat exchanger 24 described later, and usually has a temperature of 250 ° C to 350 ° C and a steam pressure of the temperature. The organic sludge 3 is thermochemically reacted at a pressure corresponding to or higher than.
このように有機性汚泥を高温高圧で処理するとバイオマ
スが熱化学的に変成し、種々の可燃性液体が生成すると
同時に流動性が極めて良好なものに変化する。次いで反
応器6を経た固形物と可燃性液体との混合物スラリー9
を加圧状態のまま冷却器7に供給し、熱媒体8により間
接的に冷却する。なお冷却することにより熱が与えられ
た熱媒体8を前記予熱部5Aの熱源として用いることによ
り、反応器6により与えた熱を効果的に回収する。なお
冷却器7としては薄膜流下式熱交換器、満管熱交換器、
掻面式熱交換器等を用いることができるが当該混合物ス
ラリー9は流動性が極めて良好なので、熱効率の最もす
ぐれている薄膜流下式熱交換器を用いるのが望ましい。Thus, when the organic sludge is treated at high temperature and high pressure, the biomass is thermochemically modified, various combustible liquids are produced, and at the same time, the fluidity is changed to a very good one. Next, a mixture slurry 9 of a solid substance and a flammable liquid that has passed through the reactor 6
Is supplied to the cooler 7 in a pressurized state and indirectly cooled by the heat medium 8. By using the heat medium 8 to which heat has been given by cooling as the heat source of the preheating section 5A, the heat given by the reactor 6 is effectively recovered. As the cooler 7, a thin film flow-down heat exchanger, a full pipe heat exchanger,
A scraped surface heat exchanger or the like can be used, but since the mixture slurry 9 has extremely good fluidity, it is preferable to use a thin film flow-down heat exchanger having the best thermal efficiency.
このようにして冷却した混合物スラリー9を次いで大気
開放装置10に供給し、加圧下の状態から常圧下の状態と
する。The mixture slurry 9 thus cooled is then supplied to the atmosphere opening device 10 so that the state under pressure is changed to the state under normal pressure.
ここに用いる大気開放装置10は例えば冷却器7から混合
物スラリー9を受ける受槽と当該受槽の下部に設けたレ
ッドダウンバルブを用いることもできるが、第4図に示
したような装置を用いることが望ましい。The atmosphere opening device 10 used here may be, for example, a receiving tank for receiving the mixture slurry 9 from the cooler 7 and a red down valve provided in the lower part of the receiving tank. However, the device shown in FIG. 4 is preferably used. desirable.
すなわち上部および下部にたとえばボール弁44A、44B、
44C、44Dを有する複数の受入槽45A、45Bと窒素、アルゴ
ン、ヘリウム等の不活性ガスボンベ46とガス貯留タンク
47とからなり、これらを第4図に示したように各弁48〜
55と背圧弁56、57とを介して各配管で連通したものであ
る。That is, ball valves 44A, 44B,
Multiple receiving tanks 45A and 45B having 44C and 44D, an inert gas cylinder 46 such as nitrogen, argon, helium, and a gas storage tank
47 and each of these valves 48-48 as shown in FIG.
55 and the back pressure valves 56 and 57 are connected to each other through respective pipes.
第4図に示した大気開放装置10の操作は、まず弁54およ
び弁49を開口して不活性ガスボンベ46から不活性ガスを
受入槽45Aに流入し、受入槽45Aの圧力を冷却器7の圧力
とほぼ等しくしておく。なおこの操作は最初だけ必要で
あり、後述するごとくその後は必要としない。次にボー
ル弁44A、弁48、弁52を開口して冷却器7からの混合物
スラリー9を受入槽45Aに受け入れる。当該受け入れに
伴い受入槽45Aから排出される不活性ガスは弁48、背圧
弁56、弁52を介して受入槽45Bに流入する。またこの際
不活性ガスは背圧弁56を通過するので、当該背圧弁56の
作動圧力を冷却器7の圧力と等しくしておくことによ
り、不活性ガスを徐々に受入槽45Bに流入させることが
できる。In the operation of the atmosphere opening device 10 shown in FIG. 4, first, the valve 54 and the valve 49 are opened to flow the inert gas from the inert gas cylinder 46 into the receiving tank 45A, and the pressure of the receiving tank 45A is adjusted to that of the cooler 7. Keep pressure almost equal. Note that this operation is necessary only at the beginning and is not necessary thereafter, as will be described later. Next, the ball valve 44A, the valve 48, and the valve 52 are opened to receive the mixture slurry 9 from the cooler 7 in the receiving tank 45A. The inert gas discharged from the receiving tank 45A in accordance with the reception flows into the receiving tank 45B through the valve 48, the back pressure valve 56, and the valve 52. Further, at this time, since the inert gas passes through the back pressure valve 56, by making the operating pressure of the back pressure valve 56 equal to the pressure of the cooler 7, the inert gas can gradually flow into the receiving tank 45B. it can.
このような操作により受入槽45Aに規定量の混合物スラ
リー9を受け入れた後、弁48は開口したままボール弁44
A、弁52を閉じ、弁51を開口する。このようにすると受
入槽45Aと受入槽45Bの圧力は弁48、弁51を介して不活性
ガスが通じ合うので均等となる。次いでボール弁44Cを
開口して混合物スラリー9を受入槽45Bに受けいれる操
作を開始する。一方受入槽45A側では弁48を閉じ、弁50
を開口し、受入槽45Aの上方部に残留する少量の加圧不
活性ガスを貯留タンク47に流入し、余剰不活性ガスを背
圧弁57を介して外部へ放出する。なお反応器6によって
脱水汚泥を反応させた場合、種々のガスも発生するの
で、前述の放出の際に必要に応じて脱臭処理を行うこと
が望ましい。当該背圧弁57の作動圧力をたとえば5Kg/cm
2Gとしておけば、本工程によって受入槽45Aの上方部に
は5Kg/cm2Gの加圧不活性ガスが残留することとなる。次
いでボール弁44Bを開口することにより前述の5Kg/cm2G
の残留ガスの圧力により混合物スラリー9を外部、すな
わち後述する浮上分離槽11に送給することができる。After the prescribed amount of the mixture slurry 9 is received in the receiving tank 45A by such an operation, the valve 48 remains open and the ball valve 44 is opened.
A, the valve 52 is closed and the valve 51 is opened. In this way, the pressures in the receiving tank 45A and the receiving tank 45B are equalized because the inert gas communicates with each other via the valve 48 and the valve 51. Next, the ball valve 44C is opened to start the operation of receiving the mixture slurry 9 in the receiving tank 45B. On the other hand, on the receiving tank 45A side, the valve 48 is closed and the valve 50
And a small amount of pressurized inert gas remaining in the upper part of the receiving tank 45A flows into the storage tank 47, and the surplus inert gas is discharged to the outside through the back pressure valve 57. Since various gases are generated when the dehydrated sludge is reacted in the reactor 6, it is desirable to perform a deodorizing process as necessary at the time of the above-mentioned release. The operating pressure of the back pressure valve 57 is, for example, 5 Kg / cm.
If it is set to 2 G, 5 Kg / cm 2 G of pressurized inert gas remains in the upper part of the receiving tank 45A by this step. Then, by opening the ball valve 44B, the above-mentioned 5 Kg / cm 2 G
The mixture slurry 9 can be sent to the outside, that is, to the floating separation tank 11 described later by the pressure of the residual gas.
受入槽45Aの混合物スラリー9の排出が終了したら、弁5
0を閉じ、弁49を開口して前記の受入槽45Bにおける混合
スラリー9の受け入れに伴い受入槽45Bから排出される
不活性ガスを弁51、背圧弁56、弁49を介して受入槽45A
に流入する。またこの際も同じように不活性ガスは背圧
弁56を通過するので、前述したごとく徐々に受入槽45A
に流入させることができる。次いで前述したと同様に、
受入槽45Bに規定量の混合物スラリー9を受け入れた後
弁51は開口したままボール弁44C、弁49を閉じ、弁48を
開口する。この操作により両槽の圧力を等しくした後、
ボール弁44Aを開口し、混合物スラリー9を受入槽45Aに
受け入れる操作を開始する一方、受入槽45B側では弁53
を開口して受入槽45Bの上方部に残留する少量の加圧不
活性ガスを貯留タンク47に流入し、余剰ガスを背圧弁57
を介して外部へ放出し、続いてボール弁44Dを開口して
混合物スラリー9を後述する浮上分離槽11に送給する。
このように第4図に示した大気開放装置10は複数の受入
槽に順次混合物スラリー9を受け入れ、受け入れに伴っ
て排出される不活性ガスを他の受入槽で回収するもので
ある。When the discharge of the mixture slurry 9 from the receiving tank 45A is completed, the valve 5
0 is closed, the valve 49 is opened, and the inert gas discharged from the receiving tank 45B when the mixed slurry 9 is received in the receiving tank 45B is passed through the valve 51, the back pressure valve 56, and the valve 49 to the receiving tank 45A.
Flow into. In this case also, since the inert gas similarly passes through the back pressure valve 56, as described above, the receiving tank 45A gradually increases.
Can be flowed into. Then, as described above,
After the prescribed amount of the mixture slurry 9 is received in the receiving tank 45B, the valve 51 is kept open, the ball valve 44C and the valve 49 are closed, and the valve 48 is opened. After equalizing the pressure in both tanks by this operation,
The ball valve 44A is opened to start the operation of receiving the mixture slurry 9 into the receiving tank 45A, while the valve 53 is provided on the receiving tank 45B side.
Is opened and a small amount of pressurized inert gas remaining in the upper part of the receiving tank 45B flows into the storage tank 47, and the surplus gas is removed by the back pressure valve 57.
And then the ball valve 44D is opened to feed the mixture slurry 9 to the floating separation tank 11 described later.
As described above, the atmosphere opening device 10 shown in FIG. 4 sequentially receives the mixture slurry 9 in a plurality of receiving tanks and collects the inert gas discharged along with the receiving in the other receiving tanks.
大気開放装置10として以上説明したようなものを用いれ
ば、比較的簡単な構造で高圧下の冷却器7内の混合物ス
ラリー9を大気圧下に降圧することができ、かつ不活性
ガスの消費量もわずかである。By using the above-mentioned atmosphere release device 10, the mixture slurry 9 in the cooler 7 under high pressure can be stepped down to the atmospheric pressure with a relatively simple structure, and the consumption of the inert gas can be reduced. Is also small.
このような大気開放装置10によって送給される混合物ス
ラリー9を続いて浮上分離槽11に送給し、混合物スラリ
ー9中の可燃性液体から特に水に浮く一部の可燃性液体
である油状物質12を選択的に回収する。なお水に浮く一
部の可燃性液体が液中の固形物に付着している場合は、
浮上分離槽11に供給する前に攪拌するとよい。なお浮上
分離槽11としては槽内に単に混合物スラリー9をある時
間滞留させ、浮上する油状物質12をスキマー等で掻き取
るもの、あるいはいわゆる簡単な構造のオイルセパレー
タ等を用いることができる。浮上分離槽11によって油状
物質12を除いた混合物スラリー9を次いで抽出槽13に送
り、後述する溶剤回収装置20で回収した溶剤14を加え充
分に攪拌し、混合物スラリー9中の可燃性液体を抽出す
る。当該抽出槽13としては混合物スラリー9と溶剤14と
を必要かつ充分に接触できるものであればどのような型
式のものでもよく、混合物スラリー9と溶剤14との混合
物を槽内で攪拌する簡単なものでも差し支えない。The mixture slurry 9 fed by such an atmosphere opening device 10 is subsequently fed to the flotation separation tank 11, and an oily substance which is a part of the flammable liquid floating in water from the flammable liquid in the mixture slurry 9 Collect 12 selectively. If some flammable liquid floating in water adheres to the solid matter in the liquid,
It is advisable to stir before supplying to the floating separation tank 11. As the flotation / separation tank 11, it is possible to use one in which the mixture slurry 9 is simply retained in the tank for a certain period of time and the floating oily substance 12 is scraped off by a skimmer or the like, or an oil separator having a so-called simple structure. The mixture slurry 9 from which the oily substance 12 has been removed by the floating separation tank 11 is then sent to the extraction tank 13, and the solvent 14 recovered by the solvent recovery device 20 described later is added and sufficiently stirred to extract the flammable liquid in the mixture slurry 9. To do. The extraction tank 13 may be of any type as long as it can bring the mixture slurry 9 and the solvent 14 into contact with each other in a necessary and sufficient manner. It is easy to stir the mixture of the mixture slurry 9 and the solvent 14 in the tank. Anything is fine.
なお用いる溶剤14としては混合物スラリー9中の全ての
可燃性液体を可及的に抽出可能で、かつ蒸発回収しやす
いものが好ましく、通常はベンゼン、トルエン、アセト
ン、塩化メチレン等を用いる。As the solvent 14 to be used, a solvent that can extract all the flammable liquids in the mixture slurry 9 as much as possible and is easy to evaporate and recover is preferable. Usually, benzene, toluene, acetone, methylene chloride or the like is used.
抽出槽13からバッチ式にあるいは連続的に得られる混合
物15を次いで三相分離機16に送給し、ここで廃水17と固
形物18と抽出物19とに分離する。当該三相分離機16はい
わゆる遠心分離機であって、比重の異なる廃水17と固形
物18と抽出物19とをそれぞれ遠心作用によって分離する
もので公知のものを用いることができる。当該三相分離
機16によって得られる抽出物19を次いで溶剤回収装置20
に送給し、ここで後述する第2熱交換器25で加熱した熱
媒体8で間接的に加熱し、溶剤14を蒸発させ、蒸発残渣
である可燃性液体21を回収する。なお図面では溶剤回収
装置20から回収した溶剤14を直接抽出槽13に供給してい
るが、実際は溶剤回収装置20から得られる気体状の溶剤
を冷却器(図示せず)で冷却液化し、液状の溶剤14とし
て回収するものである。The mixture 15 obtained batchwise or continuously from the extraction tank 13 is then fed to a three-phase separator 16 where it is separated into wastewater 17, solids 18 and extracts 19. The three-phase separator 16 is a so-called centrifuge, and it is possible to use a known one that separates the wastewater 17 having different specific gravities 17, the solid 18 and the extract 19 by centrifugal action. The extract 19 obtained by the three-phase separator 16 is then transferred to the solvent recovery device 20.
And indirectly heated by the heat medium 8 heated by the second heat exchanger 25, which will be described later, to evaporate the solvent 14 and recover the combustible liquid 21 which is the evaporation residue. In the drawing, the solvent 14 recovered from the solvent recovery device 20 is directly supplied to the extraction tank 13, but in reality, the gaseous solvent obtained from the solvent recovery device 20 is cooled and liquefied by a cooler (not shown), The solvent 14 is recovered.
22は加熱炉であって、溶剤回収装置20から回収した可燃
性液体21、あるいは浮上分離槽11から回収した油状物質
12を燃料として用いるもので、これらの燃焼を燃焼させ
ることにより得られる熱風23を第1熱交換器24に供給し
て、前記反応部5Bに用いる熱媒体8を加熱し、次いで当
該熱風23を続いて第2熱交換器25に供給して前記溶剤回
収装置20で用いる熱媒体8を加熱する。なお26は排ガス
であり、27は燃焼用空気、28は燃焼灰を示す。22 is a heating furnace, which is a flammable liquid 21 recovered from the solvent recovery device 20 or an oily substance recovered from the flotation separation tank 11.
12 is used as fuel, hot air 23 obtained by burning these combustions is supplied to the first heat exchanger 24 to heat the heat medium 8 used in the reaction section 5B, and then the hot air 23 is used. Then, the heat medium 8 used in the solvent recovery device 20 is heated by being supplied to the second heat exchanger 25. Reference numeral 26 is exhaust gas, 27 is combustion air, and 28 is combustion ash.
なお第2図に示したフローにおいて大気開放装置10から
得られる混合物スラリー9を浮上分離槽11に供給し、あ
らかじめ油状物質12を選択的に回収しているが、本工程
を省略し、大気開放装置10から得られる混合物スラリー
9を直接抽出槽13に供給し、存在する可燃性液体の全て
を抽出しても差し支えない。なおこのように油状物質12
の回収工程を省略すると溶剤14の使用量が若干増加する
とともに、溶剤回収装置20から得られる可燃性液体21中
には前述の油状物質12も含まれることとなる。In addition, in the flow shown in FIG. 2, the mixture slurry 9 obtained from the atmosphere opening device 10 is supplied to the flotation / separation tank 11 to selectively collect the oily substance 12 in advance. The mixture slurry 9 obtained from the apparatus 10 may be directly supplied to the extraction tank 13 to extract all the combustible liquid present. Note that oily substance 12
If the recovery step is omitted, the amount of the solvent 14 used increases slightly, and the flammable liquid 21 obtained from the solvent recovery device 20 also contains the oily substance 12 described above.
第5図は本発明に係る汚泥油化反応の他の実施態様のフ
ローを示す説明図であり、浮上分離槽11によって油状物
質12を回収する工程までは第2図と全く同様なので説明
を省略する。当該浮上分離槽11によって油状物質12を除
いた混合物スラリー9を次いで遠心分離機などのような
固液分離機29に送り、ここで混合物スラリー9中の固形
物18を除く。固形物を除いた混合溶液30を続いて抽出装
置31に供給し、溶剤回収装置20で回収した溶剤14を加
え、混合溶液30中の可燃性液体を抽出する。第5図に図
示したフローにおいて用いる抽出装置31としては固形物
18を予かじめ除去しているので、溶剤14と混合溶液30と
を向流接触させるものを用いた方が効率よく、混合溶液
30より比重の大きい溶剤を用いる時は、図に示したごと
く溶剤14を上方から下降流で流すとともに、混合溶液30
を下方から上昇流流し、また混合溶液30より比重の小さ
い溶剤を用いる時は上下方向を逆として、いずれも向流
接触させるとよい。このようにして得られる抽出物19を
溶剤回収装置20に供給するもので、他は第2図と同様な
フローなので説明を省略する。なお第5図に示したフロ
ーでは固液分離機29で得られる固形物18の多少の可燃性
液体が付着するので、当該固形物18も加熱炉22の燃料と
して用いた方が好ましい。また第2図と同じように浮上
分離槽11を省略することもできる。FIG. 5 is an explanatory view showing the flow of another embodiment of the sludge oilification reaction according to the present invention, and the steps up to the step of recovering the oily substance 12 by the floating separation tank 11 are exactly the same as those in FIG. To do. The mixture slurry 9 from which the oily substance 12 has been removed by the floating separation tank 11 is then sent to a solid-liquid separator 29 such as a centrifuge or the like, where the solid matter 18 in the mixture slurry 9 is removed. The mixed solution 30 from which solids have been removed is subsequently supplied to the extraction device 31, the solvent 14 recovered by the solvent recovery device 20 is added, and the flammable liquid in the mixed solution 30 is extracted. Solid matter as the extraction device 31 used in the flow shown in FIG.
Since 18 is removed by pre-cure, it is more efficient to use the one in which the solvent 14 and the mixed solution 30 are in countercurrent contact with each other.
When using a solvent having a specific gravity greater than 30, as shown in the figure, the solvent 14 is caused to flow downward from above and the mixed solution 30
Is allowed to flow upward from below, and when a solvent having a specific gravity smaller than that of the mixed solution 30 is used, it is advisable to reverse the vertical direction and bring them into countercurrent contact. The extract 19 thus obtained is supplied to the solvent recovery device 20, and the other steps are the same as those in FIG. In the flow shown in FIG. 5, some combustible liquid of the solid material 18 obtained by the solid-liquid separator 29 adheres, so it is preferable to use the solid material 18 as a fuel for the heating furnace 22. Further, as in the case of FIG. 2, the floating separation tank 11 can be omitted.
また第2図に示した浮上分離槽11、抽出槽13、三相分離
機16、溶剤回収装置20、第2熱交換器25および第5図に
示した浮上分離槽11、固液分離機29、抽出装置31、溶剤
回収装置20、第2熱交換器25等は、可燃性液体を回収す
る装置に相当するが、特にこれらの組み合わせとする必
要はなく、要は混合物スラリー9中から可燃性液体を効
果的に回収できるものであればどんなものでもよい。The flotation separation tank 11, the extraction tank 13, the three-phase separator 16, the solvent recovery device 20, the second heat exchanger 25 shown in FIG. 2 and the flotation separation tank 11, the solid-liquid separator 29 shown in FIG. The extraction device 31, the solvent recovery device 20, the second heat exchanger 25, and the like correspond to devices for recovering the flammable liquid, but it is not necessary to use a combination thereof, and the point is that the mixture slurry 9 is flammable. Any material that can effectively collect the liquid may be used.
上記の掻面式油化反応器(図1)は反応器前段部の未反
応汚泥による閉塞問題等のトラブルが発生し、問題とな
るが、本発明では該反応器の内部の後段部(反応部5B)
にはスクレーパを、その前段部(予熱部5A)にはスクリ
ュ機構をそれぞれ設置しているので、このスクリュ機構
により脱水汚泥3に熱を与えるとともに流動性の悪い脱
水汚泥を強制的にスクレーパ側に移動させこれにより反
応器前段部での往々にしてみられた閉塞等のトラブルが
有効に解消される。これと同時に反応器後段部に移動し
熱を浮けて流動性の向上した脱水汚泥はスクレーパによ
り効率的に熱を与えられ、熱化学的反応が行なわれる。
その際、反応器後段部の出口から前段部へ循環ラインを
設ければ反応を終了し流動性の非常に良くなった反応物
が一部循環されるため、更に反応器前段部での閉塞防止
の効果が一層顕著となる。この循環量はスクリュの回転
数を変えることにより制御可能である。The above-mentioned scraping type oilification reactor (Fig. 1) causes a problem such as a clogging problem due to unreacted sludge in the front part of the reactor, which causes a problem. (Part 5B)
Since a scraper is installed on the front side of the machine and a screw mechanism is installed on the front stage (preheating section 5A) of the machine, heat is applied to the dehydrated sludge 3 by this screw mechanism and the dehydrated sludge with poor fluidity is forced to the scraper side. By moving it, troubles such as clogging often seen in the front part of the reactor are effectively eliminated. At the same time, the dehydrated sludge, which moves to the latter part of the reactor and floats heat to improve the fluidity, is efficiently given heat by the scraper to perform thermochemical reaction.
At that time, if a circulation line is provided from the outlet of the rear part of the reactor to the front part of the reactor, the reaction will be completed and some of the reactants that have improved fluidity will be circulated. The effect of is more remarkable. This circulation amount can be controlled by changing the rotation speed of the screw.
第6図に示すように熱交換型油化反応器6の外部にそれ
ぞれジャケット管Jを設けるとともに、それぞれに熱媒
体8を入流し、その内部の後半部にはスクレーパBを、
その前段部にはスクリュ機構Aをそれぞれ設備したもの
で、反応器6の入口部Cの側、すなわち反応前段部では
スクリュ機構Aにより入口部Cより反応器6に装入され
た脱水汚泥に熱を与えるとともに効率的に移動させ反応
器6の出口部Dの側、すなわち反応後段部ではスクレー
パBによって該汚泥掻面式熱式交換器を有効に働かせる
ようにしている。上記のスクレーパBおよびスクリュ機
構Aの回転軸は共通軸として反応器6の前段部に突出し
モータMで駆動するようにしてある。As shown in FIG. 6, jacket pipes J are provided outside the heat exchange type oilification reactor 6, respectively, and a heat medium 8 is introduced into each of them, and a scraper B is provided in the latter half of the inside thereof.
A screw mechanism A is installed in each of the front stages, and heat is applied to the dehydrated sludge charged into the reactor 6 from the inlet C by the screw mechanism A at the inlet C side of the reactor 6, that is, in the reaction front stage. The sludge scraping surface type heat exchanger is effectively operated by the scraper B on the outlet D side of the reactor 6, that is, at the latter stage of the reaction. The rotating shafts of the scraper B and the screw mechanism A serve as a common shaft and project from the front stage of the reactor 6 and are driven by the motor M.
なお、反応器6内の脱水汚泥が200℃程度に加熱される
もでをスクリュ機構Aを設備した予熱部5A、それ以降を
スクレーバBを設備した反応部5Bとすることが望まし
い。It is desirable that the dewatered sludge in the reactor 6 is heated to about 200 ° C., and that the preheating section 5A equipped with the screw mechanism A and the subsequent section are the reaction section 5B equipped with the scraper B.
第7図は反応器出口部Dから反応器6前段部の入口部C
と併設もしくは対向して導入されている循環ラインEを
設けている以外は第6図の場合と同一である。FIG. 7 shows the reactor outlet D to the inlet C at the front stage of the reactor 6.
It is the same as the case of FIG. 6 except that a circulation line E which is introduced together with or opposite to is provided.
本発明の汚泥油化反応器において従来の汚泥油化反応器
における内部に設備してあるスクレーパの前段部構造を
スクリュ機構にすることにより、反応器前段部での未反
応汚泥による閉塞をスクリュ機構により回避しながら全
体としてスクレーパによる掻面式熱交換器の特徴を発揮
するもので、これにより油化反応器の入口付近の閉塞問
題がなくなり、安定した連続運転が期待できる等の工業
的価値大なるものがある。In the sludge oilification reactor of the present invention, by using the screw mechanism as the front stage structure of the scraper installed in the conventional sludge oilification reactor, the screw mechanism prevents clogging by unreacted sludge at the reactor front stage. While avoiding the above, the scraper type heat exchanger as a whole exhibits the characteristics of scraper type heat exchangers, which eliminates the problem of blockage near the inlet of the oilification reactor and is expected to provide stable industrial operation with great industrial value. There is something.
第1図は従来公知の掻面式熱交換型油化反応器の説明
図、第2図は油化反応器を用いた汚泥油化反応のフロー
を示す説明図、第3図は第2図における圧入装置のフロ
ーを示す説明図、第4図は第2図における大気開放装置
のフローを示す説明図、第5図は第2図とは別の装置を
示したフロー説明図、第6図および第7図は本発明の各
実施例を示したスクリュ機構を併設した掻面式熱交換型
油化反応器の説明図である。 6……油化反応器 A……スクリュ機構 B……スクレーパ E……汚泥循環ラインFIG. 1 is an explanatory view of a conventionally known scraped surface heat exchange type oilification reactor, FIG. 2 is an explanatory view showing a flow of sludge oilification reaction using the oilification reactor, and FIG. 3 is FIG. 4 is an explanatory view showing a flow of the press-fitting device in FIG. 4, FIG. 4 is an explanatory view showing a flow of the atmosphere opening device in FIG. 2, FIG. 5 is a flow explanatory view showing a device different from FIG. 2, and FIG. FIG. 7 and FIG. 7 are explanatory views of a scraped surface heat exchange type oilification reactor provided with a screw mechanism showing each embodiment of the present invention. 6 ... Oilification reactor A ... Screw mechanism B ... Scraper E ... Sludge circulation line
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 日出夫 東京都文京区本郷5丁目5番16号 オルガ ノ株式会社内 (56)参考文献 特開 昭62−136299(JP,A) 特表 昭61−500654(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Nakamura Inventor Hideo Nakamura 5-5-16 Hongo, Bunkyo-ku, Tokyo Within Organo Co., Ltd. (56) References JP 62-136299 (JP, A) Special Table Sho 61 -500654 (JP, A)
Claims (2)
に反応せしめ、汚泥から可燃性液体を得るとともに該汚
泥の処理を行う汚泥油化装置において、その熱交換型油
化反応器の内部の後段部にはスクレーパを、前段部にス
クリュ機構をそれぞれ設備したことを特徴とする汚泥油
化反応器。1. A heat exchange type oilification reactor in a sludge oiling apparatus for thermochemically reacting an organic sludge under high temperature and high pressure conditions to obtain a flammable liquid from the sludge and treating the sludge. The sludge oil conversion reactor is equipped with a scraper in the rear part of the inside and a screw mechanism in the front part.
けたことを特徴とする特許請求の範囲第1項記載の汚泥
油化反応器。2. The sludge oil conversion reactor according to claim 1, wherein a circulation line is provided from the reactor outlet to the inlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6723086A JPH0775718B2 (en) | 1986-03-27 | 1986-03-27 | Sludge oil conversion reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6723086A JPH0775718B2 (en) | 1986-03-27 | 1986-03-27 | Sludge oil conversion reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62225585A JPS62225585A (en) | 1987-10-03 |
JPH0775718B2 true JPH0775718B2 (en) | 1995-08-16 |
Family
ID=13338903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6723086A Expired - Fee Related JPH0775718B2 (en) | 1986-03-27 | 1986-03-27 | Sludge oil conversion reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0775718B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111960627A (en) * | 2020-09-07 | 2020-11-20 | 青海中聚汇能环保科技有限公司 | Harmless oil silt deoiling system and oil silt deoiling method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4396944B2 (en) | 2003-07-18 | 2010-01-13 | 優久雄 片山 | Dewatering method for hydrous coal |
US8556998B2 (en) | 2004-09-16 | 2013-10-15 | Yukuo Katayama | Method for dewatering a water-containing combustible solid |
-
1986
- 1986-03-27 JP JP6723086A patent/JPH0775718B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111960627A (en) * | 2020-09-07 | 2020-11-20 | 青海中聚汇能环保科技有限公司 | Harmless oil silt deoiling system and oil silt deoiling method |
Also Published As
Publication number | Publication date |
---|---|
JPS62225585A (en) | 1987-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101189190B (en) | Organic waste disposal facility and method of disposal | |
US4017421A (en) | Wet combustion process | |
US4869810A (en) | Method of recovering evaporable liquids from mud comprising fine grained particles and the evaporable liquids | |
US4010098A (en) | Resource recovery from disposal of solid waste and sewage sludge | |
SU1556543A3 (en) | Method of producing fuel gas from waste | |
US3323575A (en) | Apparatus and process for dehydrating waste solids concentrates | |
US4974335A (en) | Method and apparatus for drying sewage sludge | |
US20070254089A1 (en) | Method and apparatus for the treatment of byproducts from ethanol and spirits production | |
JPS5944347B2 (en) | Method and apparatus for heat treating organic carbonaceous materials under pressure | |
CN106630526A (en) | Sludge hydrothermal oxidization reaction system and method with function of product reflux pretreatment | |
KR101364491B1 (en) | Treatment device of sludge using oxidation dewatering and dry combustion | |
JPH0775718B2 (en) | Sludge oil conversion reactor | |
JPH0775719B2 (en) | Sludge oil conversion reactor | |
JPS61238399A (en) | Apparatus for converting sludge to oil | |
JPH0924392A (en) | Production of active carbonized sludge | |
JPH0773716B2 (en) | Slurry opening device | |
CN112624562A (en) | Sludge heat drying system and application thereof in sludge heat drying | |
JPH0773715B2 (en) | Sludge press-in device | |
CN112624561A (en) | Sludge heat drying method | |
JPH08192199A (en) | Method for processing organic sludge into oily material | |
US4365974A (en) | Apparatus for solubilizing and oxidizing of peat | |
CN104001708A (en) | Method for production of carbonized solids and soluble liquid from food waste and device for production of same | |
CA1087129A (en) | Wet combustion | |
CN108949204A (en) | A kind of multistage thermal desorption device | |
JP3071345B2 (en) | Continuous sludge injection equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |