JPH0774099A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH0774099A JPH0774099A JP21834693A JP21834693A JPH0774099A JP H0774099 A JPH0774099 A JP H0774099A JP 21834693 A JP21834693 A JP 21834693A JP 21834693 A JP21834693 A JP 21834693A JP H0774099 A JPH0774099 A JP H0774099A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor element
- wiring
- insulating film
- semiconductor
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はコンピュータ用高速演算
LSIなどのSOI構造の半導体装置に係り、特に、発
熱素子の局所温度上昇を防止するのに好適な構造に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having an SOI structure such as a high speed computing LSI for a computer, and more particularly to a structure suitable for preventing a local temperature rise of a heating element.
【0002】[0002]
【従来の技術】従来の半導体素子は、LSI演算動作の
高速化のため、特開昭60−91624 号公報に記載のよう
に、半導体素子形成領域を絶縁膜によって基板から分離
した島状の領域にしていた。この構造はSOI(Silico
n on Insulator)構造と呼ばれている。ところが、絶縁
膜は熱伝導性が低いため、そのままでは、島内の半導体
素子が発熱した時、発熱素子の温度が高くなり破損して
しまう。そこで、上記公報では、半導体素子形成領域と
基板との間の絶縁膜中に、シリコン基板より高い熱伝導
性を有する材料を選択的に埋め込むことにより、熱を基
板に伝えやすくして、発熱素子の温度上昇を防止してい
た。また、半導体素子に接続する配線の幅寸法は、素子
形成領域の幅寸法や発熱素子の幅寸法より小さくなって
いた。2. Description of the Related Art A conventional semiconductor device has an island-shaped region in which a semiconductor device forming region is separated from a substrate by an insulating film, as described in Japanese Patent Laid-Open No. 60-91624, in order to speed up LSI operation. I was doing. This structure is SOI (Silico
n on Insulator) structure is called. However, since the insulating film has a low thermal conductivity, if the semiconductor element in the island generates heat, the temperature of the heating element rises and the element is damaged. Therefore, in the above publication, a material having a higher thermal conductivity than that of a silicon substrate is selectively embedded in an insulating film between a semiconductor element formation region and the substrate to facilitate heat transfer to the substrate and to generate heat. Was preventing the temperature rise. In addition, the width of the wiring connected to the semiconductor element is smaller than the width of the element forming region and the width of the heating element.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来技術は、
まだ温度上昇防止の効果が十分でなく、また半導体装置
の製造プロセスが複雑になるため、製造コストが高くな
るという問題があった。とくに、フリップチップ実装タ
イプの半導体装置の場合、半導体素子から生成された熱
が主として半導体素子面から外部へ逃げていくため従来
技術による温度上昇防止の効果は小さい。また、半導体
素子に接続する配線の幅寸法が素子形成領域の幅寸法や
発熱素子の幅寸法より小さくなっていたため、配線を経
て一次元的に熱伝導する伝熱量は小さいものであった。However, the prior art is
The effect of preventing the temperature rise is still insufficient, and the manufacturing process of the semiconductor device is complicated, resulting in an increase in manufacturing cost. In particular, in the case of a flip-chip mounting type semiconductor device, the heat generated from the semiconductor element mainly escapes from the semiconductor element surface to the outside, so the effect of preventing temperature rise by the conventional technique is small. Further, since the width of the wiring connected to the semiconductor element is smaller than the width of the element forming region and the width of the heating element, the amount of heat transferred through the wiring in a one-dimensional manner is small.
【0004】本発明の目的は、高い発熱量のある発熱素
子の局所温度上昇を防止することにある。An object of the present invention is to prevent a local temperature rise of a heating element having a high heating value.
【0005】[0005]
【課題を解決するための手段】本発明の半導体装置は、
上記の目的を達成するために、半導体素子に接続する配
線の幅寸法を、素子形成領域の幅寸法より大きくする。The semiconductor device of the present invention comprises:
In order to achieve the above object, the width dimension of the wiring connected to the semiconductor element is made larger than the width dimension of the element formation region.
【0006】また、絶縁膜より高い熱伝導性を有する材
料を用いた伝熱層を半導体素子領域の上層の配線層内に
形成する。Further, a heat transfer layer made of a material having higher thermal conductivity than the insulating film is formed in the wiring layer above the semiconductor element region.
【0007】また、半導体素子形成領域の側壁の薄い絶
縁膜の形状を、凹凸のある構造,曲面で構成された構
造,側壁の一部が飛び出た構造,水平断面が菱形の構造
にして絶縁膜の延べ面積を増す。Further, the shape of the thin insulating film on the side wall of the semiconductor element formation region is changed to an uneven structure, a structure having a curved surface, a structure in which a part of the side wall is protruded, or a structure having a rhombic horizontal cross section. Increase the total area of.
【0008】また、絶縁膜の側壁に隣接し、かつ基板に
接する部分に、絶縁膜より高い熱伝導性を有する材料を
埋め込む。Further, a material having higher thermal conductivity than that of the insulating film is embedded in a portion adjacent to the side wall of the insulating film and in contact with the substrate.
【0009】[0009]
【作用】上記した手段によれば、配線の幅を素子形成領
域の幅寸法より大きくすることにより、発熱素子からの
熱を半導体素子領域から素子形成領域上層の配線層内で
平面的に(二次元的に)拡げる熱拡散板機能を持たせて
伝熱量を増大させることが可能となり、配線断面積を大
きくしたことで基板や外部電極端子までの配線を通過す
る際の熱抵抗が低下し、配線から基板等の配線周囲の領
域への熱の広がりが促進され半導体素子領域の局所的な
温度上昇を防止できる。According to the above means, by making the width of the wiring larger than the width of the element forming region, the heat from the heat generating element is planarized (in the wiring layer above the element forming region from the semiconductor element region). It becomes possible to increase the amount of heat transfer by having a heat diffusion plate function that expands (dimensionally), and by increasing the wiring cross-sectional area, the thermal resistance when passing through the wiring to the substrate and external electrode terminals decreases, The spread of heat from the wiring to the area around the wiring such as the substrate is promoted, and the local temperature rise in the semiconductor element area can be prevented.
【0010】また、伝熱層の形成により発熱素子からの
熱を半導体領域から素子形成領域上層の伝熱層内で平面
的に(二次元的に)拡げる熱拡散板機能を持たせて伝熱
量を増大させることが可能となり、半導体素子領域から
基板や外部電極端子までの熱抵抗が低下し、伝熱層の表
面から基板等の伝熱層周囲の領域への熱の広がりが促進
されて半導体素子領域の局所的な温度上昇を防止でき
る。Further, the heat transfer amount is provided by providing the function of a heat diffusion plate for planarly (two-dimensionally) spreading the heat from the heat generating element in the heat transfer layer above the element forming area by forming the heat transfer layer. Can be increased, the thermal resistance from the semiconductor element region to the substrate and external electrode terminals is reduced, and the spread of heat from the surface of the heat transfer layer to the region around the heat transfer layer such as the substrate is promoted. It is possible to prevent a local temperature rise in the element region.
【0011】また、絶縁膜の側壁の延び面積を増すこと
により、発熱素子からの熱が絶縁膜を通過する際の熱抵
抗が低下し、半導体素子領域の温度上昇を防止できる。Further, by increasing the extension area of the side wall of the insulating film, the thermal resistance when the heat from the heating element passes through the insulating film is lowered, and the temperature rise of the semiconductor element region can be prevented.
【0012】また、埋め込んだ高い熱伝導性の材料を経
て、側壁から基板への伝熱量が増し、半導体素子領域の
温度上昇を防止できる。Further, the amount of heat transferred from the side wall to the substrate is increased through the embedded high thermal conductive material, and the temperature rise in the semiconductor element region can be prevented.
【0013】[0013]
【実施例】以下、本発明の一実施例を図1,図2,図3
により説明する。図1は本発明を適用したフリップチッ
プ実装タイプの半導体装置の垂直断面図を示す。半導体
素子の要部2の拡大図を図2に示す。図3は図1の平面
図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Will be described. FIG. 1 is a vertical sectional view of a flip-chip mounting type semiconductor device to which the present invention is applied. FIG. 2 shows an enlarged view of the main part 2 of the semiconductor element. FIG. 3 is a plan view of FIG.
【0014】図2で示すようにシリコン基板7(例えば
p型不純物を含む)の表面に、エミッタ領域(例えばn
型不純物を含む)13,ベース領域(例えば、p型不純
物を含む)14,コレクタ領域(例えば、n型不純物を
含む)15によって構成されたトランジスタ素子を形成
している。シリコン基板7の表面には、絶縁層(例え
ば、SiO2 )4,導電層(例えば、ポリシリコン)1
6,配線(例えばアルミニウム)8,10が形成されて
いる。トランジスタ素子は下層の絶縁層(例えばSiO
2)6と側壁の絶縁膜(例えばSiO2)9により囲まれ
た半導体素子形成領域5内に形成されている。図3に示
すように一端が半導体素子電極部11に接続し他端が外
部電極端子3とバンプ電極1に接続される熱伝導率の高
い導電性部材の配線(例えばアルミニウム)8の幅寸法
8aが半導体素子形成領域5の幅寸法5aより大きい構
造になっている。As shown in FIG. 2, an emitter region (eg, n-type) is formed on the surface of the silicon substrate 7 (eg, containing p-type impurities).
A transistor element including a type impurity 13), a base region (eg, p type impurity) 14, and a collector region (eg, n type impurity) 15 is formed. On the surface of the silicon substrate 7, an insulating layer (eg, SiO 2 ) 4, a conductive layer (eg, polysilicon) 1
6, wiring (for example, aluminum) 8 and 10 are formed. The transistor element has a lower insulating layer (eg, SiO 2).
2 ) 6 and a side wall insulating film (eg, SiO 2 ) 9 are formed in the semiconductor element forming region 5. As shown in FIG. 3, one end is connected to the semiconductor element electrode portion 11 and the other end is connected to the external electrode terminal 3 and the bump electrode 1. Is larger than the width dimension 5a of the semiconductor element forming region 5.
【0015】以上のように構成された半導体装置に通電
した場合の動作を示す。トランジスタ素子のエミッタ,
ベース,コレクタに配線8,10,導電層16を経て電
流が流され、トランジスタの機能をする。トランジスタ
素子は絶縁膜に囲まれているため、高速に動作させるこ
とができる。トランジスタ素子が動作する際にベース領
域14で発熱し、温度が上昇する。発生した熱は半導体
形成素子領域5の全体に広がり、一部は配線8,10,
導電層16を経由してシリコン基板7,外部電極端子3
に伝わり、残りは絶縁膜6,9を横切ってシリコン基板
7に伝わる。シリコン基板7に伝わった熱は外部電極端
子3の直下の絶縁膜6,4を横切って外部電極端子3に
伝わり、バンプ電極を通じて周囲に放熱する。本実施例
では配線層8の幅寸法8aが半導体素子形成領域5の幅
寸法5aより大きいため、半導体形成素子領域5の全体
に広がった熱が半導体素子電極部11を通じて半導体形
成素子領域5の上層に位置する配線8内で平面的に(二
次元的に)広がり、配線8での断面積が増加してその分
だけ熱抵抗が下がり、さらに、配線8の表面積が増加し
シリコン基板7への伝熱量が増加することにより、トラ
ンジスタ素子の局所的な温度上昇を小さくすることがで
きる。The operation when the semiconductor device configured as described above is energized will be described. Transistor element emitter,
A current is supplied to the base and the collector through the wirings 8 and 10 and the conductive layer 16 to function as a transistor. Since the transistor element is surrounded by the insulating film, it can be operated at high speed. When the transistor element operates, heat is generated in the base region 14 and the temperature rises. The generated heat spreads over the entire semiconductor forming element region 5, and part of the heat is generated by the wirings 8, 10,
Silicon substrate 7, external electrode terminal 3 via conductive layer 16
To the silicon substrate 7 across the insulating films 6 and 9. The heat transferred to the silicon substrate 7 is transferred to the external electrode terminal 3 across the insulating films 6 and 4 immediately below the external electrode terminal 3, and is radiated to the surroundings through the bump electrode. In this embodiment, since the width dimension 8a of the wiring layer 8 is larger than the width dimension 5a of the semiconductor element formation region 5, the heat spread over the entire semiconductor formation element region 5 is transferred to the upper layer of the semiconductor formation element region 5 through the semiconductor element electrode portion 11. Spreads in a plane (two-dimensionally) within the wiring 8 located at, and the cross-sectional area of the wiring 8 increases, the thermal resistance decreases accordingly, and the surface area of the wiring 8 increases to extend to the silicon substrate 7. By increasing the amount of heat transfer, it is possible to reduce the local temperature rise of the transistor element.
【0016】本発明の第二の実施例の半導体装置の平面
図を図4に示す。一端が半導体素子電極部11に接続さ
れる導電性部材の配線8について、半導体素子電極部1
1に接続される端部から半導体素子形成領域5と側壁の
絶縁膜9を越える部分19の幅寸法19aが半導体素子
形成領域5の幅寸法5aより大きくなっている。たとえ
ば、半導体素子形成領域5の幅が3μm,配線19の幅
が4μmの部分を半導体素子電極部11に接続される端
部から長さ10μmに形成し、その他の部分の配線の幅
を1μmとする。FIG. 4 is a plan view of the semiconductor device according to the second embodiment of the present invention. Regarding the wiring 8 of the conductive member whose one end is connected to the semiconductor element electrode portion 11, the semiconductor element electrode portion 1
The width dimension 19a of a portion 19 of the semiconductor element formation region 5 and the side wall which crosses the insulating film 9 from the end connected to 1 is larger than the width dimension 5a of the semiconductor element formation region 5. For example, a portion where the width of the semiconductor element forming region 5 is 3 μm and the width of the wiring 19 is 4 μm is formed to have a length of 10 μm from the end connected to the semiconductor element electrode portion 11, and the width of the wiring of the other portions is set to 1 μm. To do.
【0017】本発明の第三の実施例の半導体装置の平面
図を図5に示す。説明に必要な部分以外は省略してあ
る。図6に本半導体装置の半導体素子の要部の垂直断面
図を示す。本実施例は半導体素子形成領域5,配線8の
上層に熱伝導率の高い部材の伝熱層12を設けている。
配線8上に電気的に絶縁された伝熱層12を形成する。
伝熱層12の幅寸法が半導体素子形成領域5の幅寸法よ
り大きい構造になっている。伝熱層12が熱伝導率の高
い導電性部材(例えばアルミニウム)であれば伝熱層1
2と配線8との層間に絶縁膜4aを配置する。伝熱層1
2が熱伝導率の高い非導電性部材(例えばSi3N4)で
あれば、直接、配線8上に伝熱層12を形成することが
できる。半導体形成素子領域5の全体に広がった熱が半
導体形成素子領域5上層に位置する伝熱層12で広が
り、伝熱層12により半導体素子領域からシリコン基板
7,外部電極端子3まで熱抵抗が下がり、半導体素子形
成領域5から配線8,伝熱層12へ流れる伝熱量が大き
くなって、半導体素子領域の局所的な温度上昇を防止で
きる。A plan view of a semiconductor device according to a third embodiment of the present invention is shown in FIG. Parts other than those necessary for explanation are omitted. FIG. 6 shows a vertical sectional view of a main part of a semiconductor element of the present semiconductor device. In this embodiment, the heat transfer layer 12 of a member having a high thermal conductivity is provided on the semiconductor element forming region 5 and the wiring 8 above.
An electrically insulated heat transfer layer 12 is formed on the wiring 8.
The width dimension of the heat transfer layer 12 is larger than the width dimension of the semiconductor element formation region 5. If the heat transfer layer 12 is a conductive member having a high thermal conductivity (for example, aluminum), the heat transfer layer 1
An insulating film 4a is arranged between the layer 2 and the wiring 8. Heat transfer layer 1
If 2 is a non-conductive member having a high thermal conductivity (for example, Si 3 N 4 ), the heat transfer layer 12 can be formed directly on the wiring 8. The heat that has spread to the entire semiconductor forming element region 5 spreads in the heat transfer layer 12 located above the semiconductor forming element region 5, and the heat transfer layer 12 reduces the thermal resistance from the semiconductor element region to the silicon substrate 7 and the external electrode terminal 3. The amount of heat transfer flowing from the semiconductor element formation region 5 to the wiring 8 and the heat transfer layer 12 is increased, and a local temperature rise in the semiconductor element region can be prevented.
【0018】本発明の他の実施例を図7,図8により説
明する。図7は本発明を適用した半導体装置の第四の実
施例の垂直断面図である。図8は図7中に示したA−A
断面の水平断面図である。また図7は図8中に示したB
−B断面である。トランジスタ素子は下層の絶縁膜(例
えばSiO2)6と側壁の絶縁膜(例えばSiO2)9に
より囲まれた半導体素子領域5内に形成されている。側
壁の絶縁膜に隣接し、かつシリコン基板7に接するよう
に高い熱伝導率の材料(例えばSi3N4,アルミ)17
が埋め込まれている。図8でわかるように、側壁の絶縁
膜9が多数の凹凸のある構造になっている。Another embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a vertical sectional view of a fourth embodiment of a semiconductor device to which the present invention is applied. FIG. 8 shows AA shown in FIG.
It is a horizontal sectional view of a section. Further, FIG. 7 shows B shown in FIG.
-B cross section. The transistor element is formed in a semiconductor element region 5 surrounded by a lower insulating film (eg, SiO 2 ) 6 and a sidewall insulating film (eg, SiO 2 ) 9. A material having a high thermal conductivity (for example, Si 3 N 4 , aluminum) 17 so as to be adjacent to the insulating film on the side wall and contact the silicon substrate 7.
Is embedded. As can be seen in FIG. 8, the insulating film 9 on the side wall has a structure with many irregularities.
【0019】このように構成された半導体装置に通電し
た場合の動作を示す。トランジスタ素子で発生した熱は
半導体素子領域5の全体に広がり、絶縁膜6,9を横切
って、シリコン基板7に伝わり、周囲に放熱する。本実
施例では側壁の絶縁膜9の水平断面形状が多数の凹凸の
ある構造になっているため、実面積が増加し、その分だ
け熱抵抗が下がり、温度上昇を小さくすることができ
る。また、高い熱伝導率の材料17を経て、側壁の絶縁
膜9の外面からシリコン基板7への伝熱により、温度上
昇を小さくすることができる。The operation when the semiconductor device configured as described above is energized will be described. The heat generated in the transistor element spreads over the entire semiconductor element region 5, traverses the insulating films 6 and 9, is transmitted to the silicon substrate 7, and is radiated to the surroundings. In this embodiment, since the horizontal cross-sectional shape of the insulating film 9 on the side wall has a structure with a large number of irregularities, the actual area increases, the thermal resistance decreases correspondingly, and the temperature rise can be reduced. Further, the temperature rise can be reduced by heat transfer from the outer surface of the insulating film 9 on the side wall to the silicon substrate 7 via the material 17 having a high thermal conductivity.
【0020】本発明の第五の実施例の半導体装置の水平
断面図を図9に示す。説明に必要な部分以外は省略して
ある。側壁の絶縁膜9の凹凸をさらに多くしたものであ
る。FIG. 9 is a horizontal sectional view of a semiconductor device according to the fifth embodiment of the present invention. Parts other than those necessary for explanation are omitted. The insulating film 9 on the side wall has more irregularities.
【0021】本発明の第六の実施例の半導体装置の水平
断面図を図10に示す。側壁の絶縁膜9を菱形にしたも
のである。FIG. 10 is a horizontal sectional view of the semiconductor device according to the sixth embodiment of the present invention. The insulating film 9 on the side wall is formed into a diamond shape.
【0022】本発明の第七の実施例の半導体装置の水平
断面図を図11に示す。側壁の絶縁膜9を正方形の一部
が飛び出た形状にしたものである。FIG. 11 is a horizontal sectional view of the semiconductor device according to the seventh embodiment of the present invention. The insulating film 9 on the side wall has a shape in which a part of a square is projected.
【0023】本発明の第五の実施例の半導体装置の垂直
断面図を図12に、水平断面図を図13に示す。説明に
必要な部分以外は省略してある。側壁の絶縁膜9が円弧
を組み合わせた曲線形状にしたものである。また、高い
熱伝導率の材料の部分17を円筒形状にしたものであ
る。FIG. 12 is a vertical sectional view and FIG. 13 is a horizontal sectional view of a semiconductor device according to a fifth embodiment of the present invention. Parts other than those necessary for explanation are omitted. The insulating film 9 on the side wall has a curved shape in which arcs are combined. Further, the portion 17 made of a material having a high thermal conductivity is formed into a cylindrical shape.
【0024】本発明の第八の実施例の半導体装置の垂直
断面図を図14に、水平断面図を図15に示す。側壁の
絶縁膜9に沿ってその外側に深さ方向に厚さの変化する
ような構造で、高い熱伝導率の材料17を形成したもの
である。すき間18には、配線材料や絶縁材料が埋めら
れる。A vertical sectional view of a semiconductor device according to an eighth embodiment of the present invention is shown in FIG. 14, and a horizontal sectional view thereof is shown in FIG. A material 17 having a high thermal conductivity is formed on the outer side of the insulating film 9 on the side wall so that the thickness thereof changes in the depth direction. A wiring material and an insulating material are filled in the gap 18.
【0025】[0025]
【発明の効果】本発明の効果を、コンピュータによる数
値計算で求めた。図2に示す構造において、エミッタ領
域13が2μm×1μm×0.2μm 厚,発熱量3m
W,半導体素子形成領域5が4μm×4μm×2μm
高,絶縁膜の厚さ0.4μm の場合において、配線8の
幅を全て1μmとするとシリコン基板から半導体素子の
温度上昇が21℃となり、一方、本発明の図4に示す構
造のように半導体素子電極部11に接続される端部から
長さ20μmにおける配線の幅を6μmとすると温度上
昇が11℃になる。また、本発明の図5,図6に示す構
造において、上記と同じ条件で、配線8の幅を全て1μ
mとし、その上に200μm×200μmの伝熱層を形
成すると温度上昇が13℃になる。両者とも温度上昇を
約半減できる。The effect of the present invention was obtained by numerical calculation by a computer. In the structure shown in FIG. 2, the emitter region 13 has a thickness of 2 μm × 1 μm × 0.2 μm and a heat generation amount of 3 m.
W, semiconductor element forming region 5 is 4 μm × 4 μm × 2 μm
In the case of high and insulating film thickness of 0.4 μm, if the width of the wiring 8 is all 1 μm, the temperature rise of the semiconductor element from the silicon substrate becomes 21 ° C. On the other hand, as shown in the structure of FIG. If the width of the wiring at the length of 20 μm from the end connected to the device electrode portion 11 is 6 μm, the temperature rise will be 11 ° C. In the structure shown in FIGS. 5 and 6 of the present invention, all the widths of the wiring 8 are set to 1 μm under the same conditions as above.
m and a heat transfer layer of 200 μm × 200 μm is formed thereon, the temperature rise becomes 13 ° C. Both can reduce the temperature rise by about half.
【0026】本発明によれば、発熱素子から放出される
熱について、配線層,伝熱層を経由する伝熱量を増大さ
せると共に絶縁膜を横切る伝熱量を増大させることによ
り半導体素子の局所温度上昇を防止することができ、破
損および電気特性の劣化を防止できる。これにより半導
体装置の寿命信頼度が向上する。According to the present invention, with respect to the heat emitted from the heating element, the amount of heat transferred through the wiring layer and the heat transfer layer is increased and the amount of heat transferred across the insulating film is increased, so that the local temperature of the semiconductor element rises. Can be prevented, and damage and deterioration of electrical characteristics can be prevented. This improves the life reliability of the semiconductor device.
【0027】さらに、本発明によれば、上記の半導体素
子の局所温度上昇の防止により半導体素子間の温度差を
低減することによって、温度差に起因する半導体素子の
電気特性の不均一性を低減することが可能になり、半導
体素子の電気特性の均一性を必要とするような差動効果
を応用した集積回路等の動作の安定化が可能になる。Further, according to the present invention, the temperature difference between the semiconductor elements is reduced by preventing the local temperature rise of the semiconductor elements, thereby reducing the non-uniformity of the electrical characteristics of the semiconductor elements due to the temperature difference. Therefore, it is possible to stabilize the operation of an integrated circuit or the like to which a differential effect that requires the uniformity of the electric characteristics of the semiconductor element is applied.
【図1】本発明の一実施例を示す半導体装置の垂直断面
図。FIG. 1 is a vertical sectional view of a semiconductor device showing an embodiment of the present invention.
【図2】図1の半導体素子の要部2を示す垂直断面図。FIG. 2 is a vertical cross-sectional view showing a main part 2 of the semiconductor device of FIG.
【図3】本発明の一実施例を示す半導体装置の平面図。FIG. 3 is a plan view of a semiconductor device showing an embodiment of the present invention.
【図4】本発明の第二の実施例を示す半導体装置の平面
図。FIG. 4 is a plan view of a semiconductor device showing a second embodiment of the present invention.
【図5】本発明の第三の実施例を示す半導体装置の平面
図。FIG. 5 is a plan view of a semiconductor device showing a third embodiment of the present invention.
【図6】図5の半導体装置の半導体素子の要部を示す垂
直断面図。6 is a vertical sectional view showing a main part of a semiconductor element of the semiconductor device of FIG.
【図7】本発明の第四の実施例を示す半導体装置の垂直
断面図。FIG. 7 is a vertical sectional view of a semiconductor device showing a fourth embodiment of the present invention.
【図8】図7のA−A断面の水平断面図。8 is a horizontal sectional view taken along the line AA of FIG.
【図9】本発明の第五の実施例を示す半導体装置の水平
断面図。FIG. 9 is a horizontal sectional view of a semiconductor device showing a fifth embodiment of the present invention.
【図10】本発明の第六の実施例を示す半導体装置の水
平断面図。FIG. 10 is a horizontal sectional view of a semiconductor device showing a sixth embodiment of the present invention.
【図11】本発明の第七の実施例を示す半導体装置の水
平断面図。FIG. 11 is a horizontal sectional view of a semiconductor device showing a seventh embodiment of the present invention.
【図12】本発明の第五の実施例を示す半導体装置の垂
直断面図。FIG. 12 is a vertical sectional view of a semiconductor device showing a fifth embodiment of the present invention.
【図13】図12の半導体装置の水平断面図。13 is a horizontal sectional view of the semiconductor device of FIG.
【図14】本発明の第八の実施例を示す半導体装置の垂
直断面図。FIG. 14 is a vertical sectional view of a semiconductor device showing an eighth embodiment of the present invention.
【図15】図14の半導体装置の水平断面図。15 is a horizontal cross-sectional view of the semiconductor device of FIG.
3…外部電極端子、5…半導体素子形成領域、5a…半
導体素子形成領域の幅成分、8…配線、9…側壁の絶縁
膜、10…配線、11…半導体素子電極部、13…エミ
ッタ領域。3 ... External electrode terminals, 5 ... Semiconductor element formation region, 5a ... Width component of semiconductor element formation region, 8 ... Wiring, 9 ... Side wall insulating film, 10 ... Wiring, 11 ... Semiconductor element electrode part, 13 ... Emitter region.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 今泉 市郎 東京都青梅市今井2326番地 株式会社日立 製作所デバイス開発センタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Imaizumi 2326 Imai, Ome-shi, Tokyo Hitachi, Ltd. Device Development Center
Claims (1)
どの半導体素子や回路パターンを形成してなる半導体装
置において、前記半導体素子が一つずつ電気的な絶縁膜
によって囲まれた素子形成領域の内部に形成されてお
り、一端が前記半導体素子に接続する導電性部材が形成
されており、前記絶縁膜の上部を乗り越えて前記素子形
成領域の内側上部と外側上部にわたる部分の位置の前記
導電性部材の幅寸法が前記素子形成領域の幅寸法より大
きくなっていることを特徴とする半導体装置。1. A semiconductor device comprising a plurality of semiconductor elements such as transistor elements and a circuit pattern formed on a semiconductor substrate, the inside of an element forming region in which each semiconductor element is surrounded by an electrically insulating film. A conductive member having one end connected to the semiconductor element is formed, and the conductive member is located at a position over the upper portion of the insulating film and extending over the inner upper portion and the outer upper portion of the element formation region. The semiconductor device is characterized in that the width dimension thereof is larger than the width dimension of the element forming region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21834693A JPH0774099A (en) | 1993-09-02 | 1993-09-02 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21834693A JPH0774099A (en) | 1993-09-02 | 1993-09-02 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0774099A true JPH0774099A (en) | 1995-03-17 |
Family
ID=16718437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21834693A Pending JPH0774099A (en) | 1993-09-02 | 1993-09-02 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0774099A (en) |
-
1993
- 1993-09-02 JP JP21834693A patent/JPH0774099A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5208658A (en) | Semiconductor integrated circuit provided with contact for inter-layer connection and method of inter-layer connection therefor | |
JPH0774099A (en) | Semiconductor device | |
JP2000349165A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPH03171657A (en) | Semiconductor device | |
JP2000031487A (en) | Semiconductor device and manufacture thereof | |
JP2504498B2 (en) | Semiconductor device | |
JP2572098B2 (en) | Semiconductor device | |
JPH11135692A (en) | Integrated circuit | |
JP3123948B2 (en) | Semiconductor device | |
JPH0964182A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPS59155944A (en) | Manufacture of semiconductor device | |
JPH09289304A (en) | Semiconductor device | |
JP3134357B2 (en) | Semiconductor device | |
JP3497608B2 (en) | Semiconductor device | |
KR20000000886A (en) | Semiconductor memory device having low metal wire resistance | |
JP3417482B2 (en) | Method for manufacturing semiconductor device | |
KR19990005923A (en) | Semiconductor substrate having a buried insulating layer and a method of manufacturing the same | |
JP2982435B2 (en) | Resistor | |
JPH104100A (en) | Electronic part | |
JPH0555476A (en) | Semiconductor integrated circuit | |
JPH05326844A (en) | Semiconductor integrated circuit | |
JPH04304658A (en) | High breakdown voltage semiconductor device and manufacture thereof | |
JP2000307109A5 (en) | ||
JPH10284489A (en) | Semiconductor device and manufacture thereof | |
JP2000294801A (en) | Semiconductor device |