JPH0773893A - Low temperature heat recovery system in fuel cell power generating system - Google Patents
Low temperature heat recovery system in fuel cell power generating systemInfo
- Publication number
- JPH0773893A JPH0773893A JP5219436A JP21943693A JPH0773893A JP H0773893 A JPH0773893 A JP H0773893A JP 5219436 A JP5219436 A JP 5219436A JP 21943693 A JP21943693 A JP 21943693A JP H0773893 A JPH0773893 A JP H0773893A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- heat
- air
- water
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は燃料電池発電システムか
ら発生する低温熱の回収システムに関し、特に、燃料電
池の発電効率を改善する低温熱回収システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for recovering low temperature heat generated from a fuel cell power generation system, and more particularly to a low temperature heat recovery system for improving power generation efficiency of a fuel cell.
【0002】[0002]
【従来の技術】燃料極(アノード)の触媒作用により水
素を水素イオンとし、空気極(カソード)の触媒作用に
より空気中の酸素を酸素イオンとして電池化学反応によ
り両極間に直流電力を得るようにした各種燃料電池が開
発されている。そして、この燃料電池を利用した発電シ
ステムとして、電気と熱を同時に効率良く取り出せるコ
ージェネレーションシステムが知られている。図4にこ
のコージェネレーションシステムの例を示す。2. Description of the Related Art Hydrogen is converted into hydrogen ions by the catalytic action of a fuel electrode (anode), oxygen in the air is converted into oxygen ions by the catalytic action of an air electrode (cathode), and direct current power is obtained between both electrodes by a chemical reaction of a cell. Various fuel cells have been developed. As a power generation system using this fuel cell, a cogeneration system capable of efficiently extracting electricity and heat at the same time is known. FIG. 4 shows an example of this cogeneration system.
【0003】燃料である天然ガスは、水添脱硫器(図示
せず)でその中に添加されている硫黄分を含む付臭剤が
除去され、蒸気配管32から供給される水蒸気と混合さ
れた後、改質器33内での触媒作用により次の反応式の
ように水素等に変換される。 CH4+H2O=CO+3H2 (改質反応)CO+H2O=CO2+H2 (変成反応) CH4+2H2O=CO2+4H2 (全体の反応) 次いで、水素リッチとなった改質ガスは一酸化炭素(C
O)変成器35で改質ガス中に含まれるCO濃度を1.
75%以下にした後、水蒸気凝縮器36で余剰の水分が
除去された後、燃料電池37の燃料極(アノード)38
に供給される。Natural gas, which is a fuel, is mixed with water vapor supplied from the steam pipe 32 after removing the odorant containing sulfur added therein by a hydrodesulfurizer (not shown). After that, it is converted into hydrogen or the like by the catalytic action in the reformer 33 as shown in the following reaction formula. CH 4 + H 2 O = CO + 3H 2 (reforming reaction) CO + H 2 O = CO 2 + H 2 (metamorphic reaction) CH 4 + 2H 2 O = CO 2 + 4H 2 (overall reaction) Next, hydrogen-rich reformed gas Is carbon monoxide (C
O) The CO concentration contained in the reformed gas in the shift converter 35 is 1.
After the water content is reduced to 75% or less, excess water is removed by the steam condenser 36, and then the fuel electrode (anode) 38 of the fuel cell 37.
Is supplied to.
【0004】一方、空気は第一段空気圧縮機39、第二
段空気圧縮機40により加圧され、燃料電池37の空気
極(カソード)41に供給される。燃料電池37本体内
では、燃料極38の水素と空気極41の酸素が電解質4
2を介して次式の電気化学反応をして、直流電気が発生
する。 H2=2H++2e- (アノード) 1/2O2+2H++2e-=H2O (カソード) H2+1/2O2=H2O (全体の反応) この直流電気は直交変換装置43で交流に変換されて電
力負荷装置で利用される。On the other hand, the air is pressurized by the first-stage air compressor 39 and the second-stage air compressor 40 and supplied to the air electrode (cathode) 41 of the fuel cell 37. In the main body of the fuel cell 37, the hydrogen of the fuel electrode 38 and the oxygen of the air electrode 41 are filled with the electrolyte 4
Direct-current electricity is generated through the electrochemical reaction of the following formula via 2. H 2 = 2H + + 2e − (anode) 1 / 2O 2 + 2H + + 2e − = H 2 O (cathode) H 2 + 1 / 2O 2 = H 2 O (overall reaction) It is converted to and used in the power load device.
【0005】燃料極38の未反応水素(排燃料ガス)
は、改質器33の加熱用の燃料として使用される。ま
た、この改質器33での未反応水素の燃焼には空気極4
1からの排空気が酸素源として使用される。この燃料電
池37での発電で発生する熱は、電池冷却板44を介し
て配管45から循環供給される冷却水で冷却される。そ
して、この冷却水で取り除かれた熱は熱回収装置46で
回収される。また、空気極41から排出する排空気中の
水蒸気を水蒸気凝縮器47で凝縮する際の熱、CO変成
器35から排出するガス中の余剰水分を水蒸気凝縮器3
6で冷却して得られる熱をそれぞれの流路に設けられた
熱回収装置49、50で回収して、冷暖房や給湯等に使
用する。なお、前記各々の水蒸気凝縮器36、47で生
成した凝縮水は水処理装置(図示せず)で純度を高めて
燃料電池用の冷却板44用の冷却水として利用する。ま
た、前記燃料電池37の冷却に使用された水は蒸気分離
器52で蒸気を分離した後、再度燃料電池37の冷却水
としてポンプ53により循環使用され、分離蒸気は天然
ガスの改質用の水として蒸気配管32に供給されて利用
される。改質器33で発生した排ガスは燃焼機51で加
熱された後、第一段膨張タービン54の回転軸、第二段
膨張タービン55の回転軸の回転エネルギーとして、第
二段空気圧縮機40および第一段空気圧縮機39に回収
された後に大気中に放出される。また、熱回収装置4
6、49、50の冷却水に回収された熱は冷水塔57で
補給水により冷却されて、再使用される。Unreacted hydrogen in the fuel electrode 38 (exhaust fuel gas)
Is used as a fuel for heating the reformer 33. The air electrode 4 is used for the combustion of unreacted hydrogen in the reformer 33.
Exhaust air from 1 is used as the oxygen source. The heat generated by the power generation in the fuel cell 37 is cooled by the cooling water circulated and supplied from the pipe 45 through the cell cooling plate 44. Then, the heat removed by the cooling water is recovered by the heat recovery device 46. Further, heat generated when the steam in the exhaust air discharged from the air electrode 41 is condensed by the steam condenser 47, and excess water in the gas discharged from the CO shift converter 35 is removed by the steam condenser 3
The heat obtained by cooling in 6 is recovered by the heat recovery devices 49 and 50 provided in the respective flow paths and used for cooling and heating, hot water supply, and the like. The condensed water generated in each of the steam condensers 36 and 47 is used as cooling water for the cooling plate 44 for the fuel cell after increasing the purity in a water treatment device (not shown). Further, the water used for cooling the fuel cell 37 is separated into steam by the steam separator 52 and then circulated again by the pump 53 as cooling water for the fuel cell 37, and the separated steam is used for reforming natural gas. It is supplied to the steam pipe 32 as water and used. The exhaust gas generated in the reformer 33 is heated by the combustor 51, and then, as rotational energy of the rotation shaft of the first-stage expansion turbine 54 and the rotation shaft of the second-stage expansion turbine 55, the second-stage air compressor 40 and After being collected by the first stage air compressor 39, it is discharged into the atmosphere. In addition, the heat recovery device 4
The heat recovered in the cooling waters 6, 49 and 50 is cooled by makeup water in the cold water tower 57 and reused.
【0006】[0006]
【発明が解決しようとする課題】上記燃料電池37を用
いる発電システムにおいて、系内で発生する熱は熱回収
装置46、49、50で回収されていた。すなわち、燃
料電池37の冷却用の循環冷却水の熱は熱回収装置46
で回収し、燃料電池37の空気極41からの排空気の余
剰水分の凝縮熱は熱回収装置49で回収し、燃料極38
に供給する前の改質ガス中の余剰水分の凝縮熱は熱回収
装置50で回収していた。この熱回収装置46、49、
50を含めた燃料電池発電システムにおけるエネルギー
の需給を概念的に示すと、図5のように書くことができ
る。すなわち、燃料電池発電システムを燃料電池部1と
この燃料電池部1の熱回収および加圧空気供給部2に分
けて考えると、燃料電池用燃料FG1と空気圧縮機3
9、40により加圧された空気AIR1が燃料電池部1
に供給され、燃料電池部1からは電気エネルギーE1が
取り出される。また、熱回収および加圧空気供給部2に
燃料電池部1からは空気の加圧に用いる膨張タービン5
4、55の熱エネルギーを補う排燃料FG2と熱回収装
置49、50、46で回収されるそれぞれの排熱Q1、
Q2、Q3(排熱Q1、Q2と排熱Q3とは排熱温度レベル
が異なるので、それぞれ別の熱回収系とする。)と改質
器燃焼排ガスの熱および圧力のエネルギーをもつEXH
1が放出される。一方、熱回収および加圧空気供給部2
から燃料電池部1には空気圧縮機39、40で加圧され
た空気AIR1が供給される。In the power generation system using the fuel cell 37, the heat generated in the system is recovered by the heat recovery devices 46, 49 and 50. That is, the heat of the circulating cooling water for cooling the fuel cell 37 is transferred to the heat recovery device 46.
And the heat of condensation of the excess moisture of the exhaust air from the air electrode 41 of the fuel cell 37 is recovered by the heat recovery device 49,
The heat of condensation of excess water in the reformed gas before being supplied to the heat recovery device 50 was recovered by the heat recovery device 50. This heat recovery device 46, 49,
The energy supply and demand in the fuel cell power generation system including 50 can be conceptually expressed as shown in FIG. That is, when the fuel cell power generation system is divided into the fuel cell unit 1 and the heat recovery and pressurized air supply unit 2 of the fuel cell unit 1, the fuel cell fuel FG 1 and the air compressor 3 are considered.
The air AIR 1 pressurized by 9, 40 is the fuel cell unit 1.
And the electric energy E 1 is extracted from the fuel cell unit 1. In addition, an expansion turbine 5 used for pressurizing air from the fuel cell unit 1 to the heat recovery and pressurized air supply unit 2.
Exhaust fuel FG 2 that supplements the heat energy of 4, 55 and the respective exhaust heat Q 1 recovered by the heat recovery devices 49, 50, 46,
Q 2 and Q 3 (exhaust heat Q 1 and Q 2 and exhaust heat Q 3 have different exhaust heat temperature levels, so separate heat recovery systems are used.) And reformer combustion exhaust gas heat and pressure energy EXH with
1 is released. On the other hand, the heat recovery and pressurized air supply unit 2
Therefore, the air AIR 1 pressurized by the air compressors 39 and 40 is supplied to the fuel cell unit 1.
【0007】また、熱回収および加圧空気供給部2には
燃料電池部1の空気極41に供給される空気AIR2と
熱回収装置46、49、50により集熱された冷却水の
冷却用に導入された補給水Wと熱回収装置46、49、
50の冷却水等の循環用の動力ポンプ(図示せず)等の
補助動力E2(図4には図示せず)とが供給される。ま
た、熱回収および加圧空気供給部2からは排ガスEXH
2が大気中に排出される。上記、図5のエネルギーの需
給系では燃料電池部1から熱回収および加圧空気供給部
2に排出される排熱Q1、Q2、Q3と排燃料FG2の温度
は低いので、熱の回収率は良くなかった。そこで、本発
明の目的は燃料電池部から熱回収および加圧空気供給部
へ回収される熱回収効率を向上させて、最終的には燃料
電池発電システムのエネルギー効率を向上させることで
ある。The heat recovery and pressurized air supply unit 2 is for cooling the air AIR 2 supplied to the air electrode 41 of the fuel cell unit 1 and the cooling water collected by the heat recovery devices 46, 49 and 50. Make-up water W and heat recovery devices 46, 49
50 is supplied with auxiliary power E 2 (not shown in FIG. 4) such as a power pump (not shown) for circulating cooling water or the like. Further, the exhaust gas EXH from the heat recovery and pressurized air supply unit 2
2 is discharged into the atmosphere. In the energy supply and demand system of FIG. 5, the temperatures of the exhaust heat Q 1 , Q 2 , Q 3 and the exhaust fuel FG 2 discharged from the fuel cell unit 1 to the pressurized air supply unit 2 are low, so The recovery rate of was not good. Therefore, an object of the present invention is to improve the heat recovery efficiency of the heat recovery from the fuel cell section and the compressed air supply section, and finally to improve the energy efficiency of the fuel cell power generation system.
【0008】[0008]
【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、電解質を介して空
気極と燃料極との間での電気化学反応により発電する燃
料電池発電システムにおいて、燃料電池設備から生成す
る低温熱と膨張タービンからの排気ガスの熱を利用して
加圧空気に水を噴霧して水と水蒸気と加圧空気の混合流
体を生成させ、該混合流体から得られた気体成分に熱エ
ネルギーを加えて、これを前記膨張タービンの動力源と
して利用する燃料電池発電システムにおける低温熱回収
システムである。本発明において、加圧空気は燃料電池
の空気極に供給するために生成させた加圧空気の一部を
分岐させて利用すること、および水と水蒸気と加圧空気
の混合流体から得られた気体成分に加える熱エネルギー
の一部として燃料電池本体から生成する排蒸気を用いる
ことができる。The above objects of the present invention can be achieved by the following constitutions. That is, in a fuel cell power generation system that generates electricity by an electrochemical reaction between an air electrode and a fuel electrode via an electrolyte, the low temperature heat generated from the fuel cell facility and the heat of exhaust gas from the expansion turbine are used to add heat. A fuel that sprays water on compressed air to generate a mixed fluid of water, water vapor and compressed air, adds thermal energy to a gas component obtained from the mixed fluid, and uses this as a power source of the expansion turbine. It is a low temperature heat recovery system in a battery power generation system. In the present invention, the compressed air is obtained by branching a part of the generated compressed air to supply it to the air electrode of the fuel cell, and from a mixed fluid of water, steam and compressed air. Exhaust vapor generated from the fuel cell body can be used as part of the thermal energy applied to the gas component.
【0009】[0009]
【作用】従来は燃料電池から発生する約100℃程度の
低温熱からの熱回収は熱交換効率が悪いため、効率的に
行うことはできなかった。しかし、本発明においては、
燃料電池の空気極用に供給する加圧空気の一部を分岐さ
せ、この分岐させた加圧空気と燃料電池からの低温排熱
と熱交換して加温させる。得られた加圧、加温空気に水
を噴霧して水の分圧を下げて水を気化させ、当該分圧下
での水の沸点以下の温度で、しかも水と水蒸気が共存す
る状態を作り出す。こうして、前記燃料電池からの低温
熱を水の気化のために利用することで、前記低温熱を水
の顕熱として回収するだけでなく、水の蒸発潜熱として
も回収する。In the past, heat recovery from low temperature heat of about 100 ° C. generated from a fuel cell could not be efficiently performed because of poor heat exchange efficiency. However, in the present invention,
A part of the pressurized air supplied to the air electrode of the fuel cell is branched, and the branched pressurized air and the low temperature exhaust heat from the fuel cell are heat-exchanged for heating. The water is sprayed on the obtained pressurized and warmed air to lower the partial pressure of water to vaporize the water, and at a temperature below the boiling point of water under the partial pressure, a state where water and steam coexist is created. . Thus, by utilizing the low temperature heat from the fuel cell for vaporizing water, not only the low temperature heat is recovered as sensible heat of water but also as latent heat of vaporization of water.
【0010】また、こうして水を気化させることで加圧
流体(水蒸気と空気からなる流体)の体積を膨張させ、
膨張タービンに利用できる加圧流体を得ることができ
る。しかも、この加圧流体に、さらに熱エネルギーを加
えて高温ガスとし、膨張タービンの作動効率を上げるこ
とで現実的に利用できるシステムとなる。このとき、前
記体積が膨張した流体に供給する熱として、燃料電池の
冷却用循環水から分離した蒸気または循環する冷却水の
排熱を加えることで、燃料電池部から発生する低温熱を
全て有効に回収して利用することができ、燃料電池発電
システムに低温熱回収システムを加えることにより、発
電効率はさらに向上する。Further, by evaporating water in this way, the volume of the pressurized fluid (fluid consisting of steam and air) is expanded,
A pressurized fluid available for the expansion turbine can be obtained. Moreover, a system that can be practically used can be obtained by further adding thermal energy to this pressurized fluid to make it into a high-temperature gas and increasing the operating efficiency of the expansion turbine. At this time, by adding exhaust heat of steam separated from the circulating water for cooling the fuel cell or circulating cooling water as heat to be supplied to the fluid whose volume has been expanded, all low temperature heat generated from the fuel cell section is effective. The fuel cell power generation system is further improved in power generation efficiency by adding a low temperature heat recovery system to the fuel cell power generation system.
【0011】本発明を図5の従来技術の概念図に対比し
て燃料電池部1と熱回収および加圧空気供給部2の間の
エネルギーの収支を図式化すると図1のような概念図が
得られる。この図1は図5の従来技術の概念図の熱回収
および加圧空気供給部2に燃料FG3と交流発電エネル
ギーE3を追加したものに相当する。しかも、従来技術
に比較して、熱交換器を新設し、空気圧縮機と膨張ター
ビンの容量を大きくしただけであり、その操作性、メイ
ンテナンス等における負担の増加はほとんどない。こう
して本発明によれば、従来はクーリングタワー等を経由
して大気中に放出していた低温の熱を水の顕熱と潜熱と
して回収するだけでなく、水が水蒸気となることにより
膨張した体積を膨張タービンの回転エネルギーとして利
用することで、燃料電池部1から発生する低温熱を効率
的に回収することができる。また、膨張タービンの作動
効率があがると、その余剰回転エネルギーで交流発電エ
ネルギーE3を取り出すことにも利用することができ
る。The energy balance between the fuel cell unit 1 and the heat recovery / pressurized air supply unit 2 is schematically illustrated by comparing the present invention with the conceptual diagram of the prior art of FIG. can get. This FIG. 1 corresponds to the concept of the prior art of FIG. 5 in which the fuel FG 3 and AC power generation energy E 3 are added to the heat recovery and pressurized air supply unit 2. Moreover, as compared with the prior art, only the heat exchanger is newly installed and the capacities of the air compressor and the expansion turbine are increased, and there is almost no increase in operability and maintenance load. Thus, according to the present invention, not only the low-temperature heat that has been conventionally released to the atmosphere via the cooling tower or the like is recovered as sensible heat and latent heat of water, but also the volume expanded by water becoming steam is increased. By utilizing it as the rotational energy of the expansion turbine, the low temperature heat generated from the fuel cell unit 1 can be efficiently recovered. Further, when the operation efficiency of the expansion turbine is increased, it can be used to extract the AC power generation energy E 3 by the surplus rotational energy.
【0012】[0012]
【実施例】以下、本発明の好ましい形態を、図面を参照
して詳細に説明する。本実施例の燃料電池発電システム
における低温熱回収システムの概要を図2に示す。図2
に示す燃料電池部1の構成は従来技術のそれと同一であ
るので、図4と同一機能を有する装置は同一番号を付し
てその説明は省略する。燃料電池部1と該燃料電池部1
に供給する空気の二段の空気圧縮機(第一段空気圧縮機
3、第二段空気圧縮機4)と燃料電池部1からの排ガス
を利用する二段の燃焼器6、7と二段の膨張タービン
(第一段膨張タービン9、第二段膨張タービン10)、
一段目の空気圧縮機3で圧縮された加圧空気を複数の加
圧空気流路12、13、14、15、16に分けて、そ
れぞれの流路12〜16において加圧空気の熱交換をす
る熱交換器17〜21、前記各熱交換器17〜21の直
前の各加圧空気流路12〜16に向けてそれぞれ開口し
た噴霧ノズル(図示せず)を持つ加圧ポンプ26により
加圧された水供給路23(図2には加圧空気流路12〜
16と同一流路で示す。)、熱交換器17〜21から排
出する水と水蒸気と空気との各混合流体を合流させて該
混合流体から水分を分離するための気液分離器25、該
気液分離器25から分離された水を前記加圧水供給路2
3にポンプ26を経由して供給する水供給路27、また
気液分離器25から分離された気体成分を熱交換器29
を経由して燃焼用酸素源とする燃焼器7と該燃焼器7で
得られた気体を用いる第二段目の膨張タービン10と、
該膨張タービン10からの排ガスを熱交換する二段の熱
交換器29、21等とからなる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below in detail with reference to the drawings. An outline of the low temperature heat recovery system in the fuel cell power generation system of the present embodiment is shown in FIG. Figure 2
Since the configuration of the fuel cell unit 1 shown in FIG. 3 is the same as that of the conventional technique, the devices having the same functions as those in FIG. Fuel cell unit 1 and the fuel cell unit 1
Two-stage air compressor (first-stage air compressor 3, second-stage air compressor 4) of air to be supplied to the two-stage combustor 6, 7 and two-stage using exhaust gas from the fuel cell unit 1. Expansion turbine (first stage expansion turbine 9, second stage expansion turbine 10),
The compressed air compressed by the first-stage air compressor 3 is divided into a plurality of compressed air flow passages 12, 13, 14, 15, 16 and heat exchange of the compressed air is performed in each of the flow passages 12 to 16. The heat exchangers 17 to 21 and the pressurizing pump 26 having a spray nozzle (not shown) opened toward the pressurized air flow passages 12 to 16 immediately before the heat exchangers 17 to 21, respectively. The water supply path 23 (in FIG. 2, the pressurized air flow path 12 ...
The same flow path as 16 is shown. ), A gas-liquid separator 25 for combining the mixed fluids of water, steam, and air discharged from the heat exchangers 17 to 21 to separate water from the mixed fluids, and separated from the gas-liquid separator 25. The pressurized water supply path 2
3, a water supply path 27 for supplying the gas component to the No. 3 via a pump 26, and a gas component separated from the gas-liquid separator 25 into a heat exchanger 29.
A combustor 7 that serves as an oxygen source for combustion via the second stage expansion turbine 10 that uses the gas obtained in the combustor 7;
It comprises two-stage heat exchangers 29, 21 and the like for exchanging heat with the exhaust gas from the expansion turbine 10.
【0013】本実施例の特徴は、従来の燃料電池発電シ
ステムに空気圧縮機3、4で圧縮された加圧空気を燃料
電池部1に供給する系統の他に、この加圧空気を分岐さ
せて、これに水を噴霧する系統(加圧空気供給流路12
〜16、熱交換器17〜21、加圧水供給路23等)を
追加したことと燃料電池部1の冷却板44用の冷却水か
らの排蒸気熱Q3を膨張タービン9供給用気体の加熱用
に用いる燃焼器6の熱源の一部として用いることであ
る。このQ3を加えることによる回収される軸エネルギ
ーの回収効率は非常に大きい。The feature of this embodiment is that, in addition to the system for supplying the compressed air compressed by the air compressors 3 and 4 to the fuel cell unit 1 to the conventional fuel cell power generation system, this compressed air is branched. And a system for spraying water on it (pressurized air supply channel 12
˜16, heat exchangers 17 to 21, pressurized water supply passage 23, etc.) and exhaust steam heat Q 3 from the cooling water for the cooling plate 44 of the fuel cell unit 1 for heating the gas for supplying the expansion turbine 9 Is used as a part of the heat source of the combustor 6 used for. The efficiency of recovering the axial energy recovered by adding this Q 3 is very large.
【0014】以下、図2の低温熱回収システムに対応さ
せたエネルギー収支等を基準に書き直した図3を参考に
しながら順を追って詳細に説明する。まず、288K
(15℃)の空気は一段目の空気圧縮機3に導入され、
これに227×104kcal/hrの動力を加えて1
54℃、3.36気圧の加圧空気を得る。この加圧空気
の次段での圧縮を効果的に行うために、熱交換器20で
噴霧水で冷却された空気と水と水蒸気の混合流体で12
0℃に冷却して、この加圧空気の一部をさらに二段目の
空気圧縮機4において59×104kcal/hrの動
力を加えて8.6気圧に加圧する。得られた加圧空気を
熱交換器19で190℃に冷却して燃料電池部1の空気
極に導く。A detailed description will be given below step by step with reference to FIG. 3, which is rewritten based on the energy balance and the like corresponding to the low temperature heat recovery system of FIG. First, 288K
Air at (15 ° C) is introduced into the air compressor 3 in the first stage,
Add 227 × 10 4 kcal / hr to this and add 1
Compressed air at 54 ° C. and 3.36 atm is obtained. In order to effectively perform the compression of the pressurized air in the next stage, the air cooled by the spray water in the heat exchanger 20 and the mixed fluid of water and water vapor 12
After cooling to 0 ° C., a part of this pressurized air is further pressurized in the second stage air compressor 4 to a pressure of 8.6 atm by applying a power of 59 × 10 4 kcal / hr. The obtained pressurized air is cooled to 190 ° C. by the heat exchanger 19 and introduced to the air electrode of the fuel cell unit 1.
【0015】燃料電池部1では、空気極と燃料極(図示
せず)間の電気化学的反応で電気エネルギーを発生し、
電池作動に必要な補機や直流−交流変換ロスを差し引い
て、430×104kcal/hrの電気エネルギーが
交流送電される。なお、燃料電池部1の改質器33に改
質用原料および加熱燃料を合わせて供給されるエネルギ
ーは1019×104kcal/hrである。燃料電池
部1からは9×104kcal/hrの熱エネルギーを
持った排燃料FG2と170℃、8.0気圧の76kg
・mol/hrの流量の排蒸気Q3と389℃、8.0
気圧の排ガスEXH1が排出する。また、燃料電池部1
からは熱交換器17、18で合計137×104kca
l/hrの排熱Q1+Q2が排出される。従来は、この1
37×104kcal/hrの燃料電池部1から排出さ
れる排熱Q1+Q2は約100℃程度の低温の低温熱であ
るため、図4に示す従来の熱回収装置46、49、50
等で熱回収してシャワー、湯沸器等に使用するか、単
に、クーリングタワー等により大気中に放熱されていた
ものである。In the fuel cell section 1, electric energy is generated by an electrochemical reaction between an air electrode and a fuel electrode (not shown),
After subtracting auxiliary machinery and DC-AC conversion loss necessary for battery operation, 430 × 10 4 kcal / hr of electric energy is AC-transmitted. The energy supplied together with the reforming raw material and the heating fuel to the reformer 33 of the fuel cell unit 1 is 1019 × 10 4 kcal / hr. From the fuel cell unit 1, exhaust fuel FG 2 having thermal energy of 9 × 10 4 kcal / hr and 170 kg at 170 ° C. and 8.0 atm are used.
・ Exhaust vapor Q 3 at a flow rate of mol / hr and 389 ° C., 8.0
Exhaust gas EXH 1 of atmospheric pressure is discharged. In addition, the fuel cell unit 1
From the heat exchangers 17 and 18 for a total of 137 × 10 4 kca
Exhaust heat Q 1 + Q 2 of 1 / hr is discharged. Conventionally, this 1
Since the exhaust heat Q 1 + Q 2 discharged from the fuel cell unit 1 of 37 × 10 4 kcal / hr is low temperature heat of about 100 ° C., the conventional heat recovery devices 46, 49, 50 shown in FIG.
It is either used for showers, water heaters or the like after being recovered by heat or the like, or is simply radiated to the atmosphere by a cooling tower or the like.
【0016】本実施例は以下に述べる部分に特徴があ
る。すなわち、一段目の空気圧縮機3で3.36気圧に
圧縮され、熱交換された空気の一部である2371kg
・mol/hrの加圧空気が分岐した加圧空気供給流路
12〜16に供給され、各々の空気供給流路12〜16
の熱交換器17〜21の直前の流路12〜16におい
て、加圧水が供給路23から571kg・mol/hr
の流量で供給され、各々の熱交換器17〜21から噴霧
される。ここで、熱交換器17〜21が複数に分かれて
いる理由は互いに異なる流体(加圧度合の異なる加圧空
気、水蒸気と加圧空気の混合流体、膨張タービン排出ガ
ス)の流路から熱を回収するためであり、しかも、それ
ぞれの熱交換器17〜21内では水と水蒸気が共存する
状態に圧力が保てるように設計されている。なお、この
低温熱回収システムおよび燃料電池部1内での運転条件
の変化その他の外乱により、前記熱交換器17〜21内
での水と水蒸気が共存する状態に圧力が保てなくなるこ
ともあるので、この加圧空気供給流路12〜16には図
示していないが、流量コントロールバルブを設けること
もできる。The present embodiment is characterized by the following parts. That is, 2371 kg which is a part of the air that has been compressed by the first-stage air compressor 3 to 3.36 atm and has undergone heat exchange.
-Mol / hr pressurized air is supplied to the branched pressurized air supply channels 12 to 16, and the respective air supply channels 12 to 16 are supplied.
In the flow passages 12 to 16 immediately before the heat exchangers 17 to 21, pressurized water is supplied from the supply passage 23 to 571 kg · mol / hr.
And is sprayed from each heat exchanger 17-21. Here, the reason why the heat exchangers 17 to 21 are divided into a plurality is that heat is generated from the flow paths of fluids different from each other (pressurized air with different pressurization degree, mixed fluid of steam and compressed air, expansion turbine exhaust gas). This is for the purpose of recovery, and is designed so that the pressure can be maintained in a state where water and water vapor coexist in each heat exchanger 17-21. Note that due to changes in operating conditions in the low temperature heat recovery system and the fuel cell unit 1 and other disturbances, the pressure may not be maintained in a state where water and steam coexist in the heat exchangers 17 to 21. Therefore, although not shown, flow rate control valves may be provided in the pressurized air supply channels 12 to 16.
【0017】図3に示す各々の熱交換器17〜21で
は、前記混合流体は各熱交換器17〜21内に表示した
符号と同一符号を用いて表した流体流路中の流体とそれ
ぞれ熱交換される。すなわち、第二段目の空気圧縮機4
の出口の加圧空気の熱は熱交換器19で回収され、第一
段目の空気圧縮機3の出口の加圧空気の熱は熱交換器2
0で回収され、熱交換器21では第二段目の膨張タービ
ン10から排出し、熱交換器29で冷却された排出ガス
の熱が回収され、空気と水蒸気と水分の混合流体が得ら
れる。各々の混合流体は合流して、100℃の空気と水
蒸気と水の混合流体が得られる。この流体中の気体成分
(空気と水蒸気)と水は気液分離器25で分離される。
そして、該気体混合流体のみは熱交換器29で第二段目
の膨張タービン10からの高温の排気と熱交換して54
5℃のガスとなる。このガスには燃料電池部1からの9
×104kcal/hrの熱エネルギーを持つ排燃料F
G2と164×104kcal/hrの熱エネルギーを持
つ補助熱源からの熱量を補給して燃焼器6に補給し燃焼
させて、第一段目の膨張タービン9で膨張させて93×
104kcal/hrの動力が取り出され、その一部は
この膨張タービン9と軸で連動している空気圧縮機3、
4の回転エネルギーとして利用される。また、この膨張
タービン9からの排気は前記熱交換器29から排出した
ガスと混合され、燃焼器7で補助熱源から得られる96
1×104kcal/hrsの熱エネルギーの補給で9
26℃のガスが得られる。このガスは第二段目の膨張タ
ービン10で利用されて752×104kcal/hr
の動力として取り出され、その一部は、空気圧縮機3、
4の回転エネルギーとして利用される。さらに、余剰の
回転エネルギーは交流発電機11を作動させ、559×
104kcal/hrのエネルギーを取り出すことがで
きる。In each of the heat exchangers 17 to 21 shown in FIG. 3, the mixed fluid is heat-exchanged with the fluid in the fluid flow path represented by the same reference numeral as that shown in each heat exchanger 17 to 21. Will be exchanged. That is, the second-stage air compressor 4
The heat of the compressed air at the outlet of the air is recovered by the heat exchanger 19, and the heat of the compressed air at the outlet of the first-stage air compressor 3 is recovered by the heat exchanger 2.
The heat of the exhaust gas, which is recovered in 0, is discharged from the second-stage expansion turbine 10 in the heat exchanger 21, and is cooled in the heat exchanger 29, is recovered, and a mixed fluid of air, water vapor, and moisture is obtained. The respective mixed fluids join together to obtain a mixed fluid of air, steam and water at 100 ° C. The gas component (air and water vapor) and water in this fluid are separated by the gas-liquid separator 25.
Then, only the gas mixture fluid exchanges heat with the high temperature exhaust gas from the second-stage expansion turbine 10 in the heat exchanger 29.
It becomes a gas at 5 ° C. This gas contains 9 from the fuel cell unit 1.
Exhaust fuel F with thermal energy of × 10 4 kcal / hr
G 2 and 164 × 10 4 kcal / hr The heat amount from the auxiliary heat source having the heat energy is replenished to the combustor 6 for combustion, and the first expansion turbine 9 expands it to 93 ×
The power of 10 4 kcal / hr is taken out, and a part of the power is linked to the expansion turbine 9 by an air compressor 3,
It is used as the rotational energy of 4. Further, the exhaust gas from the expansion turbine 9 is mixed with the gas discharged from the heat exchanger 29 and is obtained in the combustor 7 from the auxiliary heat source 96.
9 by replenishing heat energy of 1 × 10 4 kcal / hrs
A gas of 26 ° C. is obtained. This gas is used in the expansion turbine 10 of the second stage and 752 × 10 4 kcal / hr
Of the air compressor 3,
It is used as the rotational energy of 4. Further, the surplus rotational energy activates the AC generator 11 to generate 559 ×
Energy of 10 4 kcal / hr can be taken out.
【0018】膨張タービン9、10が二基設けられる理
由は 燃料電池部1からの気体と熱回収された気体混合
流体の二つの互いに異なる圧力レベルの気体を膨張させ
るためであり、また、燃焼器6、7が二基設けられる理
由もそれぞれの膨張タービン9、10を効率的に作動さ
せるために、それぞれのエネルギーレベルに合致したタ
ービン導入気体を高温化させておく必要があるからであ
る。第二段目の膨張タービン10から排出する625℃
の排気ガスは熱交換器29で280℃、熱交換器20で
150℃と順次低温化されて、大気中に放出される。The reason why the two expansion turbines 9 and 10 are provided is to expand the gas from the fuel cell part 1 and the gas of the heat-recovered gas mixture fluid at two different pressure levels, and to combust the combustor. The reason why the two units 6 and 7 are provided is that the turbine-introduced gas matching the respective energy levels must be heated in order to operate the expansion turbines 9 and 10 efficiently. 625 ° C. discharged from the second-stage expansion turbine 10
The exhaust gas is heated to 280 ° C. in the heat exchanger 29 and to 150 ° C. in the heat exchanger 20, and is discharged into the atmosphere.
【0019】上記した低温回収システムにおいて、追加
供給した熱エネルギー(FG3)は補助燃料により燃焼
器6、7に供給したエネルギーは FG3=(164+961)×104kcal/hr =1125×104kcal/hr であり、余分に回収された動力エネルギー(PW)は膨
張タービン9、10出力と空気圧縮機3、4での消費動
力の差のエネルギーは PW={(752+93)−(59+227)}×104kcal/hr =559×104kcal/hr である。したがって、本実施例の燃料電池発電システム
の低温熱回収システムによれば、エネルギー回収効率η
TNは ηTN=PW/FG=0.497 である。In the above-mentioned low temperature recovery system, the additionally supplied heat energy (FG 3 ) is the energy supplied to the combustors 6 and 7 by the auxiliary fuel FG 3 = (164 + 961) × 10 4 kcal / hr = 1125 × 10 4 kcal / hr, and the surplus recovered power energy (PW) is the energy of the difference between the power output of the expansion turbines 9 and 10 and the power consumption of the air compressors 3 and 4 PW = {(752 + 93)-(59 + 227)} It is x10 < 4 > kcal / hr = 559 * 10 < 4 > kcal / hr. Therefore, according to the low temperature heat recovery system of the fuel cell power generation system of the present embodiment, the energy recovery efficiency η
TN is η TN = PW / FG = 0.497.
【0020】また、本システムの全体のエネルギー効率
ηTOTALは ηTOTAL=(430+559)/(1019+961+164) =0.461 である。このように、本実施例ではエネルギーを追加し
て供給しても余分に動力を回収しているため、これらの
追加した系によるエネルギー回収効率が高いだけでな
く、本実施例の低温熱回収系を備えていない燃料電池部
1におけるエネルギー効率ηFCは ηFC=430/1019 =0.422 に比較しても全体の熱回収効率(ηTOTAL)は向上して
いる。The total energy efficiency η TOTAL of this system is η TOTAL = (430 + 559) / (1019 + 961 + 164) = 0.461. As described above, in this embodiment, even if additional energy is supplied, extra power is recovered, so not only the energy recovery efficiency by these added systems is high, but also the low temperature heat recovery system of this embodiment is used. The energy efficiency η FC in the fuel cell unit 1 not equipped with η FC is η FC = 430/1019 = 0.422, but the overall heat recovery efficiency (η TOTAL ) is improved.
【0021】しかも、本実施例で従来の常圧型燃料電池
の場合には燃料極に供給する空気の圧縮機は中間段での
空気の抜き出しはないが、本実施例では二段の空気圧縮
機3、4を用いて、燃料極に供給する空気の温度と圧力
を確保し、一段目の空気圧縮機3から得られる比較的低
圧の空気を用いて水の混合冷媒系で、水の分圧を低く保
って、水の気化を確保し、燃料電池部1からの排熱
Q1、Q2を有効に利用するものである。従って、高圧型
燃料電池を用いる発電システムに本実施例を適用する場
合に新規に空気圧縮機を設ける必要がなく、コスト的に
有利である。しかも、従来技術に比較して、補助燃焼器
7と熱交換器19〜21、29を新設し、空気圧縮機
3、4と膨張タービン9、10の容量を大きくしただけ
であり、その操作性、メインテナンス等における負担は
ほとんどない。Moreover, in the case of the conventional atmospheric pressure type fuel cell in this embodiment, the compressor for the air supplied to the fuel electrode does not extract the air in the intermediate stage, but in the present embodiment, it is a two-stage air compressor. 3 and 4 are used to secure the temperature and pressure of the air supplied to the fuel electrode, and a relatively low pressure air obtained from the air compressor 3 in the first stage is used to mix the partial pressure of water with the water mixed refrigerant system. Is kept low, vaporization of water is ensured, and the exhaust heat Q 1 and Q 2 from the fuel cell unit 1 is effectively used. Therefore, when this embodiment is applied to a power generation system using a high-pressure fuel cell, it is not necessary to newly install an air compressor, which is advantageous in terms of cost. Moreover, as compared with the prior art, the auxiliary combustor 7 and the heat exchangers 19 to 21 and 29 are newly provided, and the capacities of the air compressors 3 and 4 and the expansion turbines 9 and 10 are simply increased. There is almost no burden on maintenance, etc.
【0022】[0022]
【発明の効果】本発明によれば、従来はクーリングタワ
ー等を経由して大気中に放出していた低温の熱を水の顕
熱と潜熱として回収するだけでなく、水が水蒸気となる
ことにより膨張した体積を膨張タービンの回転エネルギ
ーとして利用することで、燃料電池から発生する低温熱
を効率的に回収することができる。EFFECTS OF THE INVENTION According to the present invention, not only the low-temperature heat that has been conventionally released to the atmosphere via a cooling tower or the like is recovered as sensible heat and latent heat of water, but also water becomes steam. By utilizing the expanded volume as the rotational energy of the expansion turbine, the low temperature heat generated from the fuel cell can be efficiently recovered.
【図1】 本発明の燃料電池発電システムにおける低温
回収システムのエネルギー収支を説明する図である。FIG. 1 is a diagram illustrating an energy balance of a low temperature recovery system in a fuel cell power generation system of the present invention.
【図2】 本発明の一実施例の燃料電池発電システムに
おける低温回収システムを示す図である。FIG. 2 is a diagram showing a low temperature recovery system in a fuel cell power generation system according to an embodiment of the present invention.
【図3】 図2の燃料電池発電システムに対応させて低
温回収システムのエネルギー収支等を説明する図であ
る。FIG. 3 is a diagram for explaining the energy balance and the like of a low temperature recovery system corresponding to the fuel cell power generation system of FIG.
【図4】 従来の低温回収システムを含めた燃料電池発
電システムのエネルギー収支を説明する図である。FIG. 4 is a diagram illustrating an energy balance of a fuel cell power generation system including a conventional low temperature recovery system.
【図5】 従来の燃料電池発電システムにおける低温回
収システムの概念を示す図である。FIG. 5 is a diagram showing a concept of a low temperature recovery system in a conventional fuel cell power generation system.
1…燃料電池部、2…熱回収および加圧空気供給部、
3、4…空気圧縮機、6、7…燃焼器、9、10…膨張
タービン、11…交流発電機、12〜16…加圧空気供
給流路、17〜21、29…熱交換器、23…加圧水供
給路、25…気液分離器、26…ポンプ、27…水供給
路、33…改質器、37…燃料電池、38…燃料極(ア
ノード)、41…空気極(カソード)、42…電解質、
43…直交変換装置、44…電池冷却板1 ... Fuel cell unit, 2 ... Heat recovery and pressurized air supply unit,
3, 4 ... Air compressor, 6, 7 ... Combustor, 9, 10 ... Expansion turbine, 11 ... Alternator, 12-16 ... Pressurized air supply passage, 17-21, 29 ... Heat exchanger, 23 ... pressurized water supply path, 25 ... gas-liquid separator, 26 ... pump, 27 ... water supply path, 33 ... reformer, 37 ... fuel cell, 38 ... fuel electrode (anode), 41 ... air electrode (cathode), 42 …Electrolytes,
43 ... Orthogonal transformation device, 44 ... Battery cooling plate
Claims (3)
の電気化学反応により発電する燃料電池発電システムに
おいて、燃料電池設備から生成する低温熱と膨張タービ
ンからの排気ガスの熱を利用して加圧空気に水を噴霧し
て水と水蒸気と加圧空気の混合流体を生成させ、該混合
流体から得られた気体成分に熱エネルギーを加えて、こ
れを前記膨張タービンの動力源として利用することを特
徴とする燃料電池発電システムにおける低温熱回収シス
テム。1. In a fuel cell power generation system for generating power by an electrochemical reaction between an air electrode and a fuel electrode via an electrolyte, low temperature heat generated from a fuel cell facility and heat of exhaust gas from an expansion turbine are used. Then, water is sprayed on the compressed air to generate a mixed fluid of water, steam and compressed air, and thermal energy is added to a gas component obtained from the mixed fluid, which is used as a power source of the expansion turbine. A low temperature heat recovery system in a fuel cell power generation system characterized by being used.
ために生成させた加圧空気の一部を分岐させて利用する
ことを特徴とする請求項1記載の燃料電池発電システム
における低温熱回収システム。2. The low temperature in the fuel cell power generation system according to claim 1, wherein the pressurized air is used by branching a part of the generated pressurized air for supplying to the air electrode of the fuel cell. Heat recovery system.
られた気体成分に加える熱エネルギーの一部として燃料
電池本体から生成する排蒸気を用いることを特徴とする
請求項1または2記載の燃料電池発電システムにおける
低温熱回収システム。3. The exhaust vapor generated from the fuel cell main body is used as a part of thermal energy applied to a gas component obtained from a mixed fluid of water, water vapor, and pressurized air. Low-temperature heat recovery system for the fuel cell power generation system in Japan.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21943693A JP3287502B2 (en) | 1993-09-03 | 1993-09-03 | Power generation method using fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21943693A JP3287502B2 (en) | 1993-09-03 | 1993-09-03 | Power generation method using fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0773893A true JPH0773893A (en) | 1995-03-17 |
JP3287502B2 JP3287502B2 (en) | 2002-06-04 |
Family
ID=16735379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21943693A Expired - Fee Related JP3287502B2 (en) | 1993-09-03 | 1993-09-03 | Power generation method using fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3287502B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007798A1 (en) | 2006-07-10 | 2008-01-17 | Shin-Etsu Polymer Co., Ltd. | Sliding material, sliding member, and weatherstrip |
US8334344B2 (en) | 2006-07-10 | 2012-12-18 | Shin-Etsu Polymer Co., Ltd. | Sliding material, sliding member, and weatherstrip |
-
1993
- 1993-09-03 JP JP21943693A patent/JP3287502B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007798A1 (en) | 2006-07-10 | 2008-01-17 | Shin-Etsu Polymer Co., Ltd. | Sliding material, sliding member, and weatherstrip |
EP2460849A1 (en) | 2006-07-10 | 2012-06-06 | Shin-Etsu Polymer Co. Ltd. | Sliding material, sliding member, and weatherstrip |
US8334344B2 (en) | 2006-07-10 | 2012-12-18 | Shin-Etsu Polymer Co., Ltd. | Sliding material, sliding member, and weatherstrip |
Also Published As
Publication number | Publication date |
---|---|
JP3287502B2 (en) | 2002-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7170630B2 (en) | System for high temperature reversible electrolysis of water comprising a hydride tank combined with an electrolyser | |
CA1043857A (en) | Pressurized fuel cell power plant with steam powered compressor | |
US6316134B1 (en) | Fuel cell electric power generation system | |
US8841041B2 (en) | Integration of an organic rankine cycle with a fuel cell | |
US4539267A (en) | Process for generating steam in a fuel cell powerplant | |
Grillo et al. | Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell | |
JP5085847B2 (en) | High-efficiency fuel cell power generation system with an expander for power generation | |
JPH09129255A (en) | Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell | |
KR20090108123A (en) | Integrated fuel cell and heat engine hybrid system for high efficiency power generation | |
JPS6351352B2 (en) | ||
JPH1126004A (en) | Power generating system | |
JPS6185773A (en) | Composite fuel battery power generation facility | |
JPS6257072B2 (en) | ||
JP2000200617A (en) | Fuel-cell composite power generating plant system | |
JPS60158561A (en) | Fuel cell-thermal power generating complex system | |
CN115939445B (en) | High-efficiency solid oxide fuel cell cogeneration system and cogeneration method | |
JP2002056880A (en) | Water electrolysis device and solid polymer type fuel cell generating system | |
US20100285381A1 (en) | Method and apparatus for operating a fuel cell in combination with an orc system | |
JP3287502B2 (en) | Power generation method using fuel cell | |
JP2003007319A (en) | Fuel cell system | |
Ouyang et al. | Exergy-economic and environmental assessments of a high-performance poly-generation layout based on the waste heat from a solid oxide fuel cell | |
JP5183118B2 (en) | Power generation system | |
JP2002056879A (en) | Water electrolysis device and phosphoric acid type fuel cell generating system | |
Karvountzi et al. | Comparison of molten carbonate and solid oxide fuel cells for integration in a hybrid system for cogeneration or tri-generation | |
JP2000133295A (en) | Solid electrolyte fuel cell composite power generation plant system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |