JPH0773879A - Metal oxide-hydrogen secondary battery - Google Patents

Metal oxide-hydrogen secondary battery

Info

Publication number
JPH0773879A
JPH0773879A JP5219665A JP21966593A JPH0773879A JP H0773879 A JPH0773879 A JP H0773879A JP 5219665 A JP5219665 A JP 5219665A JP 21966593 A JP21966593 A JP 21966593A JP H0773879 A JPH0773879 A JP H0773879A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
pressure
battery
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5219665A
Other languages
Japanese (ja)
Other versions
JP3560352B2 (en
Inventor
Mitsuo Hiruma
光生 晝間
Kaoru Hosobuchi
馨 細渕
Chizuru Shindo
千鶴 新藤
Nobuaki Chiba
信昭 千葉
Kazuhiro Takeno
和太 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP21966593A priority Critical patent/JP3560352B2/en
Publication of JPH0773879A publication Critical patent/JPH0773879A/en
Application granted granted Critical
Publication of JP3560352B2 publication Critical patent/JP3560352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To lengthen the cycle life of a battery and to decrease the dispersion of the cycle life. CONSTITUTION:A rare earth hydrogen storage allay used in a negative electrode has 1. a hydrogen storage amount as determined by pressure-component constant temperature line at 60+ or -5 deg.C based on JIS H7201 of 0.76 or more, 2. an equilibrium hydrogen pressure of 0.8-2.0atm, and 3. a BET specific surface area after crushed once under a condition of a gage pressure of 5-10atm at 2-30 deg.C of 0.04-0.11m<2>/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属酸化物を正極活物質
とし、水素を負極活物質とする金属酸化物・水素二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide / hydrogen secondary battery using a metal oxide as a positive electrode active material and hydrogen as a negative electrode active material.

【0002】[0002]

【従来の技術】現在、金属酸化物・水素二次電池におい
て、負極を水素吸蔵合金で構成した形式のものが注目を
集めている。その理由は、この電池系が元来、高エネル
ギー密度を有し、容積効率的に有利であり、しかも安全
作動が可能であって、特性的にも信頼度の点でも優れて
いるからである。
2. Description of the Related Art At present, metal oxide / hydrogen secondary batteries of the type in which the negative electrode is composed of a hydrogen storage alloy are drawing attention. The reason is that this battery system originally has a high energy density, is advantageous in volumetric efficiency, can be operated safely, and is excellent in characteristics and reliability. .

【0003】この形式の電池の負極材料に用いられる水
素吸蔵合金としては、従来から、LaNi5 が多用され
ている。このような、希土類成分としてLa元素のみを
含む水素吸蔵合金は、たしかに電池負極材料として優れ
ているが、Laが高価であるために実用的ではない。こ
のため、La、Ce、Pr、Nd、Smなどのランタン
系元素の混合物であるミッシュメタル(以下、Mmとい
う)とNiとの合金、すなわちMmNi5 も広く用いら
れている。
As a hydrogen storage alloy used for the negative electrode material of this type of battery, LaNi 5 has been frequently used. Such a hydrogen storage alloy containing only La element as a rare earth component is excellent as a battery negative electrode material, but it is not practical because La is expensive. Therefore, an alloy of Misch metal (hereinafter referred to as Mm), which is a mixture of lanthanum elements such as La, Ce, Pr, Nd, and Sm, and Ni, that is, MmNi 5 is also widely used.

【0004】また、LaNi5 及びMmNi5 に関して
は、Niの一部をAl、Mn、Fe、Co、Ti、C
u、Zn、Zr、Cr、V又はBのような元素で置換し
た多元素系のものも使用されている。このような水素吸
蔵合金は、構成成分を高周波溶解などの方法によって合
金インゴットを製造し、機械粉砕などの方法で粉末状に
したものが使用されている。
Regarding LaNi 5 and MmNi 5 , a part of Ni is Al, Mn, Fe, Co, Ti, C.
A multi-element system in which an element such as u, Zn, Zr, Cr, V or B is substituted is also used. As such a hydrogen storage alloy, an alloy ingot is manufactured by a method such as high frequency melting of the constituents, and powdered by a method such as mechanical crushing.

【0005】しかしながら、従来の金属酸化物・水素二
次電池では、充放電サイクル寿命が短く、かつばらつく
という問題点があった。充放電サイクル寿命を低下させ
る直接的な原因は、充放電サイクルの進行に従って、水
素吸蔵合金が水素化粉砕されて微粉化し、負極材料の劣
化が進行するためである。そしてサイクル寿命のばらつ
きは、水素吸蔵合金の微粉化の進行が合金ロットによっ
て異なることに起因する。この微粉化現象の進行に見ら
れる差異は、水素吸蔵合金中の不純物、合金製造条件の
変動による合金均質性のばらつきなどの影響と考えられ
る。
However, the conventional metal oxide / hydrogen secondary battery has a problem that the charge / discharge cycle life is short and varies. The direct cause of shortening the charge / discharge cycle life is that as the charge / discharge cycle progresses, the hydrogen storage alloy is hydro-pulverized and pulverized, and the deterioration of the negative electrode material progresses. The variation in cycle life is due to the fact that the progress of pulverization of the hydrogen storage alloy differs depending on the alloy lot. The differences in the progress of this pulverization phenomenon are considered to be the effects of impurities in the hydrogen storage alloy and variations in alloy homogeneity due to changes in alloy production conditions.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前述
の問題を解決すべく充放電サイクル寿命が長く、かつそ
のばらつきが少ない金属酸化物・水素二次電池を提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a metal oxide / hydrogen secondary battery having a long charge / discharge cycle life and a small variation thereof in order to solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は、正極、アルカ
リ電解液、及び一般式LmAx (式中、LmはLaを含
む希土類元素から選ばれる一種又は二種以上の元素であ
り、AはNi、Co、Mn及びAlであるか、又はN
i、Co、Mn及びAlの他にB、Cu、Zn及びVよ
りなる群から選ばれる元素を含有し、xは5.1〜5.
4である)で示される組成である希土類系水素吸蔵合金
を主材料とする負極を備える金属酸化物・水素二次電池
において、前記希土類系水素吸蔵合金が、 (1)平衡水素圧(H/M=0.4の放出圧、ここで、
Hは吸蔵された水素の原子数、Mは上記LmAx で表わ
される金属の原子数をそれぞれ表わす)0.8〜2.0
atm ; (2)JIS H 7201に従い60±5℃における
圧力−組成等温線(以下「PCT線」と記す)による水
素吸蔵量(10atm における前記H/M値)が0.76
以上;ならびに (3)温度2〜30℃及びゲージ圧力5〜10atm の条
件下で1回水素化粉砕した後のBET法による比表面積
が0.04〜0.11m2/gであることを特徴とする金属
酸化物・水素二次電池に関する。
The present invention is directed to a positive electrode, an alkaline electrolyte, and a general formula LmA x (wherein Lm is one or more elements selected from rare earth elements containing La, and A is Ni, Co, Mn and Al, or N
In addition to i, Co, Mn and Al, it contains an element selected from the group consisting of B, Cu, Zn and V, and x is 5.1 to 5.
In a metal oxide / hydrogen secondary battery including a negative electrode containing a rare earth-based hydrogen storage alloy as a main material, the rare earth-based hydrogen storage alloy is (1) equilibrium hydrogen pressure (H / The discharge pressure of M = 0.4, where
H is the number of hydrogen atoms occluded, and M is the number of metal atoms represented by LmA x ) 0.8 to 2.0
atm; (2) According to JIS H7201, the hydrogen storage amount (the above H / M value at 10 atm) by pressure-composition isotherm (hereinafter referred to as "PCT line") at 60 ± 5 ° C is 0.76.
And; (3) The specific surface area by the BET method after hydro-grinding once under the conditions of a temperature of 2 to 30 ° C. and a gauge pressure of 5 to 10 atm is 0.04 to 0.11 m 2 / g. And a metal oxide / hydrogen secondary battery.

【0008】希土類系の水素吸蔵合金は一般式LmAx
(式中、LmはLaを含む少なくとも一種又は二種以上
の希土類元素であり、AはNi、Co、Mn、Al、
B、Cu、Zr及びVよりなる群から選択される少なく
とも一種の元素であり、xは5.1〜5.4である)で
示される組成のものが、水素吸蔵能力から好ましい。例
えば、LmNia Cob Mnc Ald (ここで、3.9
0≦a≦4.50、0.38≦b≦0.50、0.28
≦c≦0.50、0.28≦d≦0.50、5.1≦a
+b+c+d≦5.4)が用いられる。
Rare earth type hydrogen storage alloys have the general formula LmA x
(In the formula, Lm is at least one or two or more rare earth elements containing La, and A is Ni, Co, Mn, Al,
It is at least one element selected from the group consisting of B, Cu, Zr, and V, and x has a composition represented by 5.1 to 5.4) from the hydrogen storage capacity. For example, LmNi a Co b Mn c Al d (here, 3.9
0 ≦ a ≦ 4.50, 0.38 ≦ b ≦ 0.50, 0.28
≤ c ≤ 0.50, 0.28 ≤ d ≤ 0.50, 5.1 ≤ a
+ B + c + d ≦ 5.4) is used.

【0009】特定の条件下に水素化粉砕した本発明の合
金粉末のBET法による比表面積は、電池の充放電サイ
クル寿命と相関し、この比表面積が小さいほどサイクル
寿命が長くなる。また、水素吸蔵量が大きいほど、平衡
水素圧が低いほど、PCT特性が良好であり、逆の場合
には、電極容量の低下、電池内圧の上昇を引き起こす。
一般式LmAxにおけるxの値が大きいほどBET法に
よる比表面積は小さくなり、それに伴って水素吸蔵量の
低下及び平衡水素圧の上昇をきたす。このように、比表
面積、水素吸蔵量、平衡水素圧及び一般式LmAx にお
けるxの値は、相互に関連する特性である。
The specific surface area by the BET method of the alloy powder of the present invention hydrogenated and pulverized under specific conditions correlates with the charge / discharge cycle life of the battery. The smaller the specific surface area, the longer the cycle life. Further, the larger the hydrogen storage amount and the lower the equilibrium hydrogen pressure, the better the PCT characteristics, and in the opposite case, the electrode capacity decreases and the battery internal pressure increases.
The larger the value of x in the general formula LmAx is, the smaller the specific surface area by the BET method is, and accordingly the hydrogen storage amount is decreased and the equilibrium hydrogen pressure is increased. As described above, the specific surface area, the hydrogen storage amount, the equilibrium hydrogen pressure, and the value of x in the general formula LmA x are mutually related properties.

【0010】そこで、上記特性の最適範囲を検討したと
ころ、それは5.1≦x≦5.4、水素吸蔵量0.76
以上、平衡水素圧0.8〜2.0atm 及び比表面積0.
040〜0.11m2/gであることが判明した。なお、比
表面積測定の前段階における水素化粉砕の条件として
は、2〜30℃の温度、5〜10atm (ゲージ圧)の圧
力及び1回の粉砕である。それは、次のような理由によ
る。
Then, the optimum range of the above-mentioned characteristics was examined, and it was found that 5.1 ≦ x ≦ 5.4 and the hydrogen storage amount was 0.76.
As described above, the equilibrium hydrogen pressure is 0.8 to 2.0 atm and the specific surface area is 0.1.
It was found to be 040 to 0.11 m 2 / g. The conditions for the hydrogenation and pulverization in the previous stage of the measurement of the specific surface area are a temperature of 2 to 30 ° C., a pressure of 5 to 10 atm (gauge pressure), and one pulverization. The reason is as follows.

【0011】水素吸蔵合金は、水素化される際にその結
晶格子に水素原子が入りこみ、格子が膨らむため、内部
応力によって破壊が起こり、水素化粉砕が起こる。この
際、水素吸蔵合金の粉末の比表面積は、合金の微細構造
などの性質、ならびに水素化粉砕の条件である温度と水
素圧によって決まる。一般に水素化粉砕が繰り返される
と、それに伴って水素吸蔵合金は微細となり、次第に比
表面積が増すので、比表面積は水素粉砕化される回数に
も影響される。
In the hydrogen storage alloy, when hydrogenated, hydrogen atoms enter the crystal lattice and the lattice swells, so that internal stress causes fracture and hydrogenation and pulverization. At this time, the specific surface area of the powder of the hydrogen storage alloy is determined by the properties such as the fine structure of the alloy, and the temperature and the hydrogen pressure which are the conditions for the hydrocracking. Generally, when hydrogenation and pulverization is repeated, the hydrogen storage alloy becomes finer and the specific surface area gradually increases, so the specific surface area is also affected by the number of times of hydrogen pulverization.

【0012】本発明者らは水素吸蔵合金が、温度2〜3
0℃、例えば10℃で、水素圧が5〜10atm 、例えば
10atm の条件で、1回水素化粉砕されたときに得られ
る合金粉末の比表面積は、電池の充放電サイクル寿命と
の間に相関性があることを見出した。すなわち、上述の
要件を満たす水素吸蔵合金を機械粉砕などの方法で粉砕
し、得られた該合金の粉末を負極材料として用いると、
充放電サイクル寿命の長い電池を得ることができるとい
うものである。
The present inventors have found that the hydrogen storage alloy has a temperature of 2-3.
The specific surface area of the alloy powder obtained by hydrocracking once at 0 ° C., for example 10 ° C., and hydrogen pressure of 5-10 atm, for example 10 atm, correlates with the charge / discharge cycle life of the battery. I found that there is a property. That is, when a hydrogen storage alloy satisfying the above requirements is pulverized by a method such as mechanical pulverization, and the obtained powder of the alloy is used as a negative electrode material,
It is possible to obtain a battery having a long charge / discharge cycle life.

【0013】このような水素吸蔵合金の粉末を得るに
は、機械粉砕、水素化粉砕、噴霧粉砕など、任意の方法
をとることができる。実際の製造においては、設備が簡
単で作業が容易なこと、及び安全性を確保するため機械
粉砕が好ましい。特に、安定した粒度が得られること、
コストの点などから、衝撃式の粉砕機により粉砕された
ものを用いることが望ましい。衝撃式の粉砕機として
は、例えばハンマーミルなどを用いることができる。前
述の条件での比表面積が本発明の範囲であれば、実際に
負極材料の製造に用いる水素吸蔵合金の粒径は任意であ
り、例えば平均粒径20〜70μm の範囲のものが用い
られる。
In order to obtain the powder of such a hydrogen storage alloy, any method such as mechanical pulverization, hydrogenation pulverization and spray pulverization can be used. In actual production, mechanical crushing is preferable because the equipment is simple and the work is easy, and safety is ensured. In particular, stable particle size can be obtained,
From the viewpoint of cost, it is desirable to use those crushed by an impact crusher. As the impact type crusher, for example, a hammer mill or the like can be used. If the specific surface area under the above-mentioned conditions is within the range of the present invention, the particle size of the hydrogen storage alloy actually used for producing the negative electrode material is arbitrary, and for example, the average particle size is in the range of 20 to 70 μm.

【0014】本発明に用いる負極は、前述の水素吸蔵合
金粉末に、好ましくは高分子結着剤を配合し、必要に応
じて導電性粉末を配合して調製される合剤を用いて作製
する。すなわち、負極は、このような合剤を集電体であ
る導電性芯体に被覆し、固定した構造を有する。
The negative electrode used in the present invention is produced by using a mixture prepared by mixing the above hydrogen storage alloy powder, preferably a polymer binder, and, if necessary, a conductive powder. . That is, the negative electrode has a structure in which such a mixture is coated on and fixed to a conductive core that is a current collector.

【0015】高分子結着剤としては、例えばポリアクリ
ル酸ナトリウム、ポリテトラフルオロエチレン(PTF
E)、カルボキシメチルセルロース及びその塩(CM
C)などを挙げることができ、これらを併用してもよ
い。かかる高分子結着剤の配合割合は、水素吸蔵合金粉
末100重量部に対して0.5〜5重量部の範囲である
ことが望ましい。前記の合剤中に配合される導電性粉末
としては、例えばカーボンブラック、黒鉛などを挙げる
ことができる。かかる導電性粉末の配合割合は、前記の
水素吸蔵合金粉末100重量部に対して4重量部以下で
あることが望ましい。
Examples of the polymer binder include sodium polyacrylate and polytetrafluoroethylene (PTF).
E), carboxymethyl cellulose and salts thereof (CM
C) and the like can be mentioned, and these may be used in combination. The blending ratio of the polymer binder is preferably in the range of 0.5 to 5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. Examples of the conductive powder blended in the mixture include carbon black and graphite. The blending ratio of the conductive powder is preferably 4 parts by weight or less with respect to 100 parts by weight of the hydrogen storage alloy powder.

【0016】前記の集電体である導電性芯体としては、
例えばパンチドメタル、エキスパンドメタル、金網など
の二次元構造のもの、発泡メタル、網状焼結金属繊維な
どの三次元構造のものなどを挙げることができる。
The conductive core which is the above current collector is
For example, one having a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and one having a three-dimensional structure such as foam metal and reticulated sintered metal fiber can be mentioned.

【0017】本発明の正極としては、例えば非焼結式ニ
ッケル酸化物電極のような金属酸化物電極が用いられ
る。すなわち、水酸化ニッケルの他に高分子結着剤など
を含有するペーストを、たとえば焼結繊維基板、発泡メ
タル、不織布めっき基板又はパンチドメタル基板などに
充填する方法によって製造される。この高分子結着剤と
しては、前記の負極における高分子結着剤と同様のもの
を挙げることができる。本発明に用いるアルカリ電解液
としては、たとえば15〜50g/リットルの水酸化リチ
ウムが添加された25〜31重量%の水酸化カリウム水
溶液を挙げることができる。
As the positive electrode of the present invention, a metal oxide electrode such as a non-sintered nickel oxide electrode is used. That is, it is manufactured by a method of filling a paste containing a polymer binder and the like in addition to nickel hydroxide into, for example, a sintered fiber substrate, a foam metal, a non-woven fabric plated substrate or a punched metal substrate. Examples of the polymer binder include the same as the polymer binder for the negative electrode. Examples of the alkaline electrolyte used in the present invention include 25 to 31 wt% potassium hydroxide aqueous solution to which 15 to 50 g / liter of lithium hydroxide is added.

【0018】[0018]

【実施例】以下、本発明を実施例及び比較例によって詳
細に説明するが、本発明はこれらの実施例によって限定
されるものではない。また、組成の%はいずれも重量%
を意味する。
The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition,% of composition is% by weight
Means

【0019】実施例1〜3 (1)試料の調製 純度99.9%の希土類元素Lm(La45.1%、C
e4.6%、Pr12.1%、Nd37.0%、その他
の希土類元素1.2%)、Ni、Co、Mn及びAlを
構成成分とし、高周波溶解によって表1に示す組成の合
金を得た。この3種類の合金について、JIS H 7
201に従い60℃で圧力−組成等温線を測定し、水素
吸蔵量(10atm 時のH/M)及び平衡水素圧(H/M
=0.4の放出圧)を求めた。また10℃、10atm の
水素圧の条件で1回水素化粉砕を行い、その比表面積を
BET法によって測定した。これらの結果を表1に示
す。次に、評価したものと同じインゴットをそれぞれ機
械粉砕し、平均粒径が30〜40μm の各水素吸蔵合金
粉末を得た。
Examples 1 to 3 (1) Preparation of sample Rare earth element Lm with purity 99.9% (La 45.1%, C
e 4.6%, Pr 12.1%, Nd 37.0%, other rare earth elements 1.2%), Ni, Co, Mn and Al as constituent components, and alloys having the compositions shown in Table 1 were obtained by high frequency melting. . Regarding these three types of alloys, JIS H 7
Pressure-composition isotherm is measured at 60 ° C according to 201, hydrogen storage capacity (H / M at 10 atm) and equilibrium hydrogen pressure (H / M).
= 0.4). Further, hydrogenation and pulverization were performed once under the conditions of 10 ° C. and 10 atm of hydrogen pressure, and the specific surface area was measured by the BET method. The results are shown in Table 1. Next, the same ingots as those evaluated were mechanically pulverized to obtain respective hydrogen storage alloy powders having an average particle diameter of 30 to 40 μm.

【0020】(2)負極及び正極の作製 これらの水素吸蔵合金粉末のそれぞれに、結着剤として
ポリテトラフルオロエチレン、ポリアクリル酸ナトリウ
ム及びカルボキシメチルセルロースナトリウム塩を併用
し、導電剤としてカーボンブラックならびに水を添加し
て混合することにより、ペーストを調製した。このペー
ストをパンチドメタルに塗布し、乾燥、プレス、裁断工
程を経て負極を作製した。一方、水酸化ニッケル及び酸
化コバルトを含有するペーストを調製し、これをニッケ
ル焼結繊維基板に充填し、乾燥、プレス、裁断工程を経
て非焼結式ニッケル酸化物正極を作製した。
(2) Preparation of Negative Electrode and Positive Electrode Polytetrafluoroethylene, sodium polyacrylate and carboxymethylcellulose sodium salt are used in combination with each of these hydrogen storage alloy powders, and carbon black and water are used as conductive agents. A paste was prepared by adding and mixing. This paste was applied to a punched metal, dried, pressed, and cut to produce a negative electrode. On the other hand, a paste containing nickel hydroxide and cobalt oxide was prepared, this was filled in a nickel sintered fiber substrate, and a non-sintered nickel oxide positive electrode was produced through a drying, pressing and cutting process.

【0021】(3)試験用電池の組立 次いで図1に示すように、上記の方法によって作製した
3種類の水素吸蔵合金負極1を、前記非焼結式ニッケル
酸化物正極2と共にセパレータ3を介してそれぞれ巻回
し、AAサイズの電池缶4内に挿入した。さらに、7規
定の水酸化カリウム水溶液と、1規定の水酸化リチウム
の水溶液の混合液である電解液を注液した後、電池缶を
封口し、1,000mAh の容量を有する3種類のニッケ
ル水素二次電池を作製した。この試験用電池は、前記非
焼結式ニッケル酸化物正極2から導出された正極リード
5が正極端子6に溶接され、前記正極端子6の上部側の
鍔部が封口板7にリング状スぺーサ8を介して溶接さ
れ、前記電池缶4の開口部に前記封口板7の周縁部を絶
縁ガスケット9を介して気密に固定することにより封口
されている。
(3) Assembly of test battery Next, as shown in FIG. 1, three kinds of hydrogen storage alloy negative electrodes 1 produced by the above-mentioned method are put together with the non-sintered nickel oxide positive electrode 2 through a separator 3. And each was wound and inserted into the AA size battery can 4. Furthermore, after pouring an electrolytic solution, which is a mixture of 7N potassium hydroxide aqueous solution and 1N lithium hydroxide aqueous solution, the battery can is sealed and three kinds of nickel hydrogen having a capacity of 1,000mAh are filled. A secondary battery was produced. In this test battery, a positive electrode lead 5 derived from the non-sintered nickel oxide positive electrode 2 is welded to a positive electrode terminal 6, and a flange portion on an upper side of the positive electrode terminal 6 is a ring-shaped space on a sealing plate 7. It is welded through the chamber 8 and is hermetically fixed to the opening of the battery can 4 by hermetically fixing the peripheral portion of the sealing plate 7 through the insulating gasket 9.

【0022】(4)充放電サイクル試験 これらの試験用電池について、それぞれ充放電サイクル
試験を行った。1000mAで90分間の充電条件、及び
1000mAで終止電圧1Vの放電条件で充放電を繰り返
し、電池容量が初期容量の1/2になるまでに要したサ
イクル数を表1に示す。なお、このサイクル数は電池1
0個の平均値である。
(4) Charge / Discharge Cycle Test Each of these test batteries was subjected to a charge / discharge cycle test. Table 1 shows the number of cycles required until the battery capacity became 1/2 of the initial capacity after repeating charging and discharging under the conditions of charging at 1000 mA for 90 minutes and discharging at 1000 mA and the final voltage of 1V. Note that this cycle number is for battery 1
It is an average value of 0 pieces.

【0023】比較例1及び2 実施例1〜3で用いたのと同じ希土類元素Lm、Ni、
Co、Mn及びAlを構成成分とし、表1に示す組成を
有する合金を用いた他は、実施例1と同様の(1)試料
の調製、(2)負極及び正極の作製、(3)試験用電池
の組立、及び(4)充放電サイクル試験を行った。結果
を同じく表1に示す。
Comparative Examples 1 and 2 The same rare earth elements Lm, Ni, as used in Examples 1 to 3,
(1) Preparation of a sample, (2) Preparation of a negative electrode and a positive electrode, (3) Test similar to Example 1 except having used the alloy which has Co, Mn, and Al as a structural component and which has the composition shown in Table 1. The battery was assembled and (4) charge / discharge cycle test was performed. The results are also shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明により、前記の要件を備える水素
吸蔵合金を粉砕して得た粉末を負極に用いることによ
り、電池の充放電サイクルでの微粉化を防止し、電池の
サイクル寿命の向上と、サイクル寿命のばらつきを防止
することができる。本発明の金属酸化物・水素二次電池
はパソコン、ヘッドホンステレオ、8mmビデオなど大電
流を要する機器の電源として用いられ、従来のニッケル
・カドミウム電池に替わるものである。
EFFECTS OF THE INVENTION According to the present invention, by using a powder obtained by crushing a hydrogen storage alloy having the above requirements as a negative electrode, it is possible to prevent pulverization during charge / discharge cycles of a battery and improve the cycle life of the battery. With this, it is possible to prevent variations in cycle life. The metal oxide / hydrogen secondary battery of the present invention is used as a power source for a device requiring a large current such as a personal computer, a headphone stereo, and an 8 mm video, and replaces the conventional nickel-cadmium battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例において組立てた試験用
電池の断面図である。
FIG. 1 is a sectional view of a test battery assembled in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…水素吸蔵合金負極 2…非焼結式ニッケル酸化物正極 3…セパレータ 4…電池缶 5…正極リード 6…正極端子 7…封口板 8…スペーサ 9…絶縁ガスケット DESCRIPTION OF SYMBOLS 1 ... Hydrogen storage alloy negative electrode 2 ... Non-sintered nickel oxide positive electrode 3 ... Separator 4 ... Battery can 5 ... Positive electrode lead 6 ... Positive electrode terminal 7 ... Sealing plate 8 ... Spacer 9 ... Insulation gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千葉 信昭 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuaki Chiba 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Toshiba Battery Co., Ltd. (72) Inventor Kazuta Takeno 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo No. within Toshiba Battery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、アルカリ電解液、及び一般式Lm
x (式中、LmはLaを含む希土類元素から選ばれる
一種又は二種以上の元素であり、AはNi、Co、Mn
及びAlであるか、又はNi、Co、Mn及びAlの他
にB、Cu、Zn及びVよりなる群から選ばれる元素を
含有し、xは5.1〜5.4である)で示される組成で
ある希土類系水素吸蔵合金を主材料とする負極を備える
金属酸化物・水素二次電池において、前記希土類系水素
吸蔵合金が、 (1)平衡水素圧(H/M=0.4の放出圧、ここで、
Hは吸蔵された水素の原子数、Mは上記LmAx で表わ
される金属の原子数をそれぞれ表わす)0.8〜2.0
atm ; (2)JIS H 7201に従い60±5℃における
圧力−組成等温線による水素吸蔵量(10atm における
前記H/M値)が0.76以上;ならびに (3)温度2〜30℃及びゲージ圧力5〜10atm の条
件下で1回水素化粉砕した後のBET法による比表面積
が0.04〜0.11m2/gであることを特徴とする金属
酸化物・水素二次電池。
1. A positive electrode, an alkaline electrolyte, and a general formula Lm.
A x (In the formula, Lm is one or more elements selected from rare earth elements including La, and A is Ni, Co, Mn.
And Al, or contains an element selected from the group consisting of B, Cu, Zn, and V in addition to Ni, Co, Mn, and Al, and x is 5.1 to 5.4). In a metal oxide / hydrogen secondary battery including a negative electrode whose main component is a rare earth-based hydrogen storage alloy, the rare earth-based hydrogen storage alloy is (1) equilibrium hydrogen pressure (release of H / M = 0.4). Pressure, where
H is the number of hydrogen atoms occluded, and M is the number of metal atoms represented by LmA x ) 0.8 to 2.0
atm; (2) Pressure at 60 ± 5 ° C. according to JIS H7201-hydrogen storage amount by the composition isotherm (H / M value at 10 atm) is 0.76 or more; and (3) Temperature 2 to 30 ° C. and gauge pressure A metal oxide / hydrogen secondary battery having a specific surface area of 0.04 to 0.11 m 2 / g according to the BET method after hydro-pulverization once under a condition of 5 to 10 atm.
JP21966593A 1993-09-03 1993-09-03 Metal oxide / hydrogen secondary batteries Expired - Fee Related JP3560352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21966593A JP3560352B2 (en) 1993-09-03 1993-09-03 Metal oxide / hydrogen secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21966593A JP3560352B2 (en) 1993-09-03 1993-09-03 Metal oxide / hydrogen secondary batteries

Publications (2)

Publication Number Publication Date
JPH0773879A true JPH0773879A (en) 1995-03-17
JP3560352B2 JP3560352B2 (en) 2004-09-02

Family

ID=16739066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21966593A Expired - Fee Related JP3560352B2 (en) 1993-09-03 1993-09-03 Metal oxide / hydrogen secondary batteries

Country Status (1)

Country Link
JP (1) JP3560352B2 (en)

Also Published As

Publication number Publication date
JP3560352B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP0522297B1 (en) Hydrogen storage electrode
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH09213319A (en) Sealed alkaline battery
EP1075032A1 (en) Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
JP3184609B2 (en) Metal oxide / hydrogen battery and manufacturing method thereof
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JPS5944748B2 (en) Chikudenchi
JP3369226B2 (en) Metal oxide / hydrogen secondary batteries
JP3560352B2 (en) Metal oxide / hydrogen secondary batteries
JP3514491B2 (en) Metal oxide / hydrogen secondary batteries
JP3183680B2 (en) Metal oxide / hydrogen battery
JP3044495B2 (en) Metal oxide / hydrogen battery
JPH0799055A (en) Hydrogen secondary battery
JP2537084B2 (en) Hydrogen storage alloy electrode
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP3415927B2 (en) Metal oxide / hydrogen secondary batteries
JP3377591B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JPH0613077A (en) Hydrogen storage electrode
JP2983071B2 (en) Metal oxide / hydrogen batteries
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries
JP2989356B2 (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JP2000090921A (en) Alkaline secondary battery
JPH07161355A (en) Metal oxide-hydrogen battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees