JPH0773679B2 - Method for producing crushed sand for concrete - Google Patents

Method for producing crushed sand for concrete

Info

Publication number
JPH0773679B2
JPH0773679B2 JP3334171A JP33417191A JPH0773679B2 JP H0773679 B2 JPH0773679 B2 JP H0773679B2 JP 3334171 A JP3334171 A JP 3334171A JP 33417191 A JP33417191 A JP 33417191A JP H0773679 B2 JPH0773679 B2 JP H0773679B2
Authority
JP
Japan
Prior art keywords
water
sand
cylindrical drum
stirring chamber
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3334171A
Other languages
Japanese (ja)
Other versions
JPH05161854A (en
Inventor
行省 大河原
Original Assignee
ナカヤ実業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナカヤ実業株式会社 filed Critical ナカヤ実業株式会社
Priority to JP3334171A priority Critical patent/JPH0773679B2/en
Publication of JPH05161854A publication Critical patent/JPH05161854A/en
Publication of JPH0773679B2 publication Critical patent/JPH0773679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンクリート用砕砂の
製造方法に係り、詳しくは、回転する筒状ドラム内で媒
体石と原砂と水とを攪拌させることによりコンクリート
用砕砂を得るようにした製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing crushed sand for concrete, more specifically, to obtain crushed sand for concrete by stirring medium stone, raw sand and water in a rotating cylindrical drum. To the improvement of the manufacturing method.

【0002】[0002]

【従来の技術】従来より、コンクリート用の砕砂を製造
するための装置として、ロッドミルと称せられる装置が
公知となっているが、このロッドミルは、筒状ドラムの
内部攪拌室に複数本の金属製ロッドを転動可能に収納
し、この中に原砂及び水を供給して筒状ドラムを回転さ
せることにより、前記金属製ロッドの衝撃力により原砂
を強制的に破砕して、砕砂を得るように構成したもので
ある。しかしながら、前記金属製ロッドの硬度は原砂の
硬度よりも遥かに大きく、このため金属製ロッドから原
砂に付与される衝撃力は極めて大きなものになることに
加えて、この金属製ロッドは、単に原砂を打ち砕くに過
ぎないものであって若干の摩擦的作用を行えるに留ま
り、原砂の表面を除々に摩砕していくといった作用は当
然の事ながら行い得ないため、ロッドミルを使用して製
造された砕砂は、コンクリートの主要原料である細骨材
としては、極めて品質の低いものとなる。具体的には、
天然に存在する川砂、山砂、海砂或いは陸砂等のうち、
硬質で且つ粒形が球形に近い川砂が細骨材として最も品
質の良いものであることが知られており、この川砂の水
洗した試料 JIS A 5004 による粒形判定実績率(単位容
積質量を絶乾比重で除算した値)は57〜59%という
好適な数値を示すのに対し、前記ロッドミルにより得ら
れた砕砂の粒形判定実績率は53%前後であることが実
験により判明している。そして、ロッドミルにより得ら
れた砕砂は、粒形が球状でなく偏平で角立っており、表
面(肌)がなめらかでなく、而もクラックが発生してい
る等の諸種なる欠点を有しており、ワーカビリチーや流
動性等のコンクリートの諸性質に悪影響を及ぼすもので
あった。
2. Description of the Related Art Conventionally, a device called a rod mill has been known as a device for producing crushed sand for concrete, but this rod mill has a plurality of metallic members in an internal stirring chamber of a cylindrical drum. The rod is housed in a rollable manner, the raw sand and water are supplied into the rod, and the cylindrical drum is rotated to forcibly crush the raw sand by the impact force of the metal rod to obtain crushed sand. It is configured as follows. However, the hardness of the metal rod is much higher than the hardness of the raw sand, and therefore the impact force applied to the raw sand from the metal rod becomes extremely large. Since it is merely crushing the raw sand and can only perform some frictional action, it cannot naturally perform the action of gradually grinding the surface of the raw sand. The crushed sand produced in this way is of extremely low quality as fine aggregate, which is the main raw material for concrete. In particular,
Of naturally existing river sand, mountain sand, sea sand or land sand, etc.
It is known that river sand, which is hard and whose grain shape is almost spherical, has the highest quality as fine aggregate, and the rate of grain shape judgment by this washed sample of river sand (JIS A 5004 The value obtained by dividing by dry specific gravity) is 57 to 59%, while the crushed sand obtained by the rod mill has a grain shape determination performance rate of around 53%. And, the crushed sand obtained by the rod mill has various defects such that the grain shape is not spherical but flat and angular, the surface (skin) is not smooth, and cracks are generated. , The workability and the fluidity of the concrete are adversely affected.

【0003】このような問題に対処すべく、本出願人
は、先の特許出願(特開平2−222736号〔米国特
許第4995561号〕)において、以下のようにして
砕砂を製造することを提案した。即ち、図1に示すよう
に、筒状ドラム1の内部攪拌室2に複数の媒体石3…3
を積重した状態で、この中に原砂4及び水5を連続的に
送給すると共に、筒状ドラム1を駆動装置の動作により
回転させて、内部攪拌室2で媒体石3…3、原砂4及び
水5を攪拌し、且つ、この攪拌作用により生成された砕
砂6を水と共に排出口7より連続的に取り出すようにし
たものである。これによれば、媒体石、原砂及び水が攪
拌されることにより川砂の生成課程と略同一の条件の下
で、原砂の表面全体が摩砕されることになるので、原砂
の表面に付着している不純物等が除去され、更には川砂
の有する種々の利点、つまり粒形が球形に近く偏平でな
く且つ表面がなめらかであり而もクラックが発生してい
ない等の利点を全て兼ね備えた砕砂が短時間で得られる
ことになる。
In order to deal with such a problem, the applicant of the present invention proposes to produce crushed sand as follows in the previous patent application (JP-A-2-222736 [US Pat. No. 4,995,561]). did. That is, as shown in FIG. 1, a plurality of medium stones 3 ... 3 are provided in the internal stirring chamber 2 of the cylindrical drum 1.
In the state of being stacked, the raw sand 4 and the water 5 are continuously fed thereinto, and the cylindrical drum 1 is rotated by the operation of the drive device so that the medium stones 3 ... The raw sand 4 and the water 5 are stirred, and the crushed sand 6 generated by this stirring action is continuously taken out together with the water from the discharge port 7. According to this, since the medium stone, the raw sand and the water are agitated, the entire surface of the raw sand is ground under substantially the same conditions as the generation process of the river sand. It has all the advantages that the impurities adhering to the surface are removed, and that it has various advantages that river sand has, that is, the grain shape is close to a sphere, it is not flat, the surface is smooth, and cracks do not occur. Crushed sand will be obtained in a short time.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記本
出願人の提案によるコンクリート用砕砂製造手段による
にしても、より良質の砕砂の製造を行うには、未だ解決
すべき問題点がある。即ち、筒状ドラム1の内部攪拌室
2に積重される媒体石3…3の量は、過少であっても過
多であっても原砂4…4に対して良好な摩砕作用を行い
得ず、また一旦適切な量としていても媒体石3…3が攪
拌に伴って摩滅していくため、時間経過と共に過少状態
に陥るという難点がある。また、筒状ドラム1の単位時
間当りの回転数に関しては、回転数が過大であると媒体
石3…3が筒状ドラム1内周面に沿って上部まで持ち上
げられてしまい摩擦的効果が得られなくなる一方、回転
数が過小であると原砂4…4が筒状ドラム1の軸方向に
対して良好に移動できず、従って投入された原砂4…4
が排出口7に向かってスムーズに流れなくなるという問
題がある。更に、原砂4…4の投入量と水5の投入量と
の関係も極めて重要な要因であり、この関係が適切でな
いと攪拌時における原砂4…4の流動性等が所要のもの
とならず、原砂4…4と媒体石3…3とが均等に混じり
合わない等の問題が生じる。
However, even with the crushed sand manufacturing means for concrete proposed by the applicant, there are still problems to be solved in order to manufacture crushed sand of higher quality. That is, the amount of the medium stones 3 ... 3 stacked in the internal stirring chamber 2 of the cylindrical drum 1 is not too small or too large, and the raw sand 4 ... 3 is not obtained, and even if the amount is once appropriate, the medium stones 3 ... Regarding the number of revolutions of the cylindrical drum 1 per unit time, if the number of revolutions is too large, the medium stones 3 ... 3 are lifted to the upper part along the inner peripheral surface of the cylindrical drum 1 to obtain a frictional effect. On the other hand, if the number of rotations is too small, the raw sand 4 ... 4 cannot move well in the axial direction of the cylindrical drum 1, and therefore the input raw sand 4 ... 4.
Has a problem in that it does not flow smoothly toward the discharge port 7. Furthermore, the relationship between the input amount of the raw sands 4 ... 4 and the input amount of the water 5 is also an extremely important factor, and if this relationship is not appropriate, the fluidity of the raw sands 4 ... 4 at the time of stirring is required. As a result, there arises a problem that the raw sands 4 ... 4 and the medium stones 3 ... 3 are not uniformly mixed.

【0005】本発明者は、コンクリート用砕砂の製造方
法について鋭意研究を続けた結果、筒状ドラムの大きさ
と媒体石の量との関係、原砂と水との投入量の関係、更
には筒状ドラムに投入された水が、該筒状ドラムから排
出されるまでの間に、筒状ドラム内を通過する通過距離
が、高品質のコンクリート用砕砂を製造する上で極めて
重要な要因であることを知見し、本発明を完成するに至
ったものである。従って、本発明は、上記の各要因を最
も適切なものとすることにより、コンクリート用砕砂の
製造工程を改善し、もって高品質の砕砂を得ることを技
術的課題とするものである。
The present inventor has conducted extensive studies on a method for producing crushed sand for concrete. As a result, the relationship between the size of the cylindrical drum and the amount of medium stones, the relationship between the amount of raw sand and the amount of water input , and further
The water introduced into the cylindrical drum is discharged from the cylindrical drum.
It was found that the passage distance passing through the cylindrical drum before being discharged is an extremely important factor in producing high quality crushed sand for concrete, and the present invention was completed. It has come. Therefore, the present invention aims to improve the manufacturing process of crushed sand for concrete and to obtain high quality crushed sand by making each of the above factors most appropriate.

【0006】[0006]

【課題を解決するための手段】上記技術的課題を達成す
べくなされた本発明に係るコンクリート用砕砂の製造方
法は、以下に示すような特徴を有するものである。即
ち、筒状ドラムの内部攪拌室に複数の媒体石を積重した
状態で、該内部攪拌室に原砂及び水を投入すると共に、
前記筒状ドラムを駆動装置の動作により回転させ、これ
により前記内部攪拌室で媒体石、原砂及び水を攪拌し、
この攪拌作用により得られた砕砂を水と共に内部攪拌室
より取り出すようにするに際し、前記複数の媒体石の量
を、筒状ドラムの内周面の直径の1/4乃至1/3の高
さ範囲内に維持させると共に、前記内部攪拌室から取り
出された砕砂を必要により他の筒状ドラムの内部攪拌室
に再度投入して攪拌を継続するようにしたコンクリート
用砕砂の製造方法において、前記内部攪拌室への原砂の
投入量を設定し、続いて前記原砂の投入量に比例若しく
は略比例するように該内部攪拌室への水の投入量を設定
し、引続き前記水の投入量に基づいて、投入された水が
該内部攪拌室から排出されるまでの間に該内部攪拌室内
を通過する通過距離を算出し、該内部攪拌室内での水の
通過距離が予め設定された最適範囲内に含まれるよう
に、攪拌に使用する筒状ドラムの個数を決定するように
したものである。そして好ましくは、前記内部攪拌室内
での水の通過距離の最適範囲を100〜150mとする
ものである。
The method for producing crushed sand for concrete according to the present invention, which has been made to achieve the above technical problems, has the following features. That is, while stacking a plurality of medium stones in the internal stirring chamber of the cylindrical drum, while feeding the raw sand and water into the internal stirring chamber,
The cylindrical drum is rotated by the operation of a driving device, whereby the medium stone, raw sand and water are stirred in the internal stirring chamber,
When the crushed sand obtained by this stirring action is taken out from the internal stirring chamber together with water, the amount of the plurality of medium stones
Is 1/4 to 1/3 of the diameter of the inner peripheral surface of the cylindrical drum.
Temperature range and keep it from the internal stirring chamber.
Internal stir chamber of other cylindrical drum if needed
Concrete that was re-introduced into the tank to continue stirring
In the method for producing crushed sand for use in raw sand to the internal stirring chamber
Set the input amount, then proportionally to the input amount of the raw sand
Set the amount of water input to the internal stirring chamber to be approximately proportional
Then, based on the input amount of water,
Before being discharged from the internal stirring chamber, the internal stirring chamber
Calculate the distance traveled through the
Make sure the passing distance is within the preset optimum range
To determine the number of cylindrical drums used for stirring
It was done. And preferably, the internal stirring chamber
The optimum range of the water passage distance is 100 to 150 m .

【0007】[0007]

【作用】上記手段によると、所定の粒度分布となるよう
に選択された複数の媒体石を筒状ドラムの内部に収納
し、この媒体石及び水により原砂に対して摩砕作用を行
わせるのであるが、この媒体石を積重させる量は、筒状
ドラムの内周面の直径の1/4乃至1/3の高さ範囲内
とする。つまり、筒状ドラムの内周面における最低部か
ら計測して内周面直径の1/4乃至1/3の高さまで媒
体石を積重させるのである。そして、攪拌に伴って媒体
石が摩滅してその積重上面位置が低くなった場合には、
媒体石を追加投入して内周面直径の1/4以下とならな
いようにし、また追加投入時には内周面直径の1/3以
上とならないようにする。これにより、媒体石は常に内
周面直径の1/4乃至1/3の高さ範囲内に維持される
こととなる。そして、設置スペース上の問題や設備費の
問題等により、筒状ドラムの大きさを変える必要性が生
じる場合があるが、このような場合には、筒状ドラムの
内周面直径が大きくなるに従って該筒状ドラムの回転数
を小さくすることにより、筒状ドラム内周面の周速度が
常に最適な速度となり、原砂及び媒体石が必要以上に上
部に持ち上げられたり或いは持ち上げ量が不足したり等
の不具合が回避される。また、筒状ドラムより取り出さ
れるコンクリート用砕砂の量を増加させようとする場合
には、原砂の投入量を増加させる必要があるが、このよ
うな場合には、原砂の投入量の増加に比例若しくは略比
例して水の投入量を増加させることにより、筒状ドラム
内部の原砂の流動性等を適切な状態とし、媒体石から原
砂に対して均等な摩砕作用を行わせて、品質にバラツキ
のないコンクリート用砕砂を製造するものである。そし
て、本発明では、必要に応じて、複数の筒状ドラムで連
続的に原砂の攪拌を行うものであるが、本発明者は、前
記筒状ドラムに投入された水が、該筒状ドラムから排出
されるまでの間に、該筒状ドラムの内部攪拌室内を通過
する通過距離の大小が、製造される砕砂の品質に多大な
影響を与えることを知見し、この内部攪拌室内での水の
通過距離が予め設定した最適範囲(好ましくは100〜
15 0m)内に収まるように、前記筒状ドラムの使用個
数を決定するようにしている。即ち、1台の筒状ドラム
で攪拌したのみでは、該筒状ドラム内での水の通過距離
が前記最適範囲の下限値より小さくなる場合、前記筒状
ドラムの使用台数を2台以上に増加させることにより、
前記筒状ドラム内での水の通過距離が前記最適範囲に含
まれるように調整し、これにより、製造される砕砂の品
質向上を図るものである。 なお、前記筒状ドラムへの水
の投入量に基づく、該筒状ドラムの内部攪拌室内での水
の通過距離の算出は、以下のようにして行われる。即
ち、前記内部攪拌室への水の投入量と、該内部攪拌室内
に投入された水が該内部攪拌室から排出されるまでに要
する通過時間との関係を予め求めて、グラフ等に表して
置く。この際、同時に、製造された砕砂の品質に基づい
て、前記内部攪拌室内での水の通過時間の最適範囲、つ
まり、製造された砕砂の品質が所定の要求を満たすこと
のできる通過時間の範囲を求めて置く。そして、前記内
部攪拌室内での水の通過時間と、該内部攪拌室のサイズ
とから、該内部攪拌室内での水の通過距離を算出し、こ
れにより、前記内部攪拌室への水の投入量と、該内部攪
拌室内での水の通過距離との関係を求めると共に、前記
内部攪拌室内での水の通過時間の最適範囲に基づいて、
該内部攪拌室内での水の通過距離の最適範囲を求めれば
良い。
According to the above means, a plurality of medium stones selected so as to have a predetermined particle size distribution are housed in the cylindrical drum, and the medium stones and water are used to perform the grinding action on the raw sand. However, the amount by which the medium stones are stacked is within a height range of ¼ to ⅓ of the diameter of the inner peripheral surface of the cylindrical drum. That is, medium stones are piled up to a height of ¼ to ⅓ of the inner peripheral surface diameter measured from the lowest portion on the inner peripheral surface of the cylindrical drum. Then, when the medium stone is worn away due to stirring and the position of the upper surface of the stack is lowered,
Medium stones are additionally charged so that the diameter does not fall below 1/4 of the inner peripheral surface diameter, and at the time of additional charging, it does not exceed 1/3 of the inner peripheral surface diameter. As a result, the medium stone is always maintained within the height range of 1/4 to 1/3 of the inner peripheral surface diameter. Then, it may be necessary to change the size of the cylindrical drum due to a problem of installation space, a problem of equipment cost, etc. In such a case, the inner peripheral surface diameter of the cylindrical drum becomes large. By reducing the number of rotations of the cylindrical drum in accordance with the above, the peripheral speed of the inner peripheral surface of the cylindrical drum is always the optimum speed, and the raw sand and the medium stone are lifted to the upper part more than necessary or the lifting amount is insufficient. Problems such as sticking are avoided. In addition, when trying to increase the amount of crushed sand for concrete taken out from the cylindrical drum, it is necessary to increase the input amount of raw sand, but in such a case, increase the input amount of raw sand. By increasing the amount of water input in proportion to or approximately in proportion to, the fluidity of the raw sand inside the cylindrical drum is adjusted to an appropriate state, and an even grinding action is performed on the raw sand from the medium stone. In this way, crushed sand for concrete with consistent quality is manufactured. That
In the present invention, if necessary, a plurality of cylindrical drums are connected.
Although the raw sand is continuously stirred, the present inventor
Water introduced into the cylindrical drum is discharged from the cylindrical drum
Before passing through the internal stirring chamber of the cylindrical drum
The size of the passing distance is very large for the quality of the crushed sand produced.
It has been found that it will affect the water inside this internal stirring chamber.
The optimum range of passage distance (preferably 100 to
The number of the cylindrical drum used so that it fits within 150 m)
I try to determine the number. That is, one cylindrical drum
The water's passage distance in the cylindrical drum only by stirring with
Is smaller than the lower limit of the optimum range, the
By increasing the number of drums used to 2 or more,
The water passage distance in the cylindrical drum is within the optimum range.
Adjusted so that it will be crushed, and the crushed sand produced by this
It is intended to improve quality. In addition, water to the cylindrical drum
Water in the internal stirring chamber of the cylindrical drum based on the input amount of
Calculation of the passage distance of is performed as follows. Immediately
The amount of water input to the internal stirring chamber and the internal stirring chamber
It is necessary for the water charged in the chamber to be discharged from the internal stirring chamber.
The relationship with the passage time
Put. At the same time, based on the quality of the crushed sand produced,
The optimum range of passage time of water in the internal stirring chamber,
The quality of the crushed sand that has been produced and meets the specified requirements
Find and set the range of transit times that can be achieved. And within the above
Time of water passing through the internal stirring chamber and the size of the internal stirring chamber
From this, calculate the water passage distance in the internal stirring chamber,
As a result, the amount of water input to the internal stirring chamber and the internal stirring
In addition to obtaining the relationship with the water passage distance in the stirring chamber,
Based on the optimum range of water transit time in the internal stirring chamber,
If the optimum range of water passage distance in the internal stirring chamber is obtained,
good.

【0008】[0008]

【実施例】以下、本発明の実施例について述べるが、こ
の実施例は、本発明を限定する趣旨のものではない。先
ず、予備段階として、砕石製造プラント等で生成された
砕石に所定の加工を施すことに得られた丸みをおびた複
数の媒体石を、粒度が100〜80mmである第1のグル
ープと、粒度が80〜60mmである第2のグループと、
粒度が60〜40mmである第3のグループと、粒度が4
0〜20mmである第4のグループと、粒度が20〜13
mmである第5のグループとに仕分けする。そして、この
各グループから、重量%が、第1のグループが5%、第
2のグループが12.5%、第3のグループが20%、
第4のグループが27.5%、第5のグループが35%
となるように各媒体石を選択的に取り出して合成する。
EXAMPLES Examples of the present invention will be described below, but the examples are not intended to limit the present invention. First, as a preliminary step, a plurality of rounded medium stones obtained by subjecting a crushed stone produced in a crushed stone manufacturing plant or the like to a predetermined process are treated with a first group having a grain size of 100 to 80 mm and a grain size of 100 to 80 mm. With a second group of 80 to 60 mm,
A third group with a particle size of 60-40 mm and a particle size of 4
A fourth group of 0 to 20 mm and a grain size of 20 to 13
mm and the fifth group. From each of these groups, the weight% is 5% for the first group, 12.5% for the second group, and 20% for the third group.
27.5% of the 4th group and 35% of the 5th group
Each medium stone is selectively taken out so that

【0009】上記のようにして合成された媒体石を、既
述の「従来の技術」の欄で述べたものと同一の砕砂製造
装置の筒状ドラムの内部に積み重ね、原砂及び水と共に
攪拌させるのであるが、この場合の媒体石を積み重ねる
量は、図2に示すように、筒状ドラムの内周面直径Lの
1/3乃至1/4の高さ範囲内とする。つまり、媒体石
の積重上面が同図に斜線部Mで示した範囲内に収まるよ
うにするのである。従って、筒状ドラムの回転による攪
拌に伴って媒体石が摩滅して下限(Lの1/4)に達し
た場合には別途媒体石を補充して下限以下とならないよ
うにし、また補充時には媒体石の量が上限(Lの1/
3)を超えないようにし、これによりLの1/3乃至1
/4の範囲内に収まるようにする。これは、媒体石の量
が上記の範囲を逸脱した場合には、良好な攪拌作用を行
い得ず、例えば媒体石の量が多過ぎる場合には媒体石の
移動が拘束されてしまい、最適な攪拌を行うための充分
な移動が阻止され、また媒体石の量が少な過ぎる場合に
は媒体石から原砂に作用する押圧力がばらついたり或い
は重量不足等により最適な摩砕作用を行い得なくなると
いう理由によるものである。この場合、前記原砂として
は、粒径が5mm以下の海砂、山砂、砕石場で採取された
ダスト等が使用される。
The medium stones synthesized as described above are stacked inside a cylindrical drum of the same crushed sand manufacturing apparatus as described in the above-mentioned "Prior art" section, and stirred with raw sand and water. The amount of medium stones stacked in this case is within the range of 1/3 to 1/4 of the inner peripheral surface diameter L of the cylindrical drum, as shown in FIG. That is, the upper surface of the stack of medium stones is set within the range shown by the hatched portion M in the figure. Therefore, when the medium stone is worn down and reaches the lower limit (1/4 of L) with stirring by the rotation of the cylindrical drum, the medium stone is supplemented to prevent the medium stone from falling below the lower limit. The amount of stones is the upper limit (1 / L of L
3), so that 1/3 to 1 of L
It should be within the range of / 4. This is because when the amount of medium stones deviates from the above range, a good stirring action cannot be performed, and for example, when the amount of medium stones is too large, the movement of medium stones is restricted, which is an optimum condition. If the amount of medium stones is too small, sufficient movement for stirring is prevented, and if the amount of medium stones acts on the raw sand varies, the optimum grinding action cannot be performed due to insufficient weight or the like. The reason is that. In this case, as the raw sand, sea sand having a particle diameter of 5 mm or less, mountain sand, dust collected at a quarry, or the like is used.

【0010】水及び原砂の投入量に関しては、筒状ドラ
ムの内部に原砂と水とを連続的に投入しながら該筒状ド
ラムを回転させ、この状態での原砂の投入量と水の投入
量とを適宜変化させて、原砂の流動性等の状態を判別す
るという実験を行った結果、図3のグラフに示すよう
に、原砂の投入量と水の投入量とは比例若しくは略比例
関係にあることが最適であることを知見した。この図3
のグラフに示す関係は、筒状ドラムの大きさや回転数が
変化しても、不変のものである。
Regarding the amounts of water and raw sand to be fed, while the raw sand and water are continuously fed into the inside of the tubular drum, the tubular drum is rotated, and the amount of raw sand and the amount of water fed in this state are set. As a result of an experiment in which the state such as the fluidity of the raw sand is determined by appropriately changing the input amount of the raw sand, as shown in the graph of FIG. 3, the input amount of the raw sand and the input amount of water are proportional. Alternatively, they have found that it is optimal to have a substantially proportional relationship. This Figure 3
The relationship shown in the graph is invariable even if the size or the rotation speed of the cylindrical drum changes.

【0011】そして、筒状ドラムの内部に媒体石をLの
約1/3まで投入した状態で、回転数26rpm で筒状ド
ラムを回転させ、この状態での水の通過時間つまり筒状
ドラムの内部に水を投入してから排出口より取り出され
るまでの時間を測定した。この測定に際しては、直径が
120cm(内径が116.5cm)で長さが200cmであ
る筒状ドラムを使用し、この筒状ドラムの中に高さ35
cmまで計930kgの媒体石を積重させた。この測定結果
を図4のグラフに示す。
Then, with the medium stones being loaded into the cylindrical drum up to about 1/3 of L, the cylindrical drum is rotated at a rotation speed of 26 rpm, and the water passage time in this state, that is, the cylindrical drum The time from when water was poured into the inside until it was taken out from the outlet was measured. In this measurement, a cylindrical drum with a diameter of 120 cm (inner diameter of 116.5 cm) and a length of 200 cm was used.
A total of 930 kg of medium stones were piled up to cm. The measurement result is shown in the graph of FIG.

【0012】次いで、この測定結果である水の通過時間
と、筒状ドラムの円周と、該ドラムの回転数とを乗じる
ことにより、水の通過距離を算出する。この算出結果
を、図5のグラフに示す。そして、この図5に示す水の
通過距離の中から、実際に原砂、媒体石及び水を筒状ド
ラムの内部で攪拌することにより得られた砕砂がJIS A5
004の規格を満し且つJIS A 5308の規格に合致するよう
になるための水の通過距離を決定する。この結果、10
0m〜150mの通過距離が最適であることを知見し
た。ここで、上記のJIS A 5004については既述の「従来
の技術」の欄で述べたところであり、またJIS A 5308
は、アルカリシリカ反応性試験の結果が無害であるか否
かを判別するためのものであり、JIS A 5308-1989 付属
書7「骨材のアルカリシリカ反応性試験方法(化学
法)」や、同付属書8「骨材のアルカリシリカ反応性試
験方法(モルタルバー法)」がある。そして、このアル
カリシリカ反応性試験の結果が無害でない場合には、セ
メントのアルカリと化合して膨張し、コンクリートを崩
壊させたり、或いは鉄筋コンクリート使用の場合には鉄
筋が腐食する等の不具合を招く。従って、実際の攪拌に
先立って、前記媒体石に対しても、アルカリシリカ反応
性試験を行っておくことが好ましい。
Next, the water passage distance is calculated by multiplying the water passage time, which is the result of this measurement, the circumference of the cylindrical drum, and the rotational speed of the drum. The calculation result is shown in the graph of FIG. Then, the crushed sand obtained by actually stirring the raw sand, the medium stone and the water inside the cylindrical drum from the passage distance of the water shown in FIG. 5 is JIS A5.
Determine the water passage distance to meet the 004 standard and meet the JIS A 5308 standard. As a result, 10
It was found that a passing distance of 0 m to 150 m is optimum. Here, the above-mentioned JIS A 5004 has been described in the above-mentioned "Prior Art" column, and also JIS A 5308.
Is for determining whether or not the result of the alkali silica reactivity test is harmless. For example, JIS A 5308-1989 Annex 7 “Alkali silica reactivity test method for aggregates (chemical method)” and There is Appendix 8 “Testing method for alkali silica reactivity of aggregates (mortar bar method)”. If the result of the alkali-silica reactivity test is not harmless, it causes a problem such that the cement is combined with the alkali of the cement and expands to collapse the concrete, or when the reinforced concrete is used, the reinforcing bar corrodes. Therefore, prior to the actual stirring, it is preferable to perform the alkali silica reactivity test on the medium stone as well.

【0013】実際に攪拌を行うに際して、例えば20t
/hの投砂量とする場合には、図3のグラフに基づいて
投水量を6.5t/hとし、図4のグラフにより水の通
過時間が約37秒であり且つ図5のグラフにより水の通
過距離が約60mであることを知得する。この場合、水
の通過距離は記述のように100m〜150mとするの
が最適であることから、投砂量が20t/hで投水量が
6.5t/hの場合には、一度筒状ドラムの排出口から
取り出された砕砂を、再度同様の筒状ドラムに投入して
排出口より取り出せば、水の通過距離は計算上120m
となり、上記の最適範囲内に収まることになる。このよ
うに、水の通過距離が100m〜150mの範囲内に収
まるような条件下で、実際に原砂と媒体石と水とを攪拌
させることにより、高品質の砕砂が得られるのである。
When actually stirring, for example, 20 t
In the case of a sand throw rate of / h, the water throw rate is set to 6.5 t / h based on the graph of FIG. 3, and the water passage time is about 37 seconds according to the graph of FIG. 4 and the graph of FIG. We know that the distance that water passes is about 60 m. In this case, it is optimal to set the water passage distance to 100 m to 150 m as described, so if the sand throwing amount is 20 t / h and the water throwing amount is 6.5 t / h, once the cylindrical drum is used. If the crushed sand taken out from the discharge port is put into the same cylindrical drum again and taken out from the discharge port, the water passage distance is calculated to be 120 m.
Therefore, the value falls within the above optimum range. In this way, high-quality crushed sand can be obtained by actually stirring the raw sand, the medium stones, and water under the condition that the water passage distance falls within the range of 100 m to 150 m.

【0014】また、上記の測定に際しては、直径が12
0cmの筒状ドラムを使用したために回転数を26rpm と
したが、例えば直径が60cmの筒状ドラムを使用する場
合には回転数を27rpm とするのが最適である。これ
は、筒状ドラムの回転数を必要以上に大きくした場合に
は、筒状ドラム内周面の周速度が大きくなって媒体石が
所要以上の上部まで持ち上げられてしまい、衝撃力のみ
が過度に大きくなって摩擦的作用が行われなくなり、ま
た回転数を必要以上に小さくした場合には、周速度が不
足して原砂の通過に異常が生じるという理由によるもの
である。従って、筒状ドラム内周面の周速度が適切な値
となるように、筒状ドラムの直径に応じて回転数を変化
させる必要がある。この場合において、上記のように直
径が60cmの筒状ドラムを使用する場合には、その内部
に上記と同様にして媒体石を積重させて回転数27rpm
で筒状ドラムを回転させ、この状態での水の通過時間を
測定し、この水の通過時間と投水量との関係を別途グラ
フに表し、更にこの水の通過時間と筒状ドラムの円周及
び回転数を乗じることにより、投水量と水の通過距離と
の関係を算出し、この算出結果を別途グラフに表す。そ
して、前記図3のグラフから投砂量に対する投水量を決
定し、前記別途作成したグラフに基づいて、水の通過距
離が100m〜150mの範囲内に収まるようにする。
このようにすれば、上記と同様に、生成された砕砂が、
JIS A 5004の規格を満たし且つJIS A 5308の規格に合致
することとなる。
In the above measurement, the diameter is 12
The rotation speed was set to 26 rpm because the cylindrical drum having a diameter of 0 cm was used. However, when the cylindrical drum having a diameter of 60 cm is used, the rotation speed is optimally set to 27 rpm. This is because if the number of rotations of the cylindrical drum is increased more than necessary, the peripheral velocity of the inner peripheral surface of the cylindrical drum increases and the medium stones are lifted to the upper part more than necessary, and only the impact force is excessive. This is because the frictional action is not performed and the rotation speed is made smaller than necessary, the peripheral speed becomes insufficient and the passage of the raw sand becomes abnormal. Therefore, it is necessary to change the rotation speed according to the diameter of the cylindrical drum so that the peripheral speed of the inner peripheral surface of the cylindrical drum becomes an appropriate value. In this case, when using the cylindrical drum having a diameter of 60 cm as described above, the medium stones are stacked in the same manner as described above and the rotation speed is 27 rpm.
The cylindrical drum is rotated with to measure the water passage time in this state, and the relationship between this water passage time and the amount of water thrown is shown in a separate graph, and this water passage time and the circumference of the cylindrical drum are shown. And the number of revolutions are multiplied to calculate the relationship between the amount of water thrown and the passage distance of water, and the calculation result is shown in a separate graph. Then, the amount of water thrown with respect to the amount of sand thrown is determined from the graph of FIG. 3, and the water passage distance is set to fall within the range of 100 m to 150 m based on the separately created graph.
In this way, the generated crushed sand, like the above,
It meets the JIS A 5004 standard and conforms to the JIS A 5308 standard.

【0015】[0015]

【発明の効果】以上のように本発明に係るコンクリート
用砕砂の製造方法によれば、筒状ドラムの内部に積み重
ねられる媒体石の量を、その上限を筒状ドラム内周面直
径の1/3とし且つその下限を筒状ドラム内周面直径の
1/4とし、この両者間に常に収まるようにしたから、
原砂に対する摩砕的作用が最適な状態で行われることと
なり、高品質のコンクリート用砕砂を得る上で大きく役
立つことになる に、原砂の投入量と水の投入量との
関係を適切なもの、つまり、比例または略比例する関係
としたことにより、攪拌時における原砂の流動性等の諸
状態が好適なものとなり、媒体石による摩砕作用の能率
が一層向上することになる。また、本発明では、必要に
応じて複数の筒状ドラムで連続的に原砂の攪拌を行うよ
うにすると共に、前記筒状ドラムの内部攪拌室への原砂
の投入量に基づいて、該内部攪拌室への水の投入量を決
定し、引続き、この内部攪拌室への水の投入量に基づい
て、該内部攪拌室内での水の通過距離を算出し、この水
の通過距離が予め求めた最適範囲に含まれるように、前
記筒状ドラムの使用個数を決定するようにしたので、製
造される砕砂の品質を一層向上させることができる。
As described above, according to the method for producing crushed sand for concrete according to the present invention, the upper limit of the amount of medium stones stacked inside the cylindrical drum is 1 / the diameter of the inner peripheral surface of the cylindrical drum. 3 and its lower limit is set to 1/4 of the diameter of the inner peripheral surface of the cylindrical drum, so that it is always between these two,
The milling action on the raw sand is performed in an optimum state, which is very useful for obtaining high-quality crushed sand for concrete . Further, the relationships between the input amount and the input amount of water of the original sand as appropriate, that is, by which the proportional or approximately proportional relationship <br/>, various conditions such as the fluidity of the raw sand during agitation Is preferable, and the efficiency of the grinding action by the medium stone is further improved. Further, in the present invention,
Depending on the number of cylindrical drums, the raw sand is continuously stirred.
The raw sand to the internal stirring chamber of the cylindrical drum.
Determine the amount of water input to the internal stirring chamber based on
Based on the amount of water input to this internal stirring chamber.
And calculate the passage distance of water in the internal stirring chamber.
So that the passing distance of
Since the number of cylindrical drums to be used was decided,
The quality of the crushed sand produced can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に際して使用される装置を示
す縦断正面図である。
FIG. 1 is a vertical sectional front view showing an apparatus used for carrying out a method of the present invention.

【図2】本発明方法を説明するための概略側面図であ
る。
FIG. 2 is a schematic side view for explaining the method of the present invention.

【図3】水の投入量と原砂の投入量との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the input amount of water and the input amount of raw sand.

【図4】投入された水の通過時間を示すグラフである。FIG. 4 is a graph showing a passage time of introduced water.

【図5】水の投入量と通過距離との関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between the amount of water input and the passage distance .

【符号の説明】[Explanation of symbols]

1 筒状ドラム 3 媒体石 4 原砂 5 水 6 砕砂 L 筒状ドラムの内周面の直径 1 Cylindrical drum 3 Medium stone 4 Raw sand 5 Water 6 Crushed sand L Diameter of inner surface of cylindrical drum

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 筒状ドラムの内部攪拌室に複数の媒体石
を積重した状態で、該内部攪拌室に原砂及び水を投入す
ると共に、前記筒状ドラムを駆動装置の動作により回転
させ、これにより前記内部攪拌室で媒体石、原砂及び水
を攪拌し、この攪拌作用により得られた砕砂を水と共に
内部攪拌室より取り出すようにするに際し、前記複数の
媒体石の量を、筒状ドラムの内周面の直径の1/4乃至
1/3の高さ範囲内に維持させると共に、前記内部攪拌
室から取り出された砕砂を必要により他の筒状ドラムの
内部攪拌室に再度投入して攪拌を継続するようにしたコ
ンクリート用砕砂の製造方法において、前記内部攪拌室への原砂の投入量を設定し、続いて前記
原砂の投入量に比例若しくは略比例するように該内部攪
拌室への水の投入量を設定し、引続き前記水の投入量に
基づいて、投入された水が該内部攪拌室から排出される
までの間に該内部攪拌室内を通過する通過距離を算出
し、該内部攪拌室内での水の通過距離が予め設定された
最適範囲内に含まれるように、攪拌に使用する筒状ドラ
ムの個数を決定す るようにしたことを特徴とするコンク
リート用砕砂の製造方法。
1. In a state in which a plurality of medium stones are stacked in an inner stirring chamber of a cylindrical drum, raw sand and water are charged into the inner stirring chamber, and the cylindrical drum is rotated by an operation of a driving device. , Thereby stirring the medium stone, the raw sand and the water in the internal stirring chamber, and taking out the crushed sand obtained by the stirring action together with the water from the internal stirring chamber ,
The amount of medium stones is 1/4 to the diameter of the inner peripheral surface of the cylindrical drum.
While maintaining within a height range of 1/3, the internal stirring
If necessary, the crushed sand taken out of the chamber can be stored in another cylindrical drum.
In the method for producing crushed sand for concrete which is again charged into the internal stirring chamber to continue stirring, the amount of raw sand to be charged into the internal stirring chamber is set, and subsequently,
The internal stirring is adjusted so that it is proportional or approximately proportional to the input amount of raw sand.
Set the amount of water input to the stirring chamber and continue to set the amount of water input.
Based on the above, the water that has been input is discharged from the internal stirring chamber.
Calculate the distance that passes through the internal stirring chamber until
However, the passing distance of water in the internal stirring chamber was set in advance.
The cylindrical drive used for stirring should be included in the optimum range.
Method for producing a concrete crushed sand, characterized in that the so that to determine the number of beam.
【請求項2】 前記内部攪拌室内での水の通過距離の最
適範囲が100〜150mであることを特徴とする請求
項1に記載のコンクリート用砕砂の製造方法。
2. The maximum distance of water passing through the internal stirring chamber.
The suitable range is 100-150 m, The manufacturing method of the crushed sand for concrete of Claim 1 characterized by the above-mentioned.
JP3334171A 1991-10-16 1991-11-22 Method for producing crushed sand for concrete Expired - Lifetime JPH0773679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334171A JPH0773679B2 (en) 1991-10-16 1991-11-22 Method for producing crushed sand for concrete

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29827191 1991-10-16
JP3-298271 1991-10-16
JP3334171A JPH0773679B2 (en) 1991-10-16 1991-11-22 Method for producing crushed sand for concrete

Publications (2)

Publication Number Publication Date
JPH05161854A JPH05161854A (en) 1993-06-29
JPH0773679B2 true JPH0773679B2 (en) 1995-08-09

Family

ID=26561449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334171A Expired - Lifetime JPH0773679B2 (en) 1991-10-16 1991-11-22 Method for producing crushed sand for concrete

Country Status (1)

Country Link
JP (1) JPH0773679B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775675B2 (en) * 1989-02-23 1995-08-16 ナカヤ実業株式会社 Crushed sand production equipment for concrete

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学工学協会編「化学工学便覧」改訂五版(昭63−3−18)丸善P.829−832

Also Published As

Publication number Publication date
JPH05161854A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
KR102122387B1 (en) Improved soil manufacturing management system using rotary shredding mixing device
CN206008879U (en) A kind of novel mineral wet overflow type ball mill
NO118360B (en)
US4268295A (en) Method for manufacturing crushed sands from blast furnace water granulated slags
US4995561A (en) Ground sand maker
JPH0773679B2 (en) Method for producing crushed sand for concrete
US5193752A (en) Method of making concrete sand
CN207769910U (en) A kind of twin-stage grinding ball mill
US20040118954A1 (en) Method and device for fine grinding of minerals particles
CN107096613A (en) Simultaneously coil spring is not ground pitches with hybrid density medium bitubular double-mass vibrating
JP4406328B2 (en) Granulating treatment method of granulated blast furnace slag
JPH0671562B2 (en) Method for producing medium stone used for producing crushed sand for concrete
CN206996734U (en) Simultaneously coil spring bitubular double-mass vibrating is not ground pitches
JP3831101B2 (en) Fluidization processing method and mixed crushing apparatus used therefor
JP2003191161A (en) Aggregate polishing device
JP4388259B2 (en) Method for producing blast furnace slag fine aggregate
JPH0775674B2 (en) Crushed sand production equipment for concrete
JPH1190255A (en) Method for manufacturing crushed sand using wet ball mill and wet ball mill
CN107096615A (en) Pitches not simultaneously coil spring and the side-mounted vibromill of hybrid density medium
CN207119429U (en) Pitches not simultaneously coil spring double mass single barrel vibrating mill
RU2224594C2 (en) Method of production of cube-shaped crushed stone in inertial cone-type crusher
JP6493305B2 (en) Method for producing sintered ore
JP2002066365A (en) Frictional crushing machine
JP4334241B2 (en) Grinding plant
CN107413462A (en) Simultaneously coil spring is not ground pitches with hybrid density medium double-mass vibrating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 17