JPH07731B2 - Wet friction material - Google Patents

Wet friction material

Info

Publication number
JPH07731B2
JPH07731B2 JP61098377A JP9837786A JPH07731B2 JP H07731 B2 JPH07731 B2 JP H07731B2 JP 61098377 A JP61098377 A JP 61098377A JP 9837786 A JP9837786 A JP 9837786A JP H07731 B2 JPH07731 B2 JP H07731B2
Authority
JP
Japan
Prior art keywords
friction
friction material
phenolic resin
epoxidized polybutadiene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61098377A
Other languages
Japanese (ja)
Other versions
JPS62256857A (en
Inventor
利彦 小堤
隆夫 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynax Corp
Showa Highpolymer Co Ltd
Original Assignee
Dynax Corp
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynax Corp, Showa Highpolymer Co Ltd filed Critical Dynax Corp
Priority to JP61098377A priority Critical patent/JPH07731B2/en
Publication of JPS62256857A publication Critical patent/JPS62256857A/en
Publication of JPH07731B2 publication Critical patent/JPH07731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油中クラッチフェージングの如き、湿式摩擦
材に関するものである。
TECHNICAL FIELD The present invention relates to a wet friction material such as clutch fading in oil.

〔従来の技術〕[Conventional technology]

近年、自動車業界においては、省エネルギー化の観点よ
り、各種使用部品の軽量化及び高効率化が進められてい
る。湿式摩擦材においても、摩擦係数の向上及び単位面
積当りのエネルギー吸収能を高める事により、クラッチ
フェージング枚数の低減を始め、小型化,軽量化が推進
されている。しかしながら、従来の湿式摩擦材では、摩
擦係数及びエネルギー吸収能が劣り、特に長時間使用す
る場合には、摩擦係数の低下や、摩擦材自体の破壊が発
生する難点があった。
In recent years, in the automobile industry, from the viewpoint of energy saving, weight reduction and high efficiency of various parts used have been promoted. Also in wet type friction materials, by improving the friction coefficient and increasing the energy absorption capacity per unit area, the number of clutch fadings has been reduced, and the size and weight have been reduced. However, the conventional wet friction material is inferior in friction coefficient and energy absorption ability, and there is a problem that the friction coefficient is lowered and the friction material itself is broken particularly when used for a long time.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者らは、上記事情を鑑み、優れた性能を有する湿
式摩擦材、特に高く安定した摩擦係数を有し、エネルギ
ー吸収能も高く、然も長期間にわたる使用においても安
定した摩擦特性を有する湿式摩擦材について鋭意研究し
た結果、本発明に到達した。
In view of the above circumstances, the present inventors have obtained a wet friction material having excellent performance, particularly a high and stable friction coefficient, a high energy absorption capacity, and a stable friction characteristic even during long-term use. As a result of earnest research on the wet friction material, the present invention has been achieved.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明の湿式摩擦材は、オキシラン酸素濃度が10
〜15重量%であるエポキシ化ポリブタジエンにより変性
されたフェノール系樹脂を結合剤とすることによって、
前記問題点を解決した。
That is, the wet friction material of the present invention has an oxirane oxygen concentration of 10
By using as a binder a phenolic resin modified with epoxidized polybutadiene that is ~ 15% by weight,
The above problems were solved.

〔作用〕 本発明において結合剤の主成分として使用されるフェノ
ール系樹脂は、フェノール類とアルデヒド類をアルカリ
触媒を用いて反応することにより得られる一般式(I)
で示すレゾール型フェノール系樹脂である。
[Function] The phenolic resin used as the main component of the binder in the present invention is a compound represented by the general formula (I) obtained by reacting phenols and aldehydes with an alkali catalyst.
Is a resol type phenolic resin.

ここで、RはH又はアルキル基又はアリル基、R′は‐
CH2OH又は水素を表わし、m,nは各々0〜10の整数 前記のフェノール類として代表的なものは、フェノー
ル,クレゾール,キシレ,ブチルフェノールなどがあ
り、これら2種以上の併用の形で使用したも良い。また
アルデヒド類としてはホルムアルデヒド,アセチルアル
デヒド,フルフラールなどを用いる事ができ、アルカリ
触媒としては、アルカリ金属,アルカリ土類の水酸化
物,アミン類である。レゾール化反応は、フェノール類
/アルデヒド類のモル比で1/1.0〜3.0の範囲で行い、反
応温度は通常50-100℃の範囲で行う事が望ましい。
Here, R is H or an alkyl group or an allyl group, and R'is-
Represents CH 2 OH or hydrogen, m and n are each an integer of 0 to 10, and typical phenols include phenol, cresol, xylyl, butylphenol, etc., which are used in combination of two or more of them. It is also good. Formaldehyde, acetylaldehyde, furfural and the like can be used as the aldehydes, and alkali metal, alkaline earth hydroxides and amines can be used as the alkali catalyst. It is desirable that the resolization reaction is carried out at a molar ratio of phenols / aldehydes of 1 / 1.0 to 3.0, and the reaction temperature is usually 50-100 ° C.

本発明において使用されるエポキシ化ポリブタジエン
は、ポリブタジエンポリマーに過酸化物を反応せしめて
得られるオキシラン酸素濃度が10〜15重量%であるエポ
キシ基を導入した一般式(II)で示されるエポキシ化ポ
リブタジエンである。
The epoxidized polybutadiene used in the present invention is an epoxidized polybutadiene represented by the general formula (II) in which an epoxy group having an oxirane oxygen concentration of 10 to 15% by weight is introduced by reacting a polybutadiene polymer with a peroxide. Is.

オキシラン酸素濃度が10重量%より少ない場合フェノー
ル樹脂の反応性が劣り、良好な耐熱性が得られない。ま
た、オキシラン酸素濃度が15重量%より多いときは合成
が困難であり、工業的に利用できない。
When the oxirane oxygen concentration is less than 10% by weight, the reactivity of the phenol resin is poor and good heat resistance cannot be obtained. Further, when the oxirane oxygen concentration is higher than 15% by weight, the synthesis is difficult and it cannot be industrially used.

x,y及びzの合計数は20〜40 ポリブタジエンのエポキシ化は、天然油のエポキシ化と
ほぼ同様の方法で可能である。過酸化物としては、過酢
酸,過酸化水素などを用い、ポリブタジエン中に逐次添
加する事により反応される。
The total number of x, y and z is 20-40. The epoxidation of polybutadiene can be carried out in a manner similar to the epoxidation of natural oil. As the peroxide, peracetic acid, hydrogen peroxide or the like is used, and the reaction is carried out by sequentially adding it to polybutadiene.

このエポキシ化ポリブタジエンにより変性されたフェノ
ール系樹脂は、その硬化において、フェノール系樹脂の
有する末端メチロール基とエポキシ化ポリブタジエンの
有するエポキシ基とが反応架橋する事により、フェノー
ル系樹脂の持つ耐熱性とポリブタジエンの持つゴム弾性
とが交互効果を発現する事により、高く安定した摩擦係
数と優れたエネルギー吸収能を有する摩擦材を得ること
ができると推定される。
The phenolic resin modified with this epoxidized polybutadiene has a heat resistance and a polybutadiene which the phenolic resin has by cross-linking the terminal methylol group of the phenolic resin and the epoxy group of the epoxidized polybutadiene during curing. It is presumed that a rubber material having a high and stable friction coefficient and an excellent energy absorbing ability can be obtained by exhibiting an alternating effect with the rubber elasticity of.

エポキシ化ポリブタジエンとフェノール系樹脂の混合比
率は、エポキシ化ポリブタジエン/フェノール系樹脂=
5/95〜70/30重量部の範囲で使用でき、好ましくは、エ
ポキシ化ポリブタジエン/フェノール系樹脂=10/90〜5
0/50重量部の範囲である。
The mixing ratio of epoxidized polybutadiene and phenolic resin is epoxidized polybutadiene / phenolic resin =
It can be used in the range of 5/95 to 70/30 parts by weight, preferably epoxidized polybutadiene / phenolic resin = 10/90 to 5
It is in the range of 0/50 parts by weight.

エポキシ化ポリブタジエンによるフェノール系樹脂の変
性は、摩擦材製造前に予め加熱反応させて製造してもよ
く、また単に両者を混合して樹脂液を作成し基材に含浸
後加熱処理する際に両者を反応させてもよい。
The modification of the phenolic resin with the epoxidized polybutadiene may be carried out by preliminarily heating and reacting before the friction material is manufactured, or both may be simply mixed to prepare a resin solution, which is impregnated into the base material and then heat-treated. May be reacted.

〔実施例〕〔Example〕

以下、本発明を実施例により、具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 フェノール系樹脂中間体の製造 フェノール100gに37%ホルマリン水溶液103gを加え、20
%アンモニア水によりpHを9.0に調整した後、100℃1時
間反応させ、反応終了後、直ちに80mmHgの減圧下で脱水
を開始させて、反応系の温度を55℃に維持した。脱水の
終点は、脱水量が60gとなった時点とし、この脱水終了
後にメタノール60gを加え、不揮発分を65%に調整し、
中間体を得た。この時の重量平均分子量は800、粘度は3
00cpsであった。
Example 1 Production of Phenolic Resin Intermediate To 100 g of phenol, 103 g of 37% formalin aqueous solution was added, and 20
After adjusting the pH to 9.0 with 100% aqueous ammonia, the mixture was reacted at 100 ° C. for 1 hour, and immediately after the reaction was completed, dehydration was started under a reduced pressure of 80 mmHg to maintain the temperature of the reaction system at 55 ° C. The end point of dehydration is when the amount of dehydration reaches 60 g, and after this dehydration, 60 g of methanol is added to adjust the nonvolatile content to 65%,
An intermediate was obtained. At this time, the weight average molecular weight is 800 and the viscosity is 3
It was 00 cps.

エポキシ化ポリブタジエン変性フェノール系樹脂の製造 前記、フェノール系樹脂中間体100gにエポキシ化ポリブ
タジエン16.3gを加え、80℃2時間反応させ、反応終了
後アセトン16.3g、メタノール30gを加え、不揮発分50%
の樹脂溶液162.6gを得た。ここで用いたエポキシ化ポリ
ブタジエンは、重量平均分子量1000、エポキシ当量15
0、オキシラン酸素濃度10重量%であった。
Production of epoxidized polybutadiene-modified phenolic resin To 100 g of the above-mentioned phenolic resin intermediate, epoxidized polybutadiene 16.3 g was added and reacted at 80 ° C. for 2 hours. After completion of the reaction, acetone 16.3 g and methanol 30 g were added, and the nonvolatile content was 50%.
162.6 g of a resin solution of was obtained. The epoxidized polybutadiene used here has a weight average molecular weight of 1,000 and an epoxy equivalent of 15
0, oxirane oxygen concentration was 10% by weight.

摩擦材の製造 リンターパルプ及び充填剤を水に分散させた分散液から
通常の方法で抄紙することによって得た紙状シートか
ら、打ち抜きによってリンク状の基材を調整した。ここ
において充填剤とは硫酸バリウム、炭酸カルシウムの如
き無機化合物,グラファイダアラミド等の繊維、及び樹
脂硬化物の粉末などである。
Manufacture of Friction Material A link-shaped base material was prepared by punching from a paper-like sheet obtained by paper-making by a usual method from a dispersion liquid in which linter pulp and a filler are dispersed in water. Here, the filler is an inorganic compound such as barium sulfate or calcium carbonate, a fiber such as grafida aramid, or a powder of a cured resin.

エポキシ化ポリブタジエン変性フェノール樹脂100重量
部にメタノール66.7部を加え、不揮発分を30%に調整
し、この希釈溶液に上記基材を含浸させ、30分間室温で
空乾した後、200℃の乾燥機内で20分間加熱処理した。
この時の基材に対する樹脂固型分付着量は35%であっ
た。このリング状シートをフェノール樹脂系接着剤を塗
布した芯金に合わせた後、プレスにより170℃、100kg/c
m25分間成型し、目的の摩擦材を得た。
66.7 parts of methanol was added to 100 parts by weight of epoxidized polybutadiene-modified phenolic resin to adjust the nonvolatile content to 30%, the above base material was impregnated with this diluted solution, and air-dried at room temperature for 30 minutes, then in a dryer at 200 ° C. And heat treated for 20 minutes.
At this time, the resin solid component adhesion amount to the substrate was 35%. After fitting this ring-shaped sheet to the core metal coated with phenol resin adhesive, press it at 170 ℃, 100kg / c
It was molded for m 2 for 5 minutes to obtain the intended friction material.

摩擦材の性能は、SAE #2油中摩擦試験機による短時間
摩擦試験で評価した。
The performance of the friction material was evaluated by a short-time friction test using a SAE # 2 in-oil friction tester.

試験条件を表‐1に示す。The test conditions are shown in Table-1.

表‐1:SAE#2油中摩擦試験の条件 見掛摩擦面積(cm2) 30 最大摩擦速(m/sec) 18 1回の摩擦時間(sec) 1.0 サイクルタイム(エンゲージ周期)(sec) 15 潤滑油種類 出光デキシロン 慣性モーメント(kg・m・sec2) 0.031 吸収総エネルギーQ(kg・m/cm2) 10〜20 比較のため、従来より使用されているフェノール系樹脂
単独を用いて製作した摩擦材の例として、前記フェノー
ル系樹脂中間体を用い、同一条件で摩擦材を製作し、同
一の試験に供した。材料のエネルギー吸収能は、一般に
行なわれているように、エンゲージ過程での摩擦単位面
積当りの吸収総エネルギー(Q値)と瞬間最大エネルギ
ー値(値)との積Qで評価した。
Table-1: Conditions of SAE # 2 friction test in oil Apparent friction area (cm 2 ) 30 Maximum friction speed (m / sec) 18 Friction time per time (sec) 1.0 Cycle time (engagement period) (sec) 15 Lubricating oil type Idemitsu Dexirone Moment of inertia (kg ・ m ・ sec 2 ) 0.031 Total absorbed energy Q (kg ・ m / cm 2 ) 10 to 20 For comparison, it was manufactured using a conventional phenolic resin alone. As an example of the friction material, the above-mentioned phenolic resin intermediate was used, and a friction material was manufactured under the same conditions and subjected to the same test. The energy absorption capacity of a material was evaluated by the product Q of the total absorbed energy (Q value) per unit friction area and the instantaneous maximum energy value (value) in the engagement process, as is generally done.

試験結果、面圧25kg/cm2、摩擦速5〜10m/secにおける
動摩擦係数は、比較材が0.115であるのに対し、本発明
材は、0.150であり高い動摩擦係数を示した。又、この
試験条件は、これまでの通常の使用条件に比べ、慣性モ
ーメント,面圧などの点においてかなり過大な負荷をか
けたものであるが、5000回の摩擦ののち、比較材が150
ミクロンも磨耗し、且つ表面に細いクラックが発生し、
材の限界を示しているのに対し、本発明材では、30ミク
ロン程度の磨耗であり、表面状態もほとんど変化が認め
られなかった。又Q値について比較材は745であった
のに対し、本発明材は、限界として980以上であった。
As a result of the test, the dynamic friction coefficient at a surface pressure of 25 kg / cm 2 and a friction speed of 5 to 10 m / sec was 0.115 for the comparative material, whereas the present invention material was 0.150, showing a high dynamic friction coefficient. In addition, this test condition was applied with a considerably excessive load in terms of moment of inertia, surface pressure, etc. as compared with the normal use condition up to now, but after friction of 5000 times, the comparison material was 150
The micron wears out and a fine crack is generated on the surface.
In contrast to the limit of the material, in the material of the present invention, the wear was about 30 μm, and the surface condition was hardly changed. Regarding the Q value, the comparative material had a value of 745, whereas the inventive material had a limit of 980 or more.

(表‐2参照) 実施例2 前記のフェノール系樹脂中間体100部にエポキシ化ポリ
ブタジエン27.9部、アセトン27.9部、メタノール30部を
加え、不揮発分50%の樹脂液を得た。摩擦材の製作法及
び試験条件は、実施例‐1と全く同様とした。
(See Table 2) Example 2 27.9 parts of epoxidized polybutadiene, 27.9 parts of acetone, and 30 parts of methanol were added to 100 parts of the above-mentioned phenolic resin intermediate to obtain a resin liquid having a nonvolatile content of 50%. The method of manufacturing the friction material and the test conditions were exactly the same as in Example-1.

この摩擦材は、面圧25kg/cm2、摩擦速5〜10m/secにお
ける動摩擦係数は、0.147であり、限界Qは、955以上
であった。
This friction material had a dynamic friction coefficient of 0.147 at a surface pressure of 25 kg / cm 2 and a friction speed of 5 to 10 m / sec, and the limit Q was 955 or more.

実施例3 前記のフェノール系樹脂中間体100部にエポキシ化ポリ
ブタジエン65部、アセトン65部、メタノール30部を加
え、不揮発分50%の樹脂液を得た。摩擦材の製作法及び
試験条件は実施例1と全く同様とした。
Example 3 65 parts of epoxidized polybutadiene, 65 parts of acetone, and 30 parts of methanol were added to 100 parts of the above-mentioned phenol resin intermediate to obtain a resin liquid having a nonvolatile content of 50%. The method of manufacturing the friction material and the test conditions were exactly the same as in Example 1.

この摩擦材は、面圧25kg/cm2、摩擦速5〜10m/secにお
ける動摩擦係数は0.153であり、限界Q値は1050以上
であった。
The friction material had a dynamic friction coefficient of 0.153 at a surface pressure of 25 kg / cm 2 and a friction speed of 5 to 10 m / sec, and had a limit Q value of 1050 or more.

これらの様に、エポキシ化ポリブタジエンによる変性方
法としては、実施例1のように予備反応を行うことも、
又、実施例2及び3のように単純混合のいづれを用いて
も効果が認められる。尚、予備反応を行った方が、耐磨
耗性は向上するように思われる。
As described above, as a modification method with epoxidized polybutadiene, a preliminary reaction may be performed as in Example 1.
Also, the effect can be recognized by using either of the simple mixing as in Examples 2 and 3. The abrasion resistance seems to be improved by carrying out the preliminary reaction.

前記各実施例で得られた摩擦試験の結果を表‐2にまと
めて示す。
The results of the friction test obtained in each of the above Examples are summarized in Table-2.

実施例4 実施例2のエポキシ化ポリブタジエンの代わりにオキシ
ラン酸素濃度が14.2重量%であるものを用いた以外は、
実施例2と全く同様とした。
Example 4 Except that an oxirane oxygen concentration of 14.2 wt% was used in place of the epoxidized polybutadiene of Example 2,
The same procedure as in Example 2 was performed.

この摩擦材は動摩擦係数は0.151であり、限界Q値は9
80以上であった。
This friction material has a dynamic friction coefficient of 0.151 and a limit Q value of 9
It was over 80.

比較例2 実施例2のエポキシ化ポリブタジエンの代わりにオキシ
ラン酸素濃度が7.8重量%であるものを用いた以外は、
実施例2と全く同様とした。
Comparative Example 2 Except that an oxirane oxygen concentration of 7.8% by weight was used instead of the epoxidized polybutadiene of Example 2.
The same procedure as in Example 2 was performed.

この摩擦材の動摩擦係数は0.135であり、5000回の摩擦
の後の表面には細かいクラックが発生しており、ほぼ限
界に達していた。この時の限界Q値は790であった。
The coefficient of kinetic friction of this friction material was 0.135, and fine cracks were generated on the surface after 5000 times of friction, which was almost the limit. The limit Q value at this time was 790.

〔発明の効果〕〔The invention's effect〕

前記各実施例及び比較例から明らかなように、エポキシ
代ポリブタジエンにより変性したフェノール樹脂を結合
剤の必須成分として含有せしめてなる本発明の湿式摩擦
材は、従来の湿式摩擦材に比べ、格段に優れた動摩擦係
数とエネルギー吸収能を有する事が確認された。
As is clear from the above Examples and Comparative Examples, the wet friction material of the present invention containing a phenol resin modified with epoxy-substitute polybutadiene as an essential component of the binder is remarkably superior to conventional wet friction materials. It was confirmed that it has an excellent dynamic friction coefficient and energy absorption ability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】オキシラン酸素濃度が10〜15重量%である
エポキシ化ポリブタジエンにより変性されたフェノール
系樹脂を結合剤とする湿式摩擦材。
1. A wet friction material comprising a phenolic resin modified with epoxidized polybutadiene having an oxirane oxygen concentration of 10 to 15% by weight as a binder.
JP61098377A 1986-04-30 1986-04-30 Wet friction material Expired - Lifetime JPH07731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098377A JPH07731B2 (en) 1986-04-30 1986-04-30 Wet friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098377A JPH07731B2 (en) 1986-04-30 1986-04-30 Wet friction material

Publications (2)

Publication Number Publication Date
JPS62256857A JPS62256857A (en) 1987-11-09
JPH07731B2 true JPH07731B2 (en) 1995-01-11

Family

ID=14218184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098377A Expired - Lifetime JPH07731B2 (en) 1986-04-30 1986-04-30 Wet friction material

Country Status (1)

Country Link
JP (1) JPH07731B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061493A (en) * 1973-10-03 1975-05-27
JPS5457592A (en) * 1977-10-17 1979-05-09 Hitachi Chem Co Ltd Preparation of phenolic resin for laminated sheet

Also Published As

Publication number Publication date
JPS62256857A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
JP4053330B2 (en) Resin composition for wet friction material and wet friction material
EP2841478B1 (en) Process for the preparation of a phenol-formaldehyde resin having a low amount of free formaldehyde, a phenol-formaldehyde resin resulting from this process, and the use of this resin as a binder for mineral wool insulation products
JP2021529845A (en) Process for preparing resin for bonding
US6231977B1 (en) Wet friction material
US6265066B1 (en) Wet friction material
JP3524015B2 (en) Wet friction material
US6569918B2 (en) Polymer composition for curing novolac resins
US7491664B2 (en) Wet friction material
JPH07731B2 (en) Wet friction material
JPH0959599A (en) Wet frictional material
EP2841387A1 (en) Process for the production of a phenol-formaldehyde resin having low free-formaldehyde content, the phenol-formaldehyde resin resulting from this process, and its use as a binder for mineral wool insulation products
JP2016190968A (en) Resol type phenolic resin for friction material and method for producing the same, adhesive for friction material and wet type friction plate
JP4367323B2 (en) Thermosetting resin composition
US4210562A (en) Cellulose-containing phenolic resin-based binder
US5459207A (en) Resorcinol resin adhesive composition
JP3426682B2 (en) Wet friction material
JP2001253924A (en) Phenolic resin composition
JP2006152052A5 (en)
US2538883A (en) Phenol-modified acetone resins
CN114702633B (en) Modified resol resin and preparation method thereof
JP7338809B1 (en) Phenolic resin composition and articles
WO2023223229A1 (en) Improved bonding resin
JP4122844B2 (en) Wet paper strength agent and method for producing the same
JPH11131038A (en) Production of adhesive for wood
SE545917C2 (en) Bonding resin comprising lignin