JPH0773062B2 - Sealing lead-acid battery charging method and charging device - Google Patents

Sealing lead-acid battery charging method and charging device

Info

Publication number
JPH0773062B2
JPH0773062B2 JP63210977A JP21097788A JPH0773062B2 JP H0773062 B2 JPH0773062 B2 JP H0773062B2 JP 63210977 A JP63210977 A JP 63210977A JP 21097788 A JP21097788 A JP 21097788A JP H0773062 B2 JPH0773062 B2 JP H0773062B2
Authority
JP
Japan
Prior art keywords
voltage
charging
storage battery
timer
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63210977A
Other languages
Japanese (ja)
Other versions
JPH0260074A (en
Inventor
浩司 山口
彰彦 工藤
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63210977A priority Critical patent/JPH0773062B2/en
Publication of JPH0260074A publication Critical patent/JPH0260074A/en
Publication of JPH0773062B2 publication Critical patent/JPH0773062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、密閉形鉛蓄電池の充電方法及び充電装置に関
するものである。
The present invention relates to a method for charging a sealed lead acid battery and a charging device.

[従来の技術] 従来、密閉形鉛蓄電池を充電する方法として、充電電圧
が充電末期電圧に達するまでは、通常の充電電流を流
し、充電電圧が充電末期電圧に達すると充電電流を微小
充電電流に切換える充電方法(トリクル充電方法)が知
られている。この充電方法で過放電放置後の密閉形鉛蓄
電池(以下、過放電放置蓄電池という。)を充電しよう
とする場合、過放電放置蓄電池の内部抵抗が高くなる
と、十分に充電できないという問題がある。これは上記
の充電方法を行う従来の充電装置で内部抵抗が高い過放
電放置蓄電池の充電を行うと、充電開始直後に高い内部
抵抗で充電電圧が充電末期電圧より高くなってしまい、
充電末期電圧検出器が動作して充電電流が微小充電電流
に切換ってしまうからである。
[Prior Art] Conventionally, as a method of charging a sealed lead-acid battery, a normal charging current is supplied until the charging voltage reaches the terminal charging voltage, and when the charging voltage reaches the terminal charging voltage, the charging current is changed to a minute charging current. A charging method (trickle charging method) for switching to is known. When attempting to charge a sealed lead-acid storage battery (hereinafter referred to as an over-discharge storage battery) after being left over-discharge by this charging method, there is a problem that the battery cannot be sufficiently charged if the internal resistance of the over-discharge storage battery becomes high. This is because when a conventional charging device that performs the above charging method is used to charge an over-discharged storage battery with a high internal resistance, the charging voltage becomes higher than the end-of-charge voltage due to the high internal resistance immediately after the start of charging,
This is because the end-of-charge voltage detector operates and the charging current is switched to the minute charging current.

そこでこのような問題を解決するために、出願人は先
に、過放電放置蓄電池に対して充電開始直後に所定の期
間通常の充電とは逆方向の電流を電池電圧が負の状態に
なるまで流し(以下、逆充電という。)、過放電放置蓄
電池の内部抵抗を低くした上で充電を行う方法を提案し
た(特願昭61−16196号)。
Therefore, in order to solve such a problem, the applicant first applied a current in the opposite direction to the normal charging for a predetermined period immediately after the start of charging to the over-discharged storage battery until the battery voltage became a negative state. We proposed a method of charging the battery after lowering the internal resistance of the over-discharged storage battery (hereinafter referred to as reverse charging) (Japanese Patent Application No. 61-16196).

[発明が解決しようとする課題] 上記の充電方法を実際の充電装置に適用する場合、逆充
電を打ち切る条件を如何にするかが問題になる。出願人
が先に提案した従来の方法では、逆充電時間を一定(例
えば1時間)にしている。しかしながら、発明者の研究
の結果、過放電放置蓄電池は周囲の温度に応じて逆充電
の効果に差が生じ、電池性能の回復性が異なってくるこ
とが判った。これは、電池の内部抵抗が同じでも、電池
の周囲温度が低い場合には、周囲温度が高い場合に比べ
て、逆充電を行った時の内部抵抗の低下率が低いためで
ある。従って、一律に一定時間の逆充電を行なったので
は、周囲温度が低い時には逆充電を行っても内部抵抗を
小さくすることができず、過放電放置蓄電池を満足に充
電できないという問題があった。また周囲温度が高い時
には、必要以上に逆充電を行うことになり、充電時間の
短縮化を妨げていた。
[Problems to be Solved by the Invention] When the above charging method is applied to an actual charging device, the problem is how to terminate the reverse charging. In the conventional method previously proposed by the applicant, the reverse charging time is constant (for example, 1 hour). However, as a result of research conducted by the inventor, it has been found that overcharged storage batteries have different reverse charging effects depending on the ambient temperature, resulting in different recoverability of battery performance. This is because even if the internal resistance of the battery is the same, when the ambient temperature of the battery is low, the decrease rate of the internal resistance when performing reverse charging is lower than that when the ambient temperature is high. Therefore, if the reverse charging is uniformly performed for a certain period of time, the internal resistance cannot be reduced even when the reverse charging is performed when the ambient temperature is low, and there is a problem that the over-discharged storage battery cannot be sufficiently charged. . Further, when the ambient temperature is high, reverse charging is performed more than necessary, which hinders shortening of charging time.

次にこの具体例を示す。使用した電池は4V−4Ahの密閉
形鉛蓄電池の過放電放置蓄電池で内部抵抗が300Ωとな
ったもので、逆充電時間を1時間とした場合の充電特性
を第4図(A),(B)に示した。第4図(A)は電池
周囲温度が25℃の場合の充電特性、第4図(B)は周囲
温度が0℃の場合の充電特性である。第4図(A)の場
合は、逆充電後に通常の充電が順調に行われて、8時間
30分の通常充電後にトリクル充電に入っている。ところ
が第4図(B)の場合には、逆充電後に通常の充電に移
行すると直ちにトリクル充電に入ってしまい、満足な充
電が行われなかった。
Next, a specific example of this will be shown. The battery used was an over-discharged storage battery of 4V-4Ah sealed lead-acid battery with an internal resistance of 300Ω. The charging characteristics when the reverse charging time was 1 hour were shown in Fig. 4 (A), (B). )Pointing out toungue. FIG. 4 (A) shows the charging characteristics when the battery ambient temperature is 25 ° C., and FIG. 4 (B) shows the charging characteristics when the ambient temperature is 0 ° C. In the case of FIG. 4 (A), normal charging is smoothly performed after reverse charging, and 8 hours
After 30 minutes of normal charging, trickle charging is in progress. However, in the case of FIG. 4 (B), the trickle charging was immediately started when the normal charging was started after the reverse charging, and the satisfactory charging was not performed.

以上述べたことから、過放電放置蓄電池の逆充電は電池
の周囲温度の高低に即して行うことが望まれる。
From the above description, it is desired that the reverse charge of the over-discharged storage battery be performed in accordance with the ambient temperature of the battery.

本発明の目的は、上記の課題を解決した充電方法及び該
方法の実施に好適な充電装置を提供することにある。
An object of the present invention is to provide a charging method that solves the above problems and a charging device suitable for carrying out the method.

[課題を解決するための手段] 本発明の方法は、交流電圧成分を含んだ直流電圧を出力
する直流電源を用い、充電電圧が充電末期電圧になった
ことを検出すると充電電流を微小充電電流に切換えて密
閉形鉛蓄電池の充電を行う場合に、過放電放置状態の蓄
電池に対しては電池電圧が逆極性になるまで逆電圧を蓄
電池に印加した後に通常の充電動作を行い、過放電放置
状態にない蓄電池に対しては逆電圧を前記蓄電池に印加
することなく通常の充電動作を行う密閉形鉛蓄電池の充
電方法を改良の対象とする。本発明の方法においては、
充電電圧から交流電圧成分を検出して該交流電圧成分が
基準値より大きいときには蓄電池が過放電放置状態にあ
ると判断して、充電電圧が充電末期電圧になっていたと
しても逆電圧を蓄電池に印加する。そして蓄電池の周囲
温度の変化に逆比例の関係でタイマ時限が変化し且つ充
電開始からタイマ時限の計数を開始するタイマを用い
て、タイマのタイマ時限の計数が完了するまで逆電圧を
蓄電池に印加する。
[Means for Solving the Problems] The method of the present invention uses a DC power supply that outputs a DC voltage containing an AC voltage component, and detects that the charging voltage has reached the end-of-charging voltage, and changes the charging current to a minute charging current. When charging the sealed lead-acid battery by switching to, the battery is left over-discharged by applying a reverse voltage to the battery until the battery voltage has a reverse polarity, and then performing the normal charging operation and leaving it over-discharged. An object of the present invention is to improve a charging method for a sealed lead-acid battery that performs a normal charging operation without applying a reverse voltage to the storage battery that is not in a state. In the method of the present invention,
When the AC voltage component is detected from the charging voltage and the AC voltage component is larger than the reference value, it is determined that the storage battery is in the over-discharged state, and the reverse voltage is applied to the storage battery even if the charging voltage is the end-of-charge voltage. Apply. Then, using a timer that changes the timer time period in inverse proportion to the change in the ambient temperature of the storage battery and starts counting the timer time period from the start of charging, the reverse voltage is applied to the storage battery until the timer time period counting is completed. To do.

なお本願明細書において「逆比例」とは、直線的にすな
わち一次関数的に逆に比例する場合だけを意味するもの
ではなく、二次関数的に逆に比例する場合をも含む。
In the specification of the application, "inverse proportion" does not only mean a case of being inversely proportional to a linear function, that is, a linear function, but also includes a case of being inversely proportional to a quadratic function.

また本発明の充電装置では、充電用電源として交流電圧
成分を含んだ直流電圧を出力する直流電源1を用いる。
そして充電末期電圧を検出するために、密閉形鉛蓄電池
Bの充電電圧を検出して該充電電圧が充電末期電圧を越
えると充電末期電圧検出信号S2を出力する充電末期電圧
検出器4を設け、過放電放置状態を検出するために充電
電圧から交流電圧成分を検出し該交流電圧成分が基準値
より大きいときに過放電放置状態と判断して交流電圧成
分検出信号S3を出力する交流電圧成分検出器5を設け
る。
Further, in the charging device of the present invention, the DC power supply 1 that outputs the DC voltage including the AC voltage component is used as the charging power supply.
In order to detect the end-of-charge voltage, the end-of-charge voltage detector 4 which detects the end-of-charge voltage of the sealed lead-acid battery B and outputs the end-of-charge voltage detection signal S2 when the end-of-charge voltage exceeds the end-of-charge voltage is provided. An AC voltage component detection that detects an AC voltage component from the charging voltage to detect an overdischarge neglected state and judges that the AC voltage component is overdischarge neglected state and outputs an AC voltage component detection signal S3 A vessel 5 is provided.

そして交流電圧成分検出信号S3が出力されると所定時間
だけ電圧極性切換信号S5と電流値切換停止信号S6とを出
力する電圧極性切換回路7と、充電末期電圧検出信号S2
が入力されると電流値切換指令信号S1を出力するが、電
流値切換停止信号S6が入力されているときには電流値切
換指令信号S1を出力しないように構成されている電流値
切換制御回路3を設ける。また電流値切換指令信号S1が
入力されると充電電流を微小充電電流に切換える電流値
切換回路2と、電流値切換回路2と蓄電池Bとの間に設
けられて電圧極性切換信号S5が出力されている期間だけ
前記充電電圧を逆極性で前記蓄電池Bに印加する極性切
換スイッチ回路(L,SW1,SW2)とを設ける。
When the AC voltage component detection signal S3 is output, the voltage polarity switching circuit 7 that outputs the voltage polarity switching signal S5 and the current value switching stop signal S6 only for a predetermined time, and the end-of-charge voltage detection signal S2.
When the current value switching command signal S1 is input, the current value switching command signal S1 is output, but when the current value switching stop signal S6 is input, the current value switching command signal S1 is not output. Set up. When the current value switching command signal S1 is input, the current value switching circuit 2 that switches the charging current to the minute charging current, and the voltage polarity switching signal S5 is provided between the current value switching circuit 2 and the storage battery B. And a polarity changeover switch circuit (L, SW1, SW2) for applying the charging voltage to the storage battery B in the opposite polarity only during a certain period.

上記構成に加えて、本発明においては、蓄電池Bの周囲
温度を検出する温度検出手段を備え、周囲温度の変化に
逆比例の関係で変化するタイマ時限を有し且つ充電開始
後時限の計数を開始して該タイマ時限が完了するまでタ
イマ信号を出力する温度対応タイマ回路6を設けた上
で、電圧極性切換回路7を温度対応タイマ回路がタイマ
信号S4を出力している期間電圧極性切換信号S5及び電流
値切換停止信号S6を出力するように構成している。
In addition to the above configuration, the present invention is provided with a temperature detecting means for detecting the ambient temperature of the storage battery B, has a timer time period that changes in an inversely proportional relationship to the change in the ambient temperature, and counts the time period after the start of charging. A temperature-corresponding timer circuit 6 that outputs a timer signal until the timer time period is completed is provided, and then a voltage polarity switching circuit 7 is provided for the voltage polarity switching signal during which the temperature-corresponding timer circuit outputs the timer signal S4. It is configured to output S5 and current value switching stop signal S6.

なお温度対応タイマ回路6を、周囲温度検出手段として
負の温度係数を有する感温抵抗素子を用い、更に感温抵
抗素子を介して直流定電圧により充電されるコンデンサ
と、該コンデンサの充電電圧が所定の基準値に達するま
での間、タイマ信号S4を出力する電圧比較器とを用いて
構成するのが好ましい。
The temperature-corresponding timer circuit 6 uses a temperature-sensitive resistance element having a negative temperature coefficient as an ambient temperature detecting means, and a capacitor charged by a constant DC voltage via the temperature-sensitive resistance element and a charging voltage of the capacitor are It is preferable to use a voltage comparator that outputs a timer signal S4 until it reaches a predetermined reference value.

[作用] 蓄電池の周囲温度を検出して逆電圧を印加する時間を周
囲温度の変化に反比例させて変化させると、周囲温度が
低く過放電放置蓄電池の逆充電による内部抵抗の低下率
が小さいときには逆充電時間が長くなり、通常の充電を
開始する前に内部抵抗を確実に小さくすることができ
る。周囲温度が高く過放電放置蓄電池の逆充電による内
部抵抗の低下率が大きいときには、比較的短時間の逆充
電により、充電時間の増加や充電時の発熱増大を防止す
ることができる。したがって本発明の方法によれば、い
わゆるトリクル充電を最適な時間内で確実に行うことが
できる。
[Operation] When the ambient temperature of the storage battery is detected and the time for applying the reverse voltage is changed in inverse proportion to the change of the ambient temperature, when the ambient temperature is low and the rate of decrease in internal resistance due to reverse charging of the over-discharged storage battery is small, The reverse charging time becomes long, and the internal resistance can be surely reduced before starting normal charging. When the ambient temperature is high and the reduction rate of the internal resistance due to the reverse charging of the over-discharged storage battery is large, it is possible to prevent the increase of the charging time and the increase of heat generation during the charging by the reverse charging for a relatively short time. Therefore, according to the method of the present invention, so-called trickle charging can be reliably performed within an optimum time.

また本発明の方法及び装置では、出力に交流電圧成分を
含む直流電源による蓄電池の充電において、充電電圧中
の交流電圧成分を検出すると、電池の内部抵抗を検知で
きることに着目して、過放電放置状態を検出する。そし
て本発明の装置では、蓄電池の周囲温度を温度検出手段
で検出し且つ検出した周囲温度の変化に反比例してタイ
マ時限が変化する温度対応タイマ回路6を設け、該タイ
マ回路6のタイマ時限に基づいて、電圧極性切換回路7
から電流値切換制御回路3及び極性切換スイッチ回路に
出力される信号S5及びS6の出力時間を可変することによ
り、周囲温度に応じて逆充電時間を可変する。したがっ
て、本発明の装置によれば、周囲温度の変化に応じて簡
単な構成で且つ確実に逆充電時間を制御することができ
る。
Further, in the method and apparatus of the present invention, in charging a storage battery by a DC power supply containing an AC voltage component in the output, if the AC voltage component in the charging voltage is detected, the internal resistance of the battery can be detected, and overdischarge Detect the condition. In the device of the present invention, the temperature corresponding to the ambient temperature of the storage battery is detected by the temperature detecting means, and the temperature corresponding timer circuit 6 whose timer time period is changed in inverse proportion to the detected change in the ambient temperature is provided, and the timer time period of the timer circuit 6 is changed. Based on the voltage polarity switching circuit 7
By changing the output time of the signals S5 and S6 output from the current value switching control circuit 3 to the polarity switching switch circuit, the reverse charging time is changed according to the ambient temperature. Therefore, according to the device of the present invention, the reverse charging time can be reliably controlled with a simple configuration according to the change in the ambient temperature.

なお、逆充電が不必要な内部抵抗の低い過放電電池は、
逆充電を行うことなく通常の充電方法で迅速に充電が行
われる。
In addition, the overdischarge battery with low internal resistance that does not require reverse charging,
Quick charging is performed by the normal charging method without performing reverse charging.

[実施例] 以下図面を参照して、本発明の方法及び装置の実施例を
詳細に説明する。
Embodiments Embodiments of the method and apparatus of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例の概略回路図を示してい
る。同図において、1は交流電源ACの出力を変圧器Tに
よって所定の電圧に変圧してダイオードDa,Dbによって
全波整流する直流電源である。直流電源1の正の出力端
には、電流値切換信号S1が入力されると充電電流を微小
充電電流に切換える電流値切換回路2が接続されてい
る。この電流値切換回路2は、上記信号S1が入力される
までは通常の充電電流を供給できるインピータンスを通
電回路に挿入し、信号S1が入力されると充電電流を微小
充電(トリクル充電)電流に切換えるインピーダンスを
通電回路に挿入するようにして充電電流値を切換えるよ
うに構成されている。
FIG. 1 shows a schematic circuit diagram of an embodiment of the present invention. In the figure, reference numeral 1 is a DC power supply which transforms the output of the AC power supply AC into a predetermined voltage by a transformer T and performs full-wave rectification by the diodes Da and Db. A current value switching circuit 2 that switches the charging current to a minute charging current when the current value switching signal S1 is input is connected to the positive output terminal of the DC power supply 1. The current value switching circuit 2 inserts an impedance that can supply a normal charging current into the energizing circuit until the signal S1 is input, and when the signal S1 is input, the charging current is a minute charging (trickle charging) current. The charging current value is switched by inserting the impedance for switching to the energizing circuit.

スイッチSW1及びSW2は、電流値切換回路2と密閉形鉛蓄
電池Bとの間に設けられて電圧極性切換信号S5が出力さ
れている期間だけ充電電圧を逆極性で蓄電池Bに印加す
る極性切換スイッチ回路を構成する。これらのスイッチ
SW1及びSW2は、電磁スイッチであり、後述する電圧極性
切換回路7の電磁リレーのコイルLに電流が流れると、
蓄電池Bに逆電圧を印加するように接点aから接点bに
切換わる。
The switches SW1 and SW2 are provided between the current value switching circuit 2 and the sealed lead storage battery B, and are polarity switching switches that apply a charging voltage to the storage battery B with a reverse polarity only while the voltage polarity switching signal S5 is being output. Make up the circuit. These switches
SW1 and SW2 are electromagnetic switches, and when a current flows through the coil L of the electromagnetic relay of the voltage polarity switching circuit 7 described later,
The contact a is switched to the contact b so as to apply a reverse voltage to the storage battery B.

充電末期電圧検出器4は、蓄電池Bの充電電圧を検出し
て、該電圧が充電末期電圧に達すると充電末期電圧検出
信号S2を出力する。交流電圧成分検出器5は、充電電圧
の交流電圧成分を検出し、該電圧成分が基準値以上ある
ときに交流電圧成分検出信号S3を出力する。この検出器
5は、蓄電池Bの内部抵抗を検出する目的で充電電圧か
ら交流電圧成分、すなわち脈動電圧を検出する。そし
て、検出した交流電圧成分と対比される上記の基準値
は、予め電池内部抵抗と交流電圧成分の関係を調べてお
き、逆充電が必要な内部抵抗に相応する交流電圧成分に
担当する電圧値を基準値としている。
The end-of-charge voltage detector 4 detects the charge voltage of the storage battery B, and outputs the end-of-charge voltage detection signal S2 when the voltage reaches the end-of-charge voltage. The AC voltage component detector 5 detects the AC voltage component of the charging voltage and outputs the AC voltage component detection signal S3 when the voltage component is equal to or higher than the reference value. The detector 5 detects an AC voltage component, that is, a pulsating voltage from the charging voltage for the purpose of detecting the internal resistance of the storage battery B. Then, the above-mentioned reference value to be compared with the detected AC voltage component is the voltage value in charge of the AC voltage component corresponding to the internal resistance that needs to be reverse-charged in advance by examining the relationship between the battery internal resistance and the AC voltage component. Is the standard value.

タイマを構成する温度対応タイマ回路6は、蓄電池Bの
周囲温度または環境温度をサーミスタ等の負の温度係数
を有する温度検出手段を用いて検出し、検出した温度の
変化に逆比例してタイマ時限を変化させることができる
可変タイマ回路を備えて構成される。そして該タイマ回
路6は、蓄電池Bへの充電が開始されるとタイマ時限の
計数を行い、タイマ時限が完了するまでタイマ信号S4を
出力する。したがってこのタイマ回路6は、周囲温度が
高くなればなるほど逆充電時間を短くし、温度が低くな
るほど逆充電時間を長くするように作用する。
The temperature-corresponding timer circuit 6 constituting the timer detects the ambient temperature or the environmental temperature of the storage battery B using a temperature detecting means having a negative temperature coefficient such as a thermistor, and the timer time limit is inversely proportional to the change in the detected temperature. And a variable timer circuit capable of changing Then, when the charging of the storage battery B is started, the timer circuit 6 counts the timer time period and outputs the timer signal S4 until the timer time period is completed. Therefore, the timer circuit 6 operates so that the higher the ambient temperature, the shorter the reverse charging time, and the lower the temperature, the longer the reverse charging time.

電圧極性切換回路7は、交流電圧成分検出信号S3及びタ
イマ信号S4の両信号が入力されると、タイマ信号S4が入
力されている期間、極性切換スイッチ回路(コイルL,ス
イッチSW1及びSW2)に電圧極性切換信号S5を出力すると
ともに、電流値切換制御回路3に電流値切換停止信号S6
を出力する。
When both the AC voltage component detection signal S3 and the timer signal S4 are input, the voltage polarity switching circuit 7 switches to the polarity switching circuit (coil L, switches SW1 and SW2) while the timer signal S4 is being input. The voltage polarity switching signal S5 is output and the current value switching stop signal S6 is sent to the current value switching control circuit 3.
Is output.

電流値切換制御回路3は、原則として充電末期電圧検出
器4から検出信号S2が出力されると電流値切換指令信号
S1を出力するが、電流値切換停止信号S6が入力されてい
るときには充電末期電圧検出器4から検出信号S2が出力
されていても、電流値切換指令信号S1を出力しないよう
に構成されている。したがって、蓄電池Bに逆電圧が印
加されている間は、電流値切換回路2によって充電電流
が微小充電電流に切換えられることはない。
In principle, the current value switching control circuit 3 receives the current value switching command signal when the detection signal S2 is output from the end-of-charge voltage detector 4.
S1 is output, but when the current value switching stop signal S6 is input, the current value switching command signal S1 is not output even if the detection signal S2 is output from the end-of-charge voltage detector 4. . Therefore, while the reverse voltage is applied to the storage battery B, the charging current is not switched to the minute charging current by the current value switching circuit 2.

次に第1図の装置を用いて本発明を実施した場合の動作
について説明する。まず第2図(A)は、定格が4V−4A
hの電池で内部抵抗が300Ωになった周囲温度25℃の過放
電放置蓄電池を本発明によって充電した時の充電特性を
示したものである。スイッチSWが閉じられると、蓄電池
Bに充電電圧が印加されるが、内部抵抗が高い場合に
は、充電電流Iが殆ど流れず、充電電圧Vは充電末期電
圧Vsよりもかなり大きな状態にある。したがって充電末
期電圧検出器4は直ちに検出信号S2を電流値切換制御回
路3に出力する。このときの充電電圧Vの交流電圧成分
は、基準値よりもかなり大きな値になっている。従っ
て、交流電圧成分検出器5から交流電圧成分検出信号S3
が出力され、該信号が電圧極性切換回路7に入力され
る。
Next, the operation when the present invention is carried out using the apparatus shown in FIG. 1 will be described. First, in Fig. 2 (A), the rating is 4V-4A.
Fig. 3 shows the charging characteristics when an overdischarge storage battery with an internal resistance of 300Ω and an ambient temperature of 25 ° C was charged according to the present invention. When the switch SW is closed, the charging voltage is applied to the storage battery B, but when the internal resistance is high, the charging current I hardly flows and the charging voltage V is considerably larger than the end-of-charging voltage Vs. Therefore, the end-of-charge voltage detector 4 immediately outputs the detection signal S2 to the current value switching control circuit 3. The AC voltage component of the charging voltage V at this time has a value considerably larger than the reference value. Therefore, from the AC voltage component detector 5, the AC voltage component detection signal S3
Is output and the signal is input to the voltage polarity switching circuit 7.

他方、温度対応タイマ回路6からは、蓄電池Bの周囲温
度25℃に対応した時間長(本例では1時間)でタイマ信
号S4が出力される。
On the other hand, the temperature-corresponding timer circuit 6 outputs the timer signal S4 for a time length (1 hour in this example) corresponding to the ambient temperature of the storage battery B of 25 ° C.

電圧極性切換回路7は、タイマ信号S4が入力されている
間、即ち本例の場合は1時間だけ、電流値切換停止信号
S6と電圧極性切換信号S5とを出力する。
The voltage polarity switching circuit 7 outputs the current value switching stop signal while the timer signal S4 is being input, that is, for one hour in this example.
It outputs S6 and the voltage polarity switching signal S5.

電流値切換制御回路3は、電流値切換停止信号S6が入力
されている間は、充電末期電圧検出器4から検出信号S2
が出力されていても、電流値切換指令信号S1を出力しな
い。従って、電流値切換回路2は、通常の充電電流を流
すテンピーダンスのままに保持される。
The current value switching control circuit 3 receives the detection signal S2 from the end-of-charge voltage detector 4 while the current value switching stop signal S6 is being input.
Even if is output, the current value switching command signal S1 is not output. Therefore, the current value switching circuit 2 is kept as it is in the tempered dance for passing the normal charging current.

電圧極性切換回路7から電圧極性切換信号S5がコイルL
に加えられると、スイッチSW1,SW2が接点b側に切換わ
り、蓄電池Bに逆極性の電圧が印加される。上記のスイ
ッチが切換った場合でも、電圧極性切換回路7はタイマ
信号S4が入力されている間は、信号S5,S6を出力し続け
るように構成されている。
A voltage polarity switching signal S5 is sent from the voltage polarity switching circuit 7 to the coil L.
Then, the switches SW1 and SW2 are switched to the contact b side, and a voltage of reverse polarity is applied to the storage battery B. Even when the above switch is switched, the voltage polarity switching circuit 7 is configured to continue to output the signals S5 and S6 while the timer signal S4 is being input.

温度対応タイマ回路6は、スイッチSWを閉じてから1時
間後にタイマ信号S4の出力を停止する。これにより、電
圧極性切換回路7からの信号S5,S6の出力が停止され、
スイッチSW1,SW2が接点a側に切換わって逆充電が終
り、蓄電池Bに正規極性の充電電圧が印加されるように
なって通常の充電が約7時間20分行われる。そして、充
電電圧Vが充電末期電圧Vsに達すると、充電末期電圧検
出器4が検出信号S2を出力し、この信号を受けて電流値
切換制御回路3が電流値切換信号S1を電流値切換回路2
に出力する。これにより、充電電流Iが微小充電電流に
切換わり、トリクル充電に入る。
The temperature corresponding timer circuit 6 stops the output of the timer signal S4 one hour after closing the switch SW. As a result, the output of the signals S5 and S6 from the voltage polarity switching circuit 7 is stopped,
The switches SW1 and SW2 are switched to the contact a side to complete the reverse charging, the charging voltage of the normal polarity is applied to the storage battery B, and the normal charging is performed for about 7 hours and 20 minutes. When the charge voltage V reaches the end-of-charge voltage Vs, the end-of-charge voltage detector 4 outputs a detection signal S2, and the current value switching control circuit 3 receives this signal and sends the current value switching signal S1 to the current value switching circuit. Two
Output to. As a result, the charging current I is switched to the minute charging current, and trickle charging is started.

次に第2図(B)は、第2図(A)のものと同じ定格、
同じ内部抵抗の過放電放置蓄電池で周囲温度が0℃のも
のを本発明によって充電したときの充電特性を示したも
のである。この場合も第1図の装置は前述に準じた動作
をするが、ただ異なるものは、温度対応タイマ回路6が
蓄電池Bの周囲温度0℃に対応して、第2図(A)の温
度25℃の場合よりは長い時間長(本例では1時間30分)
のタイマ信号S4を出力する。これにより、蓄電池Bの逆
充電が1時間30分行われる。即ち、第2図(A)の場合
よりは長時間の逆充電後に通常の充電に入り、約8時間
の順調な通常充電後に充電電圧Vが充電末期電圧Vsに達
して、充電電流Iが微小充電電流に切換わり、トリクル
充電に入っている。
Next, FIG. 2B shows the same rating as that of FIG.
FIG. 3 shows the charging characteristics when an overdischarge storage battery having the same internal resistance and an ambient temperature of 0 ° C. is charged according to the present invention. In this case as well, the device of FIG. 1 operates in accordance with the above description, except that the temperature-corresponding timer circuit 6 corresponds to the ambient temperature of the storage battery B of 0 ° C. and the temperature of FIG. Longer time than in the case of ℃ (1 hour and 30 minutes in this example)
The timer signal S4 of is output. Thereby, the reverse charge of the storage battery B is performed for 1 hour and 30 minutes. That is, as compared with the case of FIG. 2 (A), the normal charging is started after the reverse charging for a long time, the charging voltage V reaches the terminal charging voltage Vs after the smooth normal charging for about 8 hours, and the charging current I becomes small. Switching to charging current, trickle charging is in progress.

上記のように、電池周囲温度が低い場合には該温度が高
い場合に比し逆充電時間を長くすることにより、内部抵
抗を充分に小さくした後に通常の充電が順調に行われ、
電池性能の満足な回復が得られる。
As described above, when the battery ambient temperature is low, by increasing the reverse charging time compared to when the temperature is high, normal charging is smoothly performed after sufficiently reducing the internal resistance,
Satisfactory recovery of battery performance is obtained.

以上は内部抵抗が高い過放電放置蓄電池の場合を述べた
が、内部抵抗が低い過放電放置蓄電池の場合は、充電電
圧が充電末期電圧以下になっており、また充電電圧の交
流電圧成分も小さくなっているので、充電末期電圧検出
器4及び交流電圧成分検出器5から検出信号が出力され
ることはなく、逆充電なしで通常の充電が行われる。
The above describes the case of an over-discharged storage battery with a high internal resistance, but in the case of an over-discharged storage battery with a low internal resistance, the charging voltage is below the end-of-charge voltage and the AC voltage component of the charging voltage is also small. Therefore, detection signals are not output from the end-of-charge voltage detector 4 and the AC voltage component detector 5, and normal charging is performed without reverse charging.

(具体的実施例) 第3図は、第1図の実施例の直流電源部分を除いた具体
的な回路構成を示している。同図において、第1図の構
成と同じ部分には、第1図に示した符号と同じ符号が付
してある。電流値切換回路2は、抵抗R1及びR2とトラン
ジスタTr1及びTr2とから構成される。なお抵抗値は、R1
>R2の関係にある。トランジスタTr1が導通していると
きには抵抗R2と抵抗R1とが並列に充電回路に挿入されて
大きな充電電流が流され、トランジスタTr1が遮断する
と抵抗R1を通して微小充電電流が流される。トランジス
タTr1が導通すると、次に述べる発光ダイオードLEDが発
光して充電状態を表示する。
(Specific Example) FIG. 3 shows a specific circuit configuration of the embodiment of FIG. In the figure, the same parts as those in the configuration of FIG. 1 are designated by the same reference numerals as those shown in FIG. The current value switching circuit 2 is composed of resistors R1 and R2 and transistors Tr1 and Tr2. The resistance value is R1
> R2. When the transistor Tr1 is conducting, the resistor R2 and the resistor R1 are inserted in parallel into the charging circuit to allow a large charging current to flow, and when the transistor Tr1 is cut off, a minute charging current flows through the resistor R1. When the transistor Tr1 becomes conductive, the light emitting diode LED described below emits light to display the charging state.

電流値切換制御回路3はトランジスタTr3,Tr4及びTr5と
抵抗R3〜R6及び発光ダイオードLED等から構成され、充
電末期電圧検出信号S2及び電流値切換停止信号S6の何れ
もが入力されないとき、抵抗R7を通してトランジスタTr
3にベース電流が流されて、トランジスタTr3が導通する
ことにより、電流値切換回路2のトランジスタTr1に導
通信号が与えられる。
The current value switching control circuit 3 is composed of transistors Tr3, Tr4 and Tr5, resistors R3 to R6, a light emitting diode LED, etc., and when neither the end-of-charge voltage detection signal S2 nor the current value switching stop signal S6 is input, the resistor R7 Through transistor Tr
When the base current is supplied to 3 and the transistor Tr3 becomes conductive, a conduction signal is given to the transistor Tr1 of the current value switching circuit 2.

充電末期電圧検出器4は、ツェナーダイオードZD1,サイ
リスタSCR1,抵抗R7〜R9及びコンデンサC2等で構成され
ていて、スイッチSW1及びSW2が接点aに接触している間
ツェナーダイオードZD1には充電電圧が印加される。充
電電圧が充電末期電圧以上あって、充電電圧がツエナー
ダイオードZD1のツエナー電圧を越えると、ツエナーダ
イオードZD1が導通して、サイリスタSCR1のゲートに点
孤信号が供給される。その結果、サイリスタSCR1が導通
して、トランジスタTr3を遮断する。もしこのときに、
電池Bの内部抵抗が低く、交流電圧成分検出器5が交流
電圧成分検出信号S3を出力せず、電圧極性切換回路7が
電流値切換停止信号S6を出力していない場合には、トラ
ンジスタTr4が非導通状態になっているため、トランジ
スタTr3の遮断によって切換回路2のトランジスタTr1が
遮断状態となって微小充電電流の充電に切換わる。
The end-of-charge voltage detector 4 is composed of a Zener diode ZD1, a thyristor SCR1, resistors R7 to R9, a capacitor C2, etc., and a charging voltage is applied to the Zener diode ZD1 while the switches SW1 and SW2 are in contact with the contact a. Is applied. When the charging voltage is equal to or higher than the end-of-charging voltage and the charging voltage exceeds the Zener voltage of the Zener diode ZD1, the Zener diode ZD1 becomes conductive and the firing signal is supplied to the gate of the thyristor SCR1. As a result, the thyristor SCR1 becomes conductive and the transistor Tr3 is cut off. If at this time
When the internal resistance of the battery B is low, the AC voltage component detector 5 does not output the AC voltage component detection signal S3, and the voltage polarity switching circuit 7 does not output the current value switching stop signal S6, the transistor Tr4 is Since the transistor Tr3 is in the non-conducting state, the transistor Tr3 of the switching circuit 2 is turned off by the interruption of the transistor Tr3 to switch to the charging of the minute charging current.

電池Bの内部抵抗が大きい場合には、交流電圧成分検出
器5が交流電圧成分検出信号S3を出力し、電圧極性切換
回路7が電流値切換停止信号S6を出力するため、トラン
ジスタTr4が導通状態にあり、トランジスタTr3が遮断し
たとしてもトランジスタTr1の遮断は阻止される。
When the internal resistance of the battery B is large, the AC voltage component detector 5 outputs the AC voltage component detection signal S3 and the voltage polarity switching circuit 7 outputs the current value switching stop signal S6, so that the transistor Tr4 is in the conductive state. Therefore, even if the transistor Tr3 is cut off, the cutoff of the transistor Tr1 is blocked.

交流電圧成分検出器5は、オペアンプOP2,OP3,ダイオー
ドD4,コンデンサC5〜C7、及び抵抗R23〜R30等で構成さ
れている。
The AC voltage component detector 5 is composed of operational amplifiers OP2, OP3, a diode D4, capacitors C5 to C7, resistors R23 to R30, and the like.

そして、コンデンサC5と抵抗R23とにより充電電圧から
直流分を引いて、交流電圧成分だけを入力とする。オペ
アンプOP2を通して所定の値に増幅された交流電圧成分
は、コンデンサC6を充電し、コンデンサC6の端子電圧が
比較器を構成するオペアンプOP3の+入力端子に入力さ
れ、抵抗R11及び可変抵抗器VR1によって構成される第1
の基準電圧設定器から出力される基準電圧と比較され
る。この基準電圧は、予め蓄電池の内部抵抗と交流電圧
成分との関係を調べておき、逆充電が必要な内部抵抗に
相応する交流電圧成分に相当する電圧値である。したが
って、電池の内部抵抗が逆充電を必要とする程度に高い
場合には、オペアンプOP3から検出信号S3が出力され
る。
Then, the DC component is subtracted from the charging voltage by the capacitor C5 and the resistor R23, and only the AC voltage component is input. The AC voltage component amplified to a predetermined value through the operational amplifier OP2 charges the capacitor C6, the terminal voltage of the capacitor C6 is input to the + input terminal of the operational amplifier OP3 that constitutes the comparator, and the resistor R11 and the variable resistor VR1 are used. First composed
Is compared with the reference voltage output from the reference voltage setting device. This reference voltage is a voltage value corresponding to an AC voltage component corresponding to the internal resistance that needs to be reverse-charged by previously examining the relationship between the internal resistance of the storage battery and the AC voltage component. Therefore, when the internal resistance of the battery is high enough to require reverse charging, the operational amplifier OP3 outputs the detection signal S3.

電圧極性切換回路7は、トランジスタTr6〜Tr8、サイリ
スタSCR2、ダイオードD2、抵抗R16〜R22、コンデンサC
4、及びリレーのコイルL等で構成されている。そし
て、交流電圧成分検出信号S3が出力されると、サイリス
タSCR2が導通し、その結果トランジスタTr7及びトラン
ジスタTr6が導通して、トランジスタTr8が導通すること
によりコイルLに励磁電流が通電されて、スイッチSW1
及びSW2がa接点からb接点に切換わり、電池Bに逆電
圧が印加される。
The voltage polarity switching circuit 7 includes transistors Tr6 to Tr8, thyristor SCR2, diode D2, resistors R16 to R22, and capacitor C.
4 and the coil L of the relay. Then, when the AC voltage component detection signal S3 is output, the thyristor SCR2 becomes conductive, as a result, the transistors Tr7 and Tr6 become conductive, and the transistor Tr8 becomes conductive, so that an exciting current is supplied to the coil L and the switch is turned on. SW1
And SW2 are switched from the a-contact to the b-contact, and the reverse voltage is applied to the battery B.

温度対応タイマ回路6は、感温抵抗素子R13、コンデン
サC3、オペアンプOP1、ツェナーダイオードZD2、抵抗R1
0,R12〜R15、及び可変抵抗器VR2等により構成されてい
る。感温抵抗素子R13は、蓄電池Bの周囲温度の高低に
対応して内部抵抗が負特性で変化する抵抗素子である。
この感温抵抗素子R13及びコンデンサC3は温度対応時定
数回路を構成しており、抵抗R12及び可変抵抗器VR2から
なる第2の基準電圧設定器によって設定された基準電圧
より、コンデンサC3の端子電圧が大きくなるとオペアン
プOP1からは出力(タイマ信号S4)が出なくなる。オペ
アンプOP1が出力を停止した時点が逆充電の停止時であ
る。それまでは、オペアンプOP1から出力(信号S4)が
出ており、トランジスタTr7が導通すれば直ちにトラン
ジスタTr6も導通する状態にある。交流電圧成分検出器
5が信号S3を出力してサイリスタSCR2が導通すると、ト
ランジスタTr7が導通してトランジスタTr6も導通し、そ
の結果トランジスタTR8が導通する。そしてオペアンプO
P1からの出力が停止した時点でトランジスタTR8は遮断
してスイッチSW1及びSW2は接点a側に切換わる。
The temperature compatible timer circuit 6 includes a temperature sensitive resistance element R13, a capacitor C3, an operational amplifier OP1, a Zener diode ZD2, and a resistance R1.
0, R12 to R15, a variable resistor VR2 and the like. The temperature-sensitive resistance element R13 is a resistance element in which the internal resistance changes with a negative characteristic in response to the ambient temperature of the storage battery B.
The temperature-sensitive resistance element R13 and the capacitor C3 form a temperature-corresponding time constant circuit, and the terminal voltage of the capacitor C3 is calculated from the reference voltage set by the second reference voltage setting device including the resistor R12 and the variable resistor VR2. When becomes larger, the output (timer signal S4) is not output from the operational amplifier OP1. The time when the operational amplifier OP1 stops the output is the time when the reverse charging is stopped. Until then, the output (signal S4) is output from the operational amplifier OP1, and when the transistor Tr7 is turned on, the transistor Tr6 is also turned on immediately. When the AC voltage component detector 5 outputs the signal S3 and the thyristor SCR2 becomes conductive, the transistor Tr7 becomes conductive, the transistor Tr6 becomes conductive, and as a result, the transistor TR8 becomes conductive. And operational amplifier O
When the output from P1 is stopped, the transistor TR8 is cut off and the switches SW1 and SW2 are switched to the contact a side.

サイリスタSCR2が導通して、トランジスタTr7及びTr6が
導通すると、抵抗R4及び抵抗R6を通してトランジスタTr
4及びTr5に導通信号(電流値切換停止信号S6)が与えら
れて、これらのトランジスタは導通する。トランジスタ
Tr5は、逆充電期間中、サイリスタSCR1のアノードカソ
ード間を短絡してサイリスタSCR1を遮断させる機能を果
たしている。これは逆充電から正常な充電に戻った際
に、サイリスタSCR1が導通していると、微小充電電流に
よるトリクル充電に入ってしまうため、これを防止する
ためである。温度対応時定数回路(R13,C3)が時限の計
数を完了してオペアンプOP1の出力が無くなると、トラ
ンジスタTr4,Tr5及びTr8は遮断して、通常の充電に戻
る。
When the thyristor SCR2 is turned on and the transistors Tr7 and Tr6 are turned on, the transistor Tr7 is turned on through the resistors R4 and R6.
A conduction signal (current value switching stop signal S6) is given to 4 and Tr5, and these transistors are turned on. Transistor
The Tr5 has a function of short-circuiting the anode and cathode of the thyristor SCR1 to shut off the thyristor SCR1 during the reverse charging period. This is because if the thyristor SCR1 is conducting when the reverse charge is returned to the normal charge, trickle charge due to a minute charge current is entered, and this is prevented. When the temperature-corresponding time constant circuit (R13, C3) completes counting the time limit and the output of the operational amplifier OP1 disappears, the transistors Tr4, Tr5, and Tr8 are shut off, and normal charging is resumed.

なお上記実施例においては、スイッチSW1,SW2を電磁ス
イッチで構成したが、これらのスイッチとして半導体ス
イッチ回路を用いてもよい。
Although the switches SW1 and SW2 are electromagnetic switches in the above embodiment, semiconductor switch circuits may be used as these switches.

[発明の効果] 本発明によれば、充電電圧中の交流電圧成分を検出して
過放電放置状態の蓄電池か否かを判断した上で、過放電
放置状態の蓄電池だけに逆電圧を印加するため、過放電
放置状態にない蓄電池に不必要な逆電圧を印加するおそ
れがない。また蓄電池の周囲温度を検出して逆電圧を印
加する時間を周囲温度の変化に逆比例させて変化させる
ので、周囲温度が低く過放電放置蓄電池の逆充電による
内部抵抗の低下率が小さいときには逆充電時間を長くし
て、通常の充電を開始する前に内部抵抗を確実に小さく
することができる。また周囲温度が高く過放電放置蓄電
池の逆充電による内部抵抗の低下率が大きいときには、
比較的短時間の逆充電により、充電時間の増加や充電時
の発熱増大を防止することができる。したがって本発明
の方法によれば、いわゆるトリクル充電を最適な時間内
で確実に行うことができる。
[Effect of the Invention] According to the present invention, after detecting the AC voltage component in the charging voltage to determine whether or not the storage battery is in the over-discharged state, the reverse voltage is applied only to the storage battery in the over-discharged state. Therefore, there is no fear that an unnecessary reverse voltage is applied to the storage battery that is not in the overdischarge left state. Also, since the time to detect the ambient temperature of the storage battery and apply the reverse voltage is changed in inverse proportion to the change in the ambient temperature, it is reversed when the ambient temperature is low and the rate of decrease in internal resistance due to reverse charging of the over-discharged storage battery is small. The charging time can be lengthened to reliably reduce the internal resistance before starting normal charging. Also, when the ambient temperature is high and the rate of decrease in internal resistance due to reverse charging of an over-discharged storage battery is large,
By the reverse charging for a relatively short time, it is possible to prevent an increase in charging time and an increase in heat generation during charging. Therefore, according to the method of the present invention, so-called trickle charging can be reliably performed within an optimum time.

また本発明の装置によれば、蓄電池の周囲温度を温度検
出手段で検出し且つ検出した周囲温度の変化に逆比例し
てタイマ時限が変化する温度対応タイマ回路を設け、該
タイマ回路のタイマ時限に基づいて、電圧極性切換回路
から電流値切換制御回路及び極性切換スイッチ回路に出
力される信号の出力時間を可変とすることにより、周囲
温度に応じて逆充電時間を可変するようにしたので、周
囲温度の変化に応じて簡単な構成で且つ確実に逆充電時
間を制御することができる。
Further, according to the device of the present invention, the ambient temperature of the storage battery is detected by the temperature detecting means, and a temperature-compatible timer circuit whose timer time period is changed in inverse proportion to the detected change of the ambient temperature is provided, and the timer time period of the timer circuit is set. Based on the above, by making the output time of the signal output from the voltage polarity switching circuit to the current value switching control circuit and the polarity switching switch circuit variable, the reverse charging time can be varied according to the ambient temperature. It is possible to reliably control the reverse charging time with a simple configuration according to changes in the ambient temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の概略構成図、第2図(A)は
周囲温度の高い過放電放置蓄電池を第1図の実施例で充
電した場合の充電特性を示す曲線図、第2図(B)は周
囲温度の低い過放電放置蓄電池を第1図の実施例で充電
した場合の充電特性を示す曲線図、第3図は第1図の実
施例の具体的な回路図、第4図(A),(B)はそれぞ
れ周囲温度の異なる過放電放置蓄電池に対して一律に1
時間の逆充電を行なった場合の充電特性の異なる例を示
す曲線図である。 1……直流電源、2……電流値切換回路、3……電流値
切換制御回路、4……充電末期電圧検出器、5……交流
電圧成分検出器、6……温度対応タイマ回路、7……電
圧極性切換回路、SW1、SW2……極性切換スイッチ回路、
B……密閉形鉛蓄電池。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 (A) is a curve diagram showing charging characteristics when an overdischarge storage battery having a high ambient temperature is charged in the embodiment of FIG. 1, and FIG. FIG. 3B is a curve diagram showing the charging characteristics when an overdischarge storage battery with a low ambient temperature is charged in the embodiment of FIG. 1, and FIG. 3 is a specific circuit diagram of the embodiment of FIG. Figures 4 (A) and (B) show 1 for all over-discharged storage batteries with different ambient temperatures.
It is a curve figure which shows the example from which a charge characteristic when reverse charging of time differs is performed. 1 ... DC power supply, 2 ... Current value switching circuit, 3 ... Current value switching control circuit, 4 ... End-of-charge voltage detector, 5 ... AC voltage component detector, 6 ... Temperature-compatible timer circuit, 7 ...... Voltage polarity switching circuit, SW1, SW2 ...... Polarity switching switch circuit,
B: Sealed lead acid battery.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】交流電圧成分を含んだ直流電圧を出力する
直流電源を用い、充電電圧が充電末期電圧になったこと
を検出すると充電電流を微小充電電流に切換えて密閉形
鉛蓄電池の充電を行う場合に、過放電放置状態の蓄電池
に対しては電池電圧が逆極性になるまで逆電圧を前記蓄
電池に印加した後に通常の充電動作を行い、過放電放置
状態にない蓄電池に対しては前記逆電圧を前記蓄電池に
印加することなく通常の充電動作を行う密閉形鉛蓄電池
の充電方法において、 前記充電電圧から前記交流電圧成分を検出して該交流電
圧成分が基準値より大きいときには前記蓄電池が過放電
放置状態にあると判断して、前記充電電圧が充電末期電
圧になっていたとしても前記逆電圧を前記蓄電池に印加
し、 前記蓄電池の周囲温度の変化に逆比例の関係でタイマ時
限が変化し且つ充電開始からタイマ時限の計数を開始す
るタイマを用いて、前記タイマの前記タイマ時限の計数
が完了するまで前記逆電圧を前記蓄電池に印加すること
を特徴とする密閉形鉛蓄電池の充電方法。
1. A direct current power supply for outputting a direct current voltage containing an alternating current voltage component is used, and when it is detected that the charging voltage has reached the terminal voltage of charging, the charging current is switched to a minute charging current to charge the sealed lead acid battery. When performing, a normal charging operation is performed on the storage battery in the overdischarge left state until a reverse voltage is applied to the storage battery, and then a normal charging operation is performed. In a method for charging a sealed lead storage battery that performs a normal charging operation without applying a reverse voltage to the storage battery, the storage battery detects the AC voltage component from the charging voltage and the AC voltage component is larger than a reference value. Even if the charging voltage is determined to be in an overdischarge neglected state, the reverse voltage is applied to the storage battery even if the charging voltage is at the end-of-charge voltage, and the relationship is inversely proportional to the change in the ambient temperature of the storage battery. A sealed lead, characterized in that the timer is used to change the timer period and to start counting the timer period from the start of charging, and the reverse voltage is applied to the storage battery until the counting of the timer period of the timer is completed. How to charge a storage battery.
【請求項2】交流電圧成分を含んだ直流電圧を出力する
直流電源(1)と、 密閉形鉛蓄電池(B)の充電電圧を検出して該充電電圧
が充電末期電圧を越えると充電末期電圧検出信号(S2)
を出力する充電末期電圧検出器(4)と、 前記充電電圧から交流電圧成分を検出し該交流電圧成分
が基準値より大きいときに交流電圧成分検出信号(S3)
を出力する交流電圧成分検出器(5)と、 前記交流電圧成分検出信号(S3)が出力されると電圧極
性切換信号(S5)と電流値切換停止信号(S6)とを出力
する電圧極性切換回路(7)と、 前記充電末期電圧検出信号(S2)が入力されると電流値
切換指令信号(S1)を出力するが、前記電流値切換停止
信号(S6)が入力されているときには前記電流値切換指
令信号(S1)を出力しないように構成された電流値切換
制御回路(3)と、 前記電流値切換指令信号(S1)が入力されると充電電流
を微小充電電流に切換える電流値切換回路(2)と、 前記電流値切換回路(2)と前記蓄電池(B)との間に
設けられて前記電圧極性切換信号(S5)が出力されてい
る期間だけ前記充電電圧を逆極性で前記蓄電池(B)に
印加する極性切換スイッチ回路(L,SW1,SW2)とを具備
し、 前記蓄電池(B)の周囲温度を検出する温度検出手段を
備え、前記周囲温度の変化に逆比例の関係で変化するタ
イマ時限を有し且つ充電開始後時限の計数を開始してタ
イマ時限が完了するまでタイマ信号を出力する温度対応
タイマ回路(6)を更に備え、 前記電圧極性切換回路(7)は前記温度対応タイマ回路
が前記タイマ信号(S4)を出力している期間前記電圧極
性切換信号(S5)及び電流値切換停止信号(S6)を出力
することを特徴とする密閉形鉛蓄電池用充電装置。
2. A DC power source (1) which outputs a DC voltage containing an AC voltage component, and a charging voltage of a sealed lead storage battery (B) is detected, and when the charging voltage exceeds a charging end voltage, a charging end voltage is detected. Detection signal (S2)
An end-of-charge voltage detector (4) for outputting an AC voltage component detection signal (S3) when an AC voltage component is detected from the charging voltage and the AC voltage component is larger than a reference value.
And an AC voltage component detector (5) for outputting the voltage polarity switching signal (S5) and a current value switching stop signal (S6) when the AC voltage component detection signal (S3) is output. When the circuit (7) and the end-of-charge voltage detection signal (S2) are input, a current value switching command signal (S1) is output, but when the current value switching stop signal (S6) is input, the current A current value switching control circuit (3) configured not to output the value switching command signal (S1), and a current value switching that switches the charging current to a minute charging current when the current value switching command signal (S1) is input. A circuit (2) is provided between the current value switching circuit (2) and the storage battery (B), and the charging voltage is reversed in polarity while the voltage polarity switching signal (S5) is being output. Polarity changeover switch circuit (L, SW1, SW2) applied to the storage battery (B) ) And a temperature detecting means for detecting the ambient temperature of the storage battery (B), and having a timer time period that changes in an inversely proportional relationship to the change in the ambient temperature and starting counting after the start of charging. A temperature-corresponding timer circuit (6) that outputs a timer signal until the timer time period is completed, and the voltage-polarity switching circuit (7) causes the temperature-corresponding timer circuit to output the timer signal (S4). A battery charger for a sealed lead storage battery, which outputs the voltage polarity switching signal (S5) and the current value switching stop signal (S6) for a period.
【請求項3】温度対応タイマ回路(6)は、前記周囲温
度検出手段として負の温度係数を有する感温抵抗素子を
用い、更に前記感温抵抗素子を介して直流定電圧により
充電されるコンデンサと、該コンデンサの充電電圧が所
定の基準値に達するまでの間前記タイマ信号(S4)を出
力する電圧比較器とからなる請求項2に記載の密閉形鉛
蓄電池用充電装置。
3. A temperature-corresponding timer circuit (6) uses a temperature-sensitive resistance element having a negative temperature coefficient as the ambient temperature detecting means, and a capacitor charged by a constant DC voltage through the temperature-sensitive resistance element. And a voltage comparator that outputs the timer signal (S4) until the charging voltage of the capacitor reaches a predetermined reference value.
JP63210977A 1988-08-25 1988-08-25 Sealing lead-acid battery charging method and charging device Expired - Lifetime JPH0773062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63210977A JPH0773062B2 (en) 1988-08-25 1988-08-25 Sealing lead-acid battery charging method and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210977A JPH0773062B2 (en) 1988-08-25 1988-08-25 Sealing lead-acid battery charging method and charging device

Publications (2)

Publication Number Publication Date
JPH0260074A JPH0260074A (en) 1990-02-28
JPH0773062B2 true JPH0773062B2 (en) 1995-08-02

Family

ID=16598263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210977A Expired - Lifetime JPH0773062B2 (en) 1988-08-25 1988-08-25 Sealing lead-acid battery charging method and charging device

Country Status (1)

Country Link
JP (1) JPH0773062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151149A1 (en) * 2013-03-15 2014-09-25 General Atomics An apparatus and method for use in storing energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204145B (en) * 2021-11-12 2024-01-02 淄博火炬能源有限责任公司 Charging method for battery internal formation for electric forklift

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081778A (en) * 1983-10-07 1985-05-09 Matsushita Electric Ind Co Ltd Quick charging method of enclosed type lead storage battery
JPS62176069A (en) * 1986-01-28 1987-08-01 Shin Kobe Electric Mach Co Ltd Charging method for sealed lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151149A1 (en) * 2013-03-15 2014-09-25 General Atomics An apparatus and method for use in storing energy

Also Published As

Publication number Publication date
JPH0260074A (en) 1990-02-28

Similar Documents

Publication Publication Date Title
US4354148A (en) Apparatus for charging rechargeable battery
US5747969A (en) Method of charging a rechargeable battery with pulses of a predetermined amount of charge
JPH0363302B2 (en)
JPH08508609A (en) Battery charging method and device
US4341988A (en) Voltage level detector for battery charger control circuit
US4087733A (en) Battery charger
JPH0773062B2 (en) Sealing lead-acid battery charging method and charging device
JPH0956080A (en) Battery charger
JP3096319B2 (en) Quick charger
JPS63316643A (en) Charging circuit
JPH0727805Y2 (en) Sealed lead acid battery charger
JPH0618471B2 (en) Sealing lead-acid battery charging method and charging device
JP2832000B2 (en) Battery charger
JP2988670B2 (en) Secondary battery charge control method
JPH0618470B2 (en) Sealing lead-acid battery charging method and charging device
GB2167617A (en) Battery charger
KR920002687B1 (en) Electrical charging circuit of battery of ni-cadmium
JPH069552Y2 (en) Sealed lead acid battery charger
JPH06197466A (en) Charging apparatus
JP3003210B2 (en) How to charge lead storage batteries
JPH0453161Y2 (en)
JPS627764B2 (en)
JPH08308130A (en) Battery charger
JPH05115130A (en) Battery refresh device
JPS6059929A (en) Charging control circuit