JPH0772295A - Method for removing radioactive ruthenium - Google Patents

Method for removing radioactive ruthenium

Info

Publication number
JPH0772295A
JPH0772295A JP22135893A JP22135893A JPH0772295A JP H0772295 A JPH0772295 A JP H0772295A JP 22135893 A JP22135893 A JP 22135893A JP 22135893 A JP22135893 A JP 22135893A JP H0772295 A JPH0772295 A JP H0772295A
Authority
JP
Japan
Prior art keywords
ruthenium
water
gas
waste gas
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22135893A
Other languages
Japanese (ja)
Inventor
Kazuo Unoki
和夫 鵜木
Hiromi Shiomi
博己 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22135893A priority Critical patent/JPH0772295A/en
Publication of JPH0772295A publication Critical patent/JPH0772295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To enable the efficient removal of radioactive ruthenium to be effected by transforming volatile ruthenium into a water-soluble ruthenium compound through the action of the gas containing NO2 of 100 or more times of its quantity in molecular number and an overabundant quantity of water. CONSTITUTION:If ruthenium tetroxide contained in an exhaust gas comes in full contact with NO2 gas and water when they exist, a water-soluble nitrosyl ruthenium compound is generated. Then, ruthenium tetroxide easily shifts from a gas aspect side to a water aspect side and can be removed from the exhaust gas. For this purpose, an action is exerted by the gas containing NO2 of the 100 or more times of its quantity in molecular number and an overabundant quantity of water. Incidentally, it is expected that exhaust gas always contains either a sufficiently large quantity of steam or NO2 gas, compared with ruthenium. Moreover, if the exhaust gas should contain little water, a sufficient content of NO2 gas will avoid trouble in removing radioactive ruthenium, because it comes in contact with a large quantity of water in an ordinary water cleaning tower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として原子力施設、特
に使用済み核燃料の再処理施設およびウランやプルトニ
ウムの転換施設、から放出される廃ガス中に含まれてい
る揮発性の放射性ルテニウムを除去する方法に関する。
FIELD OF THE INVENTION The present invention mainly removes volatile radioactive ruthenium contained in waste gas emitted from nuclear facilities, especially spent nuclear fuel reprocessing facilities and uranium and plutonium conversion facilities. Regarding the method.

【0002】[0002]

【従来の技術】Purex法による使用済み核燃料の再
処理では硝酸溶液を高温に加熱する工程(溶解工程、製
品溶液の蒸発濃縮工程、酸回収工程、廃液の蒸発濃縮・
仮焼・固化工程、ウランやプルトニウムの脱硝転換工程
など)が多く存在する。これらの加熱工程ではしばしば
溶液中に含まれているルテニウムの一部が酸化されて四
酸化ルテニウムになって揮発し、廃ガス中に移行する可
能性がある。このような廃ガス系に移行した揮発性のル
テニウムは通常の廃ガス処理設備(凝縮器、水洗浄塔、
HEPAフィルターなど)では効果的な除去が困難であ
ることが知られている。
2. Description of the Related Art In the reprocessing of spent nuclear fuel by the Purex method, a process of heating a nitric acid solution to a high temperature (dissolution process, product solution evaporation concentration process, acid recovery process, waste liquid evaporation concentration
There are many calcination / solidification processes, denitration conversion processes for uranium and plutonium, etc.). In these heating steps, a part of ruthenium contained in the solution is often oxidized to ruthenium tetroxide and volatilized, and there is a possibility that it will be transferred to the waste gas. Volatile ruthenium that has been transferred to such waste gas system is used for normal waste gas treatment equipment (condenser, water washing tower,
It is known that effective removal is difficult with a HEPA filter or the like.

【0003】現在良く知られている揮発性ルテニウムの
除去方法としては、シリカゲルや酸化鉄などにルテニウ
ムを吸着させる方法がある。この方法は実際に幾つかの
高レベル廃液の処理施設でも適用されている。例えば米
国アイダホ化学処理プラント(ICPP)で用いている
廃液仮焼プロセス(WCFプロセス)では廃ガス処理系
の最後(最終フィルターの直前)にシリカゲル吸着塔を
設置している。またイタリアのFingalプロセスに
も酸化鉄を充填したルテニウム吸着塔が使用されてい
る。
As a well-known method of removing volatile ruthenium, there is a method of adsorbing ruthenium on silica gel, iron oxide or the like. This method has indeed been applied in some high level waste liquid treatment facilities. For example, in the waste liquid calcination process (WCF process) used in the Idaho Chemical Treatment Plant (ICPP) in the United States, a silica gel adsorption tower is installed at the end of the waste gas treatment system (immediately before the final filter). A ruthenium adsorption tower filled with iron oxide is also used in the Italian Fingal process.

【0004】また、別の揮発性ルテニウムの処理方法と
して、揮発性ルテニウムを含んでいる廃ガスを比較的高
濃度のアルカリ(水酸化ナトリウム溶液)を洗浄液とし
て用いる充填式ガス洗浄塔に通して除去する方法があ
り、一部のプラントでも実際に用いられている。この場
合、廃ガス中の四酸化ルテニウムはルテニウム酸ナトリ
ウム塩に変って洗浄液中に溶解するので、かなり高い除
染係数(Decontamina-tion Factor: 以下、DFとい
う)が得られている。
As another method for treating volatile ruthenium, the waste gas containing volatile ruthenium is removed by passing it through a packed gas scrubber using a relatively high concentration alkali (sodium hydroxide solution) as a scrubbing liquid. There is a method to do so, and it is actually used in some plants. In this case, since ruthenium tetroxide in the waste gas is changed to sodium ruthenate and dissolved in the cleaning liquid, a considerably high decontamination factor (hereinafter referred to as DF) is obtained.

【0005】[0005]

【発明が解決しようとする課題】従来の揮発性ルテニウ
ムの除去方法において、吸着によるルテニウム除去処理
方法の場合、通常の廃ガス処理機器に加え、特に揮発性
ルテニウムの除去だけを目的とした装置(吸着塔)を設
置する必要があり、廃ガス処理設備の構成が大きくなる
とともに、処理コストがかかり、またこの吸着塔でルテ
ニウムに対して高いDFを得るためには、運転温度を1
00℃以上の高温にする必要がある等の問題があり、優
れた処理方法とは云えない。
In the conventional method for removing volatile ruthenium, in the case of the ruthenium removal treatment method by adsorption, in addition to the usual waste gas treatment equipment, an apparatus specifically intended to remove volatile ruthenium ( It is necessary to install an adsorption tower), the construction of the waste gas treatment equipment is large, and the treatment cost is high. In order to obtain a high DF for ruthenium in this adsorption tower, the operating temperature is 1
There are problems such as the need to raise the temperature to 00 ° C. or higher, and it cannot be said that this is an excellent treatment method.

【0006】一方、アルカリ水溶液によるルテニウムの
洗浄除去処理方法の場合には、洗浄後の液がナトリウム
塩を大量に含む二次廃棄物となる等の問題があり、この
方法も適当な除去方法とは云えない。
On the other hand, in the case of the method for cleaning and removing ruthenium with an alkaline aqueous solution, there is a problem that the solution after cleaning becomes secondary waste containing a large amount of sodium salt, and this method is also an appropriate removal method. I can't say.

【0007】本発明は、かかる現況に鑑みなされたもの
で、核燃料再処理施設等から発生する排ガス中に含まれ
ている揮発性の放射性ルテニウムを、特別な専用処理装
置を用いず、またナトリウム塩を含む二次廃棄物を発生
させることなく、効果的に除去することができる揮発性
放射性ルテニウムの除去方法を提供することを目的とす
る。
The present invention has been made in view of the above situation, and does not use volatile radioactive ruthenium contained in exhaust gas generated from a nuclear fuel reprocessing facility or the like, without using a special dedicated processing apparatus, and a sodium salt. An object of the present invention is to provide a method for removing volatile radioactive ruthenium that can be effectively removed without generating a secondary waste containing

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成する手段として、廃ガス中の揮発性放射性ルテニウム
に対し、モル数で100倍以上の量のNO2 を含むガス
を、大過剰量の水とともに作用させて揮発性ルテニウム
を水溶性ルテニウム化合物とし、この水溶性ルテニウム
化合物を、作用させた前記水の中に溶かして除去するよ
うにしたものである。
Means for Solving the Problems As a means for achieving the above-mentioned object, the present invention uses a large excess of a gas containing NO 2 in a molar ratio of 100 times or more with respect to volatile radioactive ruthenium in waste gas. The volatile ruthenium is made into a water-soluble ruthenium compound by acting with water in an amount, and the water-soluble ruthenium compound is dissolved and removed in the acted water.

【0009】[0009]

【作用】本発明に係る揮発性放射性ルテニウムの除去方
法において、廃ガス中に含まれている四酸化ルテニウム
は、NO2 ガスと水とが存在する場合には、これらと充
分に接触すると、ニトロシルルテニウム化合物を生成す
る。そして、生成したニトロシルルテニウム化合物は、
水溶性であるので、容易に気相側から水相側に移行し、
廃ガス中から除去される。
In the method of removing volatile radioactive ruthenium according to the present invention, ruthenium tetroxide contained in the waste gas, when NO 2 gas and water are present, is sufficiently contacted with nitrosyl, if NO 2 gas and water are present. Generates a ruthenium compound. And the generated nitrosyl ruthenium compound is
Since it is water-soluble, it easily migrates from the gas phase side to the water phase side,
Removed from waste gas.

【0010】[0010]

【実施例】以下、本発明実施の一例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】本発明は、前述のように、揮発性のルテニ
ウム(四酸化ルテニウム)を含む廃ガスを、その中に含
まれているルテニウムに対し、モル数でその100倍以
上の量のNO2 を含むガスおよび大過剰量の水を作用さ
せ、揮発性ルテニウムを水溶性ルテニウム化合物(ニト
ロシルルテニウム化合物)に変えて除去するものであ
る。
In the present invention, as described above, the waste gas containing volatile ruthenium (ruthenium tetraoxide) is contained in NO 2 in an amount 100 times or more that of ruthenium contained in the waste gas. A volatile ruthenium compound is converted into a water-soluble ruthenium compound (nitrosyl ruthenium compound) by the action of a gas containing a gas and a large excess amount of water to remove the volatile ruthenium compound.

【0012】より具体的には、先に述べたような廃ガス
中へのルテニウムの移行が問題となる可能性が大きい工
程では、廃ガス中には、ルテニウムに比べて充分多量の
水蒸気やNO2 ガスのうちの少なくとも一方は、常に含
まれているものと予想される。
More specifically, in the process in which the migration of ruthenium into the waste gas as described above is likely to be a problem, the waste gas contains a sufficiently large amount of water vapor and NO in comparison with ruthenium. At least one of the two gases is expected to be included at all times.

【0013】前述した各工程の中でも、特に硝酸反応を
伴なうような工程の場合、廃ガス中には非常に多量の水
蒸気およびNO2 ガスが含まれている。したがってこの
場合には、廃ガス中に別段新たに水やNO2 を混入しな
くても、充分高いルテニウムの除去が期待できる。
Among the above-mentioned steps, particularly in the case of the step involving nitric acid reaction, the waste gas contains a very large amount of water vapor and NO 2 gas. Therefore, in this case, a sufficiently high removal of ruthenium can be expected without newly adding water or NO 2 to the waste gas.

【0014】また、万一水をほとんど含んでいない廃ガ
スの場合でも、NO2 ガスの充分な含有量があれば、通
常の廃ガス処理系に常に設置されている水洗浄塔で多量
の水と接触するので、やはりここでルテニウムに対する
高いDFが期待できる。
Even in the case of a waste gas containing almost no water, if a sufficient amount of NO 2 gas is contained, a large amount of water will be generated in the water washing tower that is always installed in the usual waste gas treatment system. Therefore, a high DF for ruthenium can be expected here as well.

【0015】さらに、もしNO2 ガスの含有量がルテニ
ウムに対して充分な量だけ含まれていないような廃ガス
の場合には、このガスを凝縮器や水洗浄塔に通す際に、
少量のNO2 ガスを混入すれば、充分に高いDFを確保
できる。そして、再処理工場では、NO2 ガスは溶液中
のプルトニウムの酸化剤として大量に使用されているの
で、これを用いれば特別新たなガス発生設備は不要であ
る。
Further, in the case of a waste gas such that the content of NO 2 gas is not sufficient for ruthenium, when passing this gas through a condenser or a water washing tower,
If a small amount of NO 2 gas is mixed, a sufficiently high DF can be secured. Since NO 2 gas is used in large quantities as an oxidizer for plutonium in a solution in a reprocessing plant, no special new gas generating equipment is required if this is used.

【0016】以下に示す表1は、揮発性ルテニウムの洗
浄塔でのDFのNO2 /Ru比依存性を表わしたもので
ある。
Table 1 below shows the NO 2 / Ru ratio dependence of DF in a volatile ruthenium scrubbing tower.

【0017】[0017]

【表1】 [Table 1]

【0018】実験例1 本発明者等は、ルテニウムとして約12mg(約0.12
ミリモル)の四酸化ルテニウムガスと、約0.32Nl
(約14ミリモル)のNO2 ガスを含む空気約400N
lを模擬廃ガスとして用い、これを磁製のラシヒリング
を充填した水スクラバー(灌液充填式水洗浄塔)に通し
た。スクラバーの前後で、模擬廃ガスの一部を分取して
四酸化ルテニウムの吸収液を満たしたガス捕集瓶を通し
て捕集し、各々の液中の溶存ルテニウムを定量すること
によって、スクラバーで除去されたルテニウム量を調べ
る実験を行なった。
Experimental Example 1 The present inventors have found that ruthenium is about 12 mg (about 0.12).
Ruthenium tetroxide gas, about 0.32 Nl
About 400 N of air containing (about 14 mmol) NO 2 gas
1 was used as a simulated waste gas, and this was passed through a water scrubber (irrigation filling water washing tower) filled with Raschig rings made of porcelain. Before and after the scrubber, part of the simulated waste gas was collected and collected through a gas collection bottle filled with an absorption liquid of ruthenium tetroxide, and the dissolved ruthenium in each liquid was quantified to be removed by the scrubber. An experiment was conducted to check the amount of ruthenium that was removed.

【0019】その結果、スクラバーを通過した後の模擬
廃ガス中のルテニウムの量は、スクラバーを通過する前
のガス中のルテニウム量の約1/680にまで減少して
おり、スクラバーにおいて揮発性のルテニウムに対し6
80以上のDFが得られることが確認された。
As a result, the amount of ruthenium in the simulated waste gas after passing through the scrubber was reduced to about 1/680 of the amount of ruthenium in the gas before passing through the scrubber, and the amount of ruthenium in the scrubber was volatile. 6 for ruthenium
It was confirmed that a DF of 80 or more was obtained.

【0020】試験終了後、装置の壁面やラシヒリング等
に付着している液滴をすべて洗い落とし、スクラバー液
受器中に溜まった液と一緒にして液中の溶存ルテニウム
量を分析した。
After the completion of the test, all the droplets adhering to the wall surface of the device and the Raschig ring were washed off, and the amount of ruthenium dissolved in the liquid was analyzed together with the liquid accumulated in the scrubber liquid receiver.

【0021】その結果、溶液中には、廃ガス中の四酸化
ルテニウム含有量(分析値)に基づいて算出した除去量
の約60%に相当する量のルテニウムが溶存しており、
ガス中から除去された四酸化ルテニウムは、大半が水溶
性のルテニウム塩に変わってスクラバー液の中に溶けた
ことが確認された。
As a result, in the solution, ruthenium was dissolved in an amount corresponding to about 60% of the removed amount calculated based on the ruthenium tetroxide content (analytical value) in the waste gas,
It was confirmed that most of the ruthenium tetroxide removed from the gas was converted to a water-soluble ruthenium salt and dissolved in the scrubber liquid.

【0022】比較例1 実験例1とほぼ同量の四酸化ルテニウムを含んでいる
が、NO2 ガスの含有量は実験例1の場合の1/10の
約0.03Nlしか含んでいない模擬廃ガスを、実験例
1の場合と全く同一条件下でスクラバーに通した。
Comparative Example 1 A simulated waste containing almost the same amount of ruthenium tetroxide as in Experimental Example 1 but containing only about 0.03 Nl of the NO 2 gas content, which is 1/10 of that in Experimental Example 1. The gas was passed through the scrubber under exactly the same conditions as in Experimental Example 1.

【0023】しかしながら、この場合には、スクラバー
における四酸化ルテニウムに対するDFは、30にまで
低下した。
However, in this case, the DF for ruthenium tetroxide in the scrubber dropped to 30.

【0024】図1は、同様のスクラバー試験において、
模擬廃ガス中でのNO2 とルテニウムとのモル比に対し
て、得られたルテニウムのDF値を示したものである。
FIG. 1 shows that in a similar scrubber test,
The DF value of the obtained ruthenium is shown with respect to the molar ratio of NO 2 and ruthenium in the simulated waste gas.

【0025】図1からも明らかなように、NO2 /Ru
比の増加とともにDFが大きくなり、数100程度の高
いDFが得られるのは、NO2 /Ruのモル比が100
以上となっている場合であることが判る。
As is apparent from FIG. 1, NO 2 / Ru
The DF increases with an increase in the ratio, and a high DF of about several hundreds is obtained because the molar ratio of NO 2 / Ru is 100.
It can be seen that this is the case.

【0026】実験例2 本発明者等はまた、実験例1と同一組成(同量の四酸化
ルテニウムとNO2 ガスとを含む)の模擬廃ガス約28
0Nlに、約120Nlの飽和水蒸気を混合して凝縮器
を通した。そして、実験例1と同様にして、凝縮器の前
後でガスの一部を分取し、含まれているルテニウムの量
を分析した。
Experimental Example 2 The inventors of the present invention also used about 28 simulated exhaust gases having the same composition as in Experimental Example 1 (containing the same amounts of ruthenium tetraoxide and NO 2 gas).
About 120 Nl of saturated steam was mixed with 0 Nl and passed through a condenser. Then, in the same manner as in Experimental Example 1, a part of the gas was separated before and after the condenser, and the amount of ruthenium contained was analyzed.

【0027】3回の試験の結果、凝縮器での四酸化ルテ
ニウムに対するDFとして、400〜700程度の値が
得られた。また、実験例1の場合と同様、ガス中から除
去されたルテニウムの大部分は、凝縮液の中に溶けて存
在していた。
As a result of three tests, a value of 400 to 700 was obtained as the DF for ruthenium tetroxide in the condenser. Moreover, as in the case of Experimental Example 1, most of the ruthenium removed from the gas was dissolved and present in the condensate.

【0028】比較例2 実験例1,2と同組成の模擬廃ガスに、飽和水蒸気と混
合せずにそのまま凝縮器を通したが、廃ガス中の四酸化
ルテニウムは全く除去されず、DFは1であった。この
ことから、揮発性ルテニウムの除去のためには、充分な
量のNO2 と水分とがともに不可欠であることが判っ
た。
Comparative Example 2 A simulated waste gas having the same composition as in Experimental Examples 1 and 2 was passed through a condenser as it was without mixing with saturated steam, but ruthenium tetroxide in the waste gas was not removed at all, and DF was produced. It was 1. From this, it was found that both a sufficient amount of NO 2 and water are indispensable for removing volatile ruthenium.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
揮発性のルテニウムを含む廃ガス中からルテニウムを効
率よく除去することができるので、環境中に放出される
放射性ルテニウムの量を大幅に減少させることができ
る。また、この除去に際して、特別に新たな処理設備を
必要としないため、ルテニウム除去処理設備が複雑化し
たり処理コストが増大することがなく、またナトリウム
塩を含むような二次廃棄物の発生もない。
As described above, according to the present invention,
Since ruthenium can be efficiently removed from the waste gas containing volatile ruthenium, the amount of radioactive ruthenium released into the environment can be greatly reduced. In addition, since no special new treatment equipment is required for this removal, the ruthenium removal treatment equipment does not become complicated and the treatment cost does not increase, and there is no generation of secondary waste containing sodium salts. .

【図面の簡単な説明】[Brief description of drawings]

【図1】廃ガス中でのNO2 とルテニウムとのモル比に
対し得られたルテニウムのDF値を示すグラフ。
FIG. 1 is a graph showing the DF value of ruthenium obtained with respect to the molar ratio of NO 2 and ruthenium in waste gas.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 廃ガス中の揮発性放射性ルテニウムに対
し、モル数で100倍以上の量のNO2 を含むガスを、
大過剰量の水とともに作用させて揮発性ルテニウムを水
溶性ルテニウム化合物とし、この水溶性ルテニウム化合
物を、作用させた前記水の中に溶かして除去することを
特徴とする放射性ルテニウムの除去方法。
1. A gas containing NO 2 in an amount 100 times or more the number of moles with respect to the volatile radioactive ruthenium in the waste gas,
A method for removing radioactive ruthenium, which comprises reacting volatile ruthenium with a large excess amount of water to form a water-soluble ruthenium compound, and dissolving the water-soluble ruthenium compound in the reacted water to remove it.
JP22135893A 1993-09-06 1993-09-06 Method for removing radioactive ruthenium Pending JPH0772295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22135893A JPH0772295A (en) 1993-09-06 1993-09-06 Method for removing radioactive ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22135893A JPH0772295A (en) 1993-09-06 1993-09-06 Method for removing radioactive ruthenium

Publications (1)

Publication Number Publication Date
JPH0772295A true JPH0772295A (en) 1995-03-17

Family

ID=16765546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22135893A Pending JPH0772295A (en) 1993-09-06 1993-09-06 Method for removing radioactive ruthenium

Country Status (1)

Country Link
JP (1) JPH0772295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103078A (en) * 2016-12-22 2018-07-05 住友金属鉱山株式会社 Detoxification equipment and detoxification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103078A (en) * 2016-12-22 2018-07-05 住友金属鉱山株式会社 Detoxification equipment and detoxification method

Similar Documents

Publication Publication Date Title
Haefner Methods of gas phase capture of iodine from fuel reprocessing off-gas: a literature survey
EP0111839B1 (en) Method of disposing radioactive ion exchange resin
CN101375347B (en) Sodium salt recycling system for use in wet reprocessing of used nuclear fuel
RU2627237C2 (en) Installation for processing of radioactive carbon waste, in particular, graphite
JPS6049280B2 (en) Processing method for alkaline solution containing radioactive iodine
JPH0772295A (en) Method for removing radioactive ruthenium
Paviet-Hartmann et al. Treatment of gaseous effluents issued from recycling–A review of the current practices and prospective improvements
Nerisson et al. Behaviour of ruthenium in nitric media (HLLW) in reprocessing plants: a review and some perspectives
US3852407A (en) Method for removing alkyl iodides from air by mercuric nitrate solution
JPH0319520B2 (en)
JPS6363271B2 (en)
JPS60122400A (en) Method of heating and decomposing used ion exchange resin
EP0261662A2 (en) Method for removal of iodine in gas
JP3567017B2 (en) Regeneration method of decomposed organic solvent used for reprocessing of spent nuclear fuel
JPS6248528B2 (en)
US4469629A (en) Method for extracting fluoride ions from a nuclear fuel solution
RU2143756C1 (en) Method for fractional cleaning of gases from harmful chemical agents and radioactive materials formed in dissolving nuclear wastes
JPH07107560B2 (en) Method for cleaning organic solvent and apparatus using the same
Raab et al. OPERATING EXPERIENCE USING SILVER REACTORS FOR RADIOIODINE REMOVAL IN THE HANFORD PUREX PLANT.
Weinlander Head-end offgas purification; Die Head-End-Abgasreinigung
Spencer et al. Initial Assessment of Ruthenium Removal Systems for Tritium Pretreatment Off-Gas
Watson et al. Iodine containment by dousing in NPD-II
Holmes VERSATILE SCRUB TOWER REMOVES HALOGEN OFF-GASES
Donato Abatement of the NOx Evolved during Denitration of Reprocessing Concentrate
JP2000266891A (en) Recycle method for nitrogen oxide in offgas of uranium denitration process