JPH0772153B2 - Process for producing para-hydroxybenzaldehyde derivative - Google Patents

Process for producing para-hydroxybenzaldehyde derivative

Info

Publication number
JPH0772153B2
JPH0772153B2 JP61251292A JP25129286A JPH0772153B2 JP H0772153 B2 JPH0772153 B2 JP H0772153B2 JP 61251292 A JP61251292 A JP 61251292A JP 25129286 A JP25129286 A JP 25129286A JP H0772153 B2 JPH0772153 B2 JP H0772153B2
Authority
JP
Japan
Prior art keywords
reaction
para
cresol
general formula
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61251292A
Other languages
Japanese (ja)
Other versions
JPS63104937A (en
Inventor
忠亜 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP61251292A priority Critical patent/JPH0772153B2/en
Publication of JPS63104937A publication Critical patent/JPS63104937A/en
Publication of JPH0772153B2 publication Critical patent/JPH0772153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、パラヒドロキシベンズアルデヒド誘導体の製
造方法、更に詳しくは一般式 〔式中R1及びR2は、同一又は異なって水素原子、アルキ
ル基、アルコキシ基、アリール基又はハロゲン原子を示
す。〕 で表わされるパラヒドロキシベンズアルデヒド誘導体の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a parahydroxybenzaldehyde derivative, more specifically a general formula [In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a halogen atom. ] It is related with the manufacturing method of the para hydroxy benzaldehyde derivative represented by these.

従来の技術及びその問題点 上記一般式(1)で表わされるパラヒドロキシベンズア
ルデヒド誘導体は、医薬、農薬等の有効成分を合成する
ための中間体として重要な化合物である。
Conventional Technology and Problems Thereof The parahydroxybenzaldehyde derivative represented by the general formula (1) is an important compound as an intermediate for synthesizing active ingredients such as pharmaceuticals and agricultural chemicals.

一般式(1)のパラヒドロキシベンズアルデヒド誘導体
の製造方法としては、例えば一般式 〔式中R1及びR2は前記に同じ。)で表わされるパラクレ
ゾール誘導体を、触媒の存在下に酸化反応させる方法が
知られており、その代表的な方法として特開昭55−8183
2号公報に記載の方法、特開昭61−24535号公報に記載の
方法等が挙げられる。前者の方法は、触媒としてコバル
ト塩を用いる方法であり、後者の方法は触媒として銅塩
を用いる方法である。しかしながら、前者の方法は、目
的化合物を収率よく製造し得るものではない。また後者
の方法では、銅塩触媒を用いるために公害対策上の後処
理設備が必要である。更に上記方法は、いずれも反応に
要する時間が10〜60時間と長く、連続製造が困難である
という問題をも有している。このように従来公知の方法
は、工業的製造法として満足できるものではない。而し
て大規模製造上から考えて、公害対策設備を必要とせ
ず、反応を短時間で完了させることができ、しかも目的
化合物を高収率で収得し得る新規製法の開発が望まれて
いるのが現状である。
Examples of the method for producing the parahydroxybenzaldehyde derivative represented by the general formula (1) include, for example, the general formula [In the formula, R 1 and R 2 are the same as defined above. ), A method of oxidizing a para-cresol derivative represented by the formula (1) in the presence of a catalyst is known, and a typical method thereof is JP-A-55-8183.
The method described in JP-A No. 2-24, the method described in JP-A No. 61-24535, and the like can be mentioned. The former method is a method using a cobalt salt as a catalyst, and the latter method is a method using a copper salt as a catalyst. However, the former method cannot produce the target compound in good yield. Further, in the latter method, since a copper salt catalyst is used, a post-treatment facility for pollution control is required. Further, each of the above methods has a problem that the time required for the reaction is as long as 10 to 60 hours and continuous production is difficult. As described above, the conventionally known method is not satisfactory as an industrial manufacturing method. Therefore, from the viewpoint of large-scale production, it is desired to develop a new production method capable of completing the reaction in a short time without requiring pollution control equipment and obtaining the target compound in a high yield. is the current situation.

問題点を解決するための手段 本発明者は、斯かる現状に鑑み、上記一般式(2)のパ
ラクレゾール誘導体から上記一般式(1)で表わされる
パラヒドロキシベンズアルデヒド誘導体を酸素酸化反応
により温和な反応条件下に短時間で、しかも高収率で製
造し得る方法を開発すべく鋭意研究を重ねてきた。その
結果、下記の反応条件下に酸素酸化反応を行なう場合
に、本発明の所期の目的を達成し得ることを見い出し
た。本発明は、斯かる知見に基づいて完成されたもので
ある。
Means for Solving the Problems In view of the present situation, the present inventor has mildly oxidized a para-hydroxybenzaldehyde derivative represented by the general formula (1) from a para-cresol derivative represented by the general formula (2) by an oxygen oxidation reaction. We have earnestly conducted research to develop a method capable of producing in a high yield in a short time under reaction conditions. As a result, they have found that the intended purpose of the present invention can be achieved when the oxygen oxidation reaction is carried out under the following reaction conditions. The present invention has been completed based on such findings.

即ち、本発明は、可溶性コバルト塩触媒とセリウム塩及
びニッケル塩からなる群より選ばれた少なくとも1種の
助触媒との共存下、上記一般式(2)で表わされるパラ
クレゾール誘導体を液相酸素酸化反応させて上記一般式
(1)で表わされるパラヒドロキシベンズアルデヒド誘
導体を得ることを特徴とするパラヒドロキシベンズアル
デヒド誘導体の製造方法に係る。
That is, according to the present invention, a paracresol derivative represented by the above general formula (2) is mixed with liquid phase oxygen in the presence of a soluble cobalt salt catalyst and at least one promoter selected from the group consisting of cerium salt and nickel salt. The present invention relates to a method for producing a para-hydroxybenzaldehyde derivative, which comprises subjecting the para-hydroxybenzaldehyde derivative represented by the general formula (1) to an oxidation reaction.

本発明で出発原料として用いられる一般式(2)のパラ
クレゾール誘導体としては、一般式(2)に該当する化
合物である限り従来公知のものを広く使用でき、具体的
にはパラクレゾール、2−メチル−p−クレゾール、3
−メチル−p−クレゾール、2−メトキシ−p−クレゾ
ール、3−メトキシ−p−クレゾール、2,6−ジメトキ
シ−p−クレゾール、2−メトキシ−6−メチル−p−
クレゾール、2,6−ジ−tert−ブチル−p−クレゾー
ル、tert−ブチル−p−クレゾール、2−クロロ−p−
クレゾール、2,6−ジクロロ−p−クレゾール、2−ブ
ロモ−p−クレゾール、2,6−ジブロモ−p−クレゾー
ル等を例示できる。
As the para-cresol derivative of the general formula (2) used as a starting material in the present invention, conventionally known compounds can be widely used as long as they are compounds corresponding to the general formula (2). Methyl-p-cresol, 3
-Methyl-p-cresol, 2-methoxy-p-cresol, 3-methoxy-p-cresol, 2,6-dimethoxy-p-cresol, 2-methoxy-6-methyl-p-
Cresol, 2,6-di-tert-butyl-p-cresol, tert-butyl-p-cresol, 2-chloro-p-
Examples thereof include cresol, 2,6-dichloro-p-cresol, 2-bromo-p-cresol, and 2,6-dibromo-p-cresol.

本発明では、反応系内に可溶性コバルト塩とセリウム塩
及びニッケル塩からなる群より選ばれた少なくとも1種
の助触媒とを共存させることを必須とする。
In the present invention, it is essential that a soluble cobalt salt and at least one promoter selected from the group consisting of cerium salt and nickel salt coexist in the reaction system.

用いられるコバルト塩としては、従来公知のものを広く
使用でき、例えばコバルトの酢酸塩、塩酸塩、硝酸塩、
硫酸塩、ナフテン酸塩、安息香酸塩、ステアリン酸塩、
アセチルアセトナート、酸化物等が挙げられる。斯かる
可溶性コバルト塩触媒の使用量としては、溶媒の種類、
助触媒の種類、その他の反応条件等により異なり一概に
は言えないが、原料とする一般式(2)のパラクレゾー
ル誘導体1モル当り、通常0.0005〜0.5モル程度、好ま
しくは0.001〜0.1モル程度とするのがよい。
As the cobalt salt used, conventionally known ones can be widely used, for example, cobalt acetate, hydrochloride, nitrate,
Sulfate, naphthenate, benzoate, stearate,
Examples include acetylacetonate and oxides. The amount of such a soluble cobalt salt catalyst used, the type of solvent,
It depends on the type of cocatalyst, other reaction conditions, etc. and cannot be generally stated, but it is usually about 0.0005 to 0.5 mol, preferably about 0.001 to 0.1 mol, per mol of the para-cresol derivative of the general formula (2) used as a raw material. Good to do.

本発明で用いられるセリウム塩としては、具体的には酢
酸セリウム、硝酸セリウム、硫酸セリウム、塩化セリウ
ム、セリウムアセチルアセトナート、硝酸セリウムアン
モニウム、炭酸セリウム、水酸化セリウム、蓚酸セリウ
ム等を例示できる。また、ニッケル塩としては、具体的
には酢酸ニッケル、塩化ニッケル、臭化ニッケル、炭酸
ニッケル、硝酸ニッケル、蟻酸ニッケル、ナフテン酸ニ
ッケル、硫酸ニッケル、ニッケルアセチルアセトナー
ト、酸化ニッケル等を例示できる。これらは1種単独で
又は2種以上混合して使用され得る。上記可溶性コバル
ト塩と上記助触媒とを併用することにより、目的とする
一般式(1)のパラヒドロキシベンズアルデヒド誘導体
の収率を格段に高めることができる。斯かる助触媒の使
用量としては、原料とする一般式(2)のパラクレゾー
ル誘導体1モル当り、通常0.0005〜0.5モル程度、好ま
しくは0.001〜0.1モル程度とするのがよい。
Specific examples of the cerium salt used in the present invention include cerium acetate, cerium nitrate, cerium sulfate, cerium chloride, cerium acetylacetonate, cerium ammonium nitrate, cerium carbonate, cerium hydroxide and cerium oxalate. Specific examples of the nickel salt include nickel acetate, nickel chloride, nickel bromide, nickel carbonate, nickel nitrate, nickel formate, nickel naphthenate, nickel sulfate, nickel acetylacetonate, and nickel oxide. These may be used alone or in combination of two or more. By using the soluble cobalt salt in combination with the cocatalyst, the yield of the desired para-hydroxybenzaldehyde derivative of the general formula (1) can be significantly increased. The amount of such a promoter to be used is usually about 0.0005 to 0.5 mol, preferably about 0.001 to 0.1 mol, per mol of the para-cresol derivative of the general formula (2) used as the raw material.

本発明の酸素酸化反応は、反応系内に酸化剤を存在させ
て行なわれる。用いられる酸化剤としては、分子状酸素
を与え得るものである限り従来公知のものを広く使用で
き、例えば酸素、空気、過酸化水素、過酸化ナトリウ
ム、過酸化酢酸、過酸化ベンゾイル等の過酸化物等を挙
げることができる。また、本発明の酸化反応の際の圧力
は、反応系を液層に維持できる圧力である限り特に限定
されるものではなく、常圧下及び加圧下のいずれでもよ
い。特に本発明では、酸素圧が0.1〜10kg/cm2程度とな
るように反応系内の圧力を調整するのが望ましい。
The oxygen oxidation reaction of the present invention is carried out in the presence of an oxidizing agent in the reaction system. As the oxidizing agent to be used, conventionally known ones can be widely used as long as they can give molecular oxygen. The thing etc. can be mentioned. Further, the pressure during the oxidation reaction of the present invention is not particularly limited as long as it is a pressure capable of maintaining the reaction system in the liquid layer, and may be under normal pressure or under pressure. Particularly in the present invention, it is desirable to adjust the pressure in the reaction system so that the oxygen pressure is about 0.1 to 10 kg / cm 2 .

本発明の反応は、塩基性の溶液中で行なうのがよい。使
用される反応溶媒としては、例えばメタノール、エタノ
ール、イソプロパノール等のアルコール類、ベンゼン、
シクロヘキサン、シクロペンタン等の炭化水素類、クロ
ロホルム、四塩化炭素、クロロベンゼン等のハロゲン化
炭化水素類、ジブチルエーテル、ジフエニルエーテル、
ジオキサン等のエーテル類、ジメチルホルムアミド、ジ
メチルスルホキシド等の極性溶媒等やこれらの混合溶媒
等を挙げることができる。また塩基としては、従来公知
のものを広く使用でき、具体的には水酸化ナトリウム、
水酸化カリウム、ナトリウムメトキシド、カリウムメト
キシド、ナトリウムエトキシド、カリウムエトキシド、
ナトリウムブトキシド、カリウムブトキシド等が挙げら
れ、これらは1種単独で又は2種以上混合して使用され
る。斯かる塩基は、原料化合物を可溶性にし酸化反応に
おいて活性化するためと酸素酸化反応により生成する生
成水を捕捉するために使用される。該塩基の使用量とし
ては、一般式(1)のパラクレゾール誘導体対して通常
等モル〜10モル程度、好ましくは1.5〜6モル程度とす
るのがよい。
The reaction of the present invention is preferably carried out in a basic solution. Examples of the reaction solvent used include alcohols such as methanol, ethanol and isopropanol, benzene,
Hydrocarbons such as cyclohexane and cyclopentane, halogenated hydrocarbons such as chloroform, carbon tetrachloride and chlorobenzene, dibutyl ether, diphenyl ether,
Examples thereof include ethers such as dioxane, polar solvents such as dimethylformamide and dimethylsulfoxide, and mixed solvents thereof. As the base, conventionally known ones can be widely used, specifically, sodium hydroxide,
Potassium hydroxide, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide,
Sodium butoxide, potassium butoxide, etc. are mentioned, and these are used individually by 1 type or in mixture of 2 or more types. Such a base is used for solubilizing the raw material compound and activating it in the oxidation reaction, and for capturing the produced water generated by the oxygen oxidation reaction. The amount of the base used is usually about equimolar to about 10 mol, preferably about 1.5 to 6 mol, based on the para-cresol derivative of the general formula (1).

本発明の反応は、通常25〜200℃程度、好ましくは50〜1
30℃程度にて行なわれる。本発明の反応によれば、約3
時間で目的化合物を高収率で得ることができ、その後24
時間までにわずかにその収率は上昇を続けるが、経済性
を考慮して該反応の反応時間は4時間程度とするのがよ
い。
The reaction of the present invention is usually about 25 to 200 ° C., preferably 50 to 1
It is performed at about 30 ° C. According to the reaction of the present invention, about 3
The target compound can be obtained in high yield in a time, and then 24
Although the yield slightly increases by the time, the reaction time of the reaction is preferably about 4 hours in consideration of economic efficiency.

発明の効果 本発明の方法によれば、緩和な反応条件下に短時間で目
的とする上記一般式(1)で表わされるパラヒドロキシ
ベンズアルデヒド誘導体を高収率で製造し得る。また使
用される触媒は、公害上全く問題のない化合物であり、
反応後の後処理が容易である。従って、本発明の方法
は、上記一般式(1)で表わされるパラヒドロキシベン
ズアルデヒド誘導体の工業的製造方法として極めて有利
なものである。
EFFECTS OF THE INVENTION According to the method of the present invention, the target para-hydroxybenzaldehyde derivative represented by the general formula (1) can be produced in a high yield in a short time under mild reaction conditions. Also, the catalyst used is a compound that has no problem in terms of pollution,
Post-treatment after reaction is easy. Therefore, the method of the present invention is extremely advantageous as a method for industrially producing the parahydroxybenzaldehyde derivative represented by the general formula (1).

実施例 以下に実施例を掲げて本発明をより一層明らかにする。Examples The present invention will be further clarified with reference to the following examples.

実施例1 容量50mlのステンレス製オートクレーブにパラクレゾー
ル216mg(2ミリモル)、酢酸コバルト・4水和物5mg
(0.02ミリモル)、酢酸セリウム・1水和物6.7mg(0.0
2ミリモル)及び24.9%ナトリウムメトキシド・メタノ
ール液2g(9.2ミリモル)を入れ、酸素ガス1.5kg/cm2
条件下に加圧密封し、油浴温度95℃にて攪拌して反応さ
せた。反応後の後処理は、次に示す2通りの方法のいず
れかで行なった。
Example 1 216 mg (2 mmol) of para-cresol and 5 mg of cobalt acetate tetrahydrate in a stainless steel autoclave having a volume of 50 ml.
(0.02 mmol), cerium acetate monohydrate 6.7 mg (0.0
2 mmol) and 2 g (9.2 mmol) of 24.9% sodium methoxide / methanol solution were added, and the mixture was pressure-sealed under the condition of oxygen gas of 1.5 kg / cm 2 and stirred at an oil bath temperature of 95 ° C. for reaction. Post-treatment after the reaction was performed by either of the following two methods.

(a) 反応液を希塩酸で弱酸性(pH4)とし、これを
エタノールで100ml丸底フラスコに移し常温で減圧濃縮
する。残渣に少量のエタノールを加え、10分間攪拌し、
ガラスフィルターで過後、その液と洗液を内部標準
品と共にメスフラスコにて所定量に薄め、これを定量液
とした。
(A) The reaction solution is made weakly acidic (pH 4) with dilute hydrochloric acid, transferred to a 100 ml round bottom flask with ethanol, and concentrated under reduced pressure at room temperature. Add a small amount of ethanol to the residue, stir for 10 minutes,
After passing through a glass filter, the solution and the washing solution were diluted with an internal standard product to a predetermined amount in a measuring flask, and this was used as a quantitative solution.

(b) 反応液を希塩酸で弱酸製(pH4)とし、水20ml
と酢酸エチル80mlの混合溶媒で分液ロートに移し、振盪
後酢酸エチル層を硫酸ナトリウム無水物で乾燥し、減圧
濃縮した。残渣をエタノールで溶解し、内部標準品と共
にメスフラスコにて所定量に薄め、これを定量液とし
た。
(B) Dilute hydrochloric acid to make the reaction solution a weak acid (pH 4) and add 20 ml of water.
The mixture was transferred to a separating funnel with a mixed solvent of 80 ml of ethyl acetate and ethyl acetate, and after shaking, the ethyl acetate layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in ethanol and diluted with the internal standard to a predetermined amount in a volumetric flask, which was used as a quantitative solution.

定量は、クロモソルブWに10重量%のサーモン3000を担
持させた充填剤を使用し、水素炎イオン化検出器を用い
たガスクロマトグラフ法にて分析した結果、生成したパ
ラヒドロキシベンズアルデヒドの収率は、理論生成量の
88%であった。尚、上記(a)及び(b)の処理方法の
差は、許容誤差以内であった。
Quantitative analysis was carried out by using a packing material in which 10% by weight of salmon 3000 was supported on Chromosolve W and analyzed by a gas chromatograph method using a flame ionization detector. As a result, the yield of parahydroxybenzaldehyde produced was theoretical. Amount of production
It was 88%. The difference between the processing methods (a) and (b) was within the allowable error.

また生成物をシリカゲルC−200のカラムクロマトグラ
フィーにてベンゼン:酢酸エチル(5:3)の混合溶媒で
展開し、分離精製した結晶のIRスペクトル、NMRスペク
トル、マススペクトル及び融点は、別途合成した標準品
及び市販品のそれらと一致した。
Further, the product was developed by column chromatography on silica gel C-200 with a mixed solvent of benzene: ethyl acetate (5: 3), and the IR spectrum, NMR spectrum, mass spectrum and melting point of the separated and purified crystal were separately synthesized. Consistent with those of the standard and commercial products.

更に反応生成物中の各成分を調べたところ、原料のパラ
クレゾールは存在していないことから、完全に反応が進
行したことが判明し、また溶媒との反応生成物としてパ
ラメトキシベンジルアルコールが1%以内、パラヒドロ
キシベンジルメチルエーテルが約2%あり、完全酸化体
であるパラヒドロキシ安息香酸は1%以内であった。
Furthermore, when each component in the reaction product was examined, it was found that the raw material para-cresol did not exist, and therefore the reaction proceeded completely, and para-methoxybenzyl alcohol was 1% as the reaction product with the solvent. %, Para-hydroxybenzyl methyl ether was about 2%, and para-hydroxybenzoic acid as a complete oxidant was within 1%.

実施例2〜6 下記第1表に示すアルカリメトキシドを使用する以外
は、上記実施例1と同様にしてパラヒドロキシベンズア
ルデヒドを得た。
Examples 2 to 6 Parahydroxybenzaldehyde was obtained in the same manner as in Example 1 except that the alkali methoxide shown in Table 1 below was used.

実施例7〜11 下記第2表に示す反応時間とする以外は、上記実施例1
と同様にしてパラヒドロキシベンズアルデヒドを得た。
Examples 7 to 11 Example 1 above except that the reaction times are shown in Table 2 below.
Parahydroxybenzaldehyde was obtained in the same manner as in.

実施例12〜15 下記第3表に示すように酢酸コバルト・4水和物と酢酸
セリウム・1水和物との配合割合を代える以外は、上記
実施例1と同様にしてパラヒドロキシベンズアルデヒド
を得た。
Examples 12 to 15 Parahydroxybenzaldehydes were obtained in the same manner as in Example 1 except that the compounding ratios of cobalt acetate tetrahydrate and cerium acetate monohydrate were changed as shown in Table 3 below. It was

第3表には、比較のために酢酸コバルト・4水和物のみ
を使用した場合の結果を併せて示す。
Table 3 also shows the results when only cobalt acetate tetrahydrate was used for comparison.

実施例16〜18 下記第4表に示すようにコバルト塩(0.02ミリモル)及
びセリウム塩(0.02ミリモル)の種類を代える以外は、
上記実施例1と同様にしてパラヒドロキシベンズアルデ
ヒドを得た。
Examples 16 to 18, except that the types of cobalt salt (0.02 mmol) and cerium salt (0.02 mmol) were changed as shown in Table 4 below.
Parahydroxybenzaldehyde was obtained in the same manner as in Example 1.

実施例19〜22 セリウム塩の代りに下記第5表に示すニッケル塩を用い
る以外は、上記実施例1と同様にしてパラヒドロキシベ
ンズアルデヒドを得た。
Examples 19 to 22 Parahydroxybenzaldehyde was obtained in the same manner as in Example 1 except that the nickel salt shown in Table 5 below was used instead of the cerium salt.

実施例23〜27 下記第6表に示す一般式(2)の化合物を使用する以外
は、上記実施例1と同様にして一般式(1)の目的化合
物を得た。
Examples 23 to 27 Target compounds of general formula (1) were obtained in the same manner as in Example 1 except that the compound of general formula (2) shown in Table 6 below was used.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 31/26 31/28 C07C 45/28 47/575 // C07B 61/00 300 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01J 31/26 31/28 C07C 45/28 47/575 // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可溶性コバルト塩触媒とセリウム塩及びニ
ッケル塩からなる群より選ばれた少なくとも1種の助触
媒との共存下、一般式 〔式中R1及びR2は、同一又は異なって水素原子、アルキ
ル基、アルコキシ基、アリール基又はハロゲン原子を示
す。〕 で表わされるパラクレゾール誘導体を液相酸素酸化反応
させて一般式 〔式中R1及びR2は前記に同じ。〕 で表わされるパラヒドロキシベンズアルデヒド誘導体を
得ることを特徴とするパラヒドロキシベンズアルデヒド
誘導体の製造方法。
1. A general formula in the presence of a soluble cobalt salt catalyst and at least one cocatalyst selected from the group consisting of cerium salts and nickel salts. [In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a halogen atom. ] The paracresol derivative represented by [In the formula, R 1 and R 2 are the same as defined above. ] The parahydroxy benzaldehyde derivative represented by these is obtained, The manufacturing method of the para hydroxy benzaldehyde derivative characterized by the above-mentioned.
JP61251292A 1986-10-21 1986-10-21 Process for producing para-hydroxybenzaldehyde derivative Expired - Fee Related JPH0772153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251292A JPH0772153B2 (en) 1986-10-21 1986-10-21 Process for producing para-hydroxybenzaldehyde derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251292A JPH0772153B2 (en) 1986-10-21 1986-10-21 Process for producing para-hydroxybenzaldehyde derivative

Publications (2)

Publication Number Publication Date
JPS63104937A JPS63104937A (en) 1988-05-10
JPH0772153B2 true JPH0772153B2 (en) 1995-08-02

Family

ID=17220636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251292A Expired - Fee Related JPH0772153B2 (en) 1986-10-21 1986-10-21 Process for producing para-hydroxybenzaldehyde derivative

Country Status (1)

Country Link
JP (1) JPH0772153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119213B (en) * 2014-06-30 2016-04-27 上海应用技术学院 A kind of preparation method of vanillin food grade,1000.000000ine mesh

Also Published As

Publication number Publication date
JPS63104937A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
Lerman et al. Acetyl hypofluorite, a new moderating carrier of elemental fluorine and its use in fluorination of 1, 3-dicarbonyl derivatives
JPH085838B2 (en) Method for producing biphenyltetracarboxylic acid
EP0377638B1 (en) Process for the iodination of hydroxyaromatic and aminoaromatic compounds
JPH0772153B2 (en) Process for producing para-hydroxybenzaldehyde derivative
JP2638174B2 (en) Method for producing carbonate ester
JP3062965B2 (en) Method for preparing aryl-substituted propionates
EP0366177A1 (en) Improved process for preparing di-alkyl carbonates
EP0194554B1 (en) Process for production of oxime derivatives
JP3116747B2 (en) Method for producing aromatic carboxylic acids
JPS62185032A (en) Production of 1-(1-hydroxyethyl)-alkylcyclohexane
JPH04356446A (en) Production of carbonic acid ester
JP3814943B2 (en) Production method of dialkyl carbonate
JPH0327345A (en) Production of phenetylamines
JP3206451B2 (en) Method for producing diaryl carbonate
JP3482786B2 (en) Preparation of diaryl carbonate
JPH02221239A (en) Preparation of anisole or derivative thereof
JPH072667B2 (en) Method for producing benzaldehyde derivative
CN112521278A (en) Method for preparing carboxylic ester compound
CN117820139A (en) Preparation method of 2-tertiary butyl amino benzaldehyde derivative
JPS5888340A (en) Preparation of phenoxycarboxylic acid derivative
JPH08134018A (en) Production of 3-(2-hydroxyphenoxy)propionic acid derivative
JPH0159266B2 (en)
JPH08157421A (en) Production of carboxylic acid diester
JPH06503091A (en) Method for producing 2-(dialkoxymethyl)-carboxylic acid ester
JPH083087A (en) Production of alcohol having trifluoromethyl group at alpah-site

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees