JPH0771946A - Method and device for sensing surface roughness - Google Patents

Method and device for sensing surface roughness

Info

Publication number
JPH0771946A
JPH0771946A JP24601993A JP24601993A JPH0771946A JP H0771946 A JPH0771946 A JP H0771946A JP 24601993 A JP24601993 A JP 24601993A JP 24601993 A JP24601993 A JP 24601993A JP H0771946 A JPH0771946 A JP H0771946A
Authority
JP
Japan
Prior art keywords
signal
light
roughness
phase
demodulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24601993A
Other languages
Japanese (ja)
Inventor
Shigeru Aoki
茂 青木
Tetsuji Kobayashi
哲二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOKI SEIKI SEISAKUSHO KK
STABILIZER KK
Original Assignee
AOKI SEIKI SEISAKUSHO KK
STABILIZER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOKI SEIKI SEISAKUSHO KK, STABILIZER KK filed Critical AOKI SEIKI SEISAKUSHO KK
Priority to JP24601993A priority Critical patent/JPH0771946A/en
Publication of JPH0771946A publication Critical patent/JPH0771946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform measuring and sensing operations during machining by applying a light-modulated signal to the surface of a target workpiece, and inputting to a computer a demodulated signal obtained by the phase shaping of the signal reflected, and continuing surveillance until change in the value of roughness reaches a certain value. CONSTITUTION:An oscillating signal generated by a signal generator is phase- shaped and fed to a modulator circuit. The phase-shaped signal is inputted to a personal computer PC via an A/D converter. Also, a light-modulated signal is applied to the surface of a workpiece and its reflected light is received by a photodiode, whose light reception signal is then demodulated into an electric signal by a demodulator circuit. This demodulated signal is fed to the personal computer PC via a second A/D converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面粗さの検知方法及び
その装置、特に金属製の部品、部材の表面粗さを研磨あ
るいは切削加工中に継続的に監視し、目的とする一定の
粗さ値への到達を検知する方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting surface roughness and its apparatus, and in particular, the surface roughness of a metal part or member is continuously monitored during polishing or cutting to obtain a desired constant roughness. The present invention relates to a method and an apparatus for detecting the arrival at a threshold value.

【0002】[0002]

【発明の背景】一般的に、表面加工の粗さ測定の方法に
は針を用いた接触式と、光を用いた非接触式とが存在し
ており、現在では被測定面の保護や測定のスピードある
いは計測の簡便性等の観点から非接触化、それも加工中
に実施できるインプロセス測定への要求が強くなってい
る。
BACKGROUND OF THE INVENTION Generally, there are a contact type using a needle and a non-contact type using light as a method for measuring the roughness of surface processing, and at present, protection or measurement of a surface to be measured is performed. There is an increasing demand for in-process measurement that can be performed during processing because it is non-contact from the standpoint of speed and ease of measurement.

【0003】上記した非接触式には代表的なものとして
光触針法、光散乱法、光干渉法等が存在しており、その
概要は図6に示すように、入射光源(電源プラスレーザ
による発光)から光学部品(レンズ)を介して測定すべ
き対象物の表面へ光を照射し、その反射光を光学部品
(集光レンズ)を介して受光器(フォトダイオード)で
受光し、その受光した光信号のデータを処理系(コンピ
ュータ)で演算して、反射特性(散乱特性)を得ること
で間接的(推量的)に粗さ形状(粗さ値)を知るものと
なっている。
As the non-contact type, there are a typical optical stylus method, a light scattering method, an optical interferometry method, etc., and the outline thereof is as shown in FIG. Light) to the surface of the object to be measured through the optical component (lens), and the reflected light is received by the light receiver (photodiode) through the optical component (condensing lens). The data of the received light signal is calculated by a processing system (computer) to obtain a reflection characteristic (scattering characteristic), so that the roughness shape (roughness value) is indirectly (probably) known.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、上記
した一般的な光(レーザー)を使用した非接触式の光散
乱法の粗さ測定方法によると、レーザーの特性によっ
て、いわゆる超精密、即ち、レーザーの波長より表面形
状の振幅(粗さの高低差)及び空間波長(粗さの波形波
長)が極めて小さい場合には十分に信頼できるデータ値
を得ることができるが、レーザー波長と表面形状の振幅
が同一に近くなってくると、反射光の散乱値がランダム
となって信頼できるデータ値を得ることが困難となって
しまう。さらに、従来の装置は複雑な演算を要すること
等から装置の価格が高騰し、また、精巧な光学システム
系を要するものとなっていた。
However, according to the roughness measuring method of the non-contact type light scattering method using the above-mentioned general light (laser), the so-called ultra-precision, that is, When the amplitude (height difference of roughness) and the spatial wavelength (waveform wavelength of roughness) of the surface shape are much smaller than the wavelength of the laser, a sufficiently reliable data value can be obtained. When the amplitudes become close to the same, the scattered value of the reflected light becomes random and it becomes difficult to obtain a reliable data value. Further, the conventional device requires a complicated calculation, etc., so that the price of the device is soared and a sophisticated optical system system is required.

【0005】[0005]

【発明の目的】そこで、本発明は係る従来の問題点に着
目してなされたもので、かかる問題点を解消して、通常
の精密仕上げ(表面形状の振幅がレーザーの波長と同一
か大きいとき)の加工中に測定検知し、予定する値まで
の加工を円滑に遂行することができ、かつ、ワーク表面
に存在する油剤膜透過性も上昇させ、さらに、装置価格
も低廉となり、操作性もよいこととなる表面粗さの検知
方法及びその装置を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, the present invention has been made by paying attention to the above-mentioned conventional problems, and by solving such problems, ordinary precision finishing (when the amplitude of the surface shape is equal to or larger than the laser wavelength) ) Can be measured and detected during processing, and the processing up to the planned value can be performed smoothly, and the permeability of the oil film on the surface of the workpiece can be increased, and the device price is low and operability is also high. It is an object of the present invention to provide a method for detecting surface roughness and a device therefor which are favorable.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明に係る表面粗さの検知方法及びその装置は、
信号発生器により電気的に得た発振信号を位相整形して
スペクトル幅をもつ波束信号を生成して光変調し、この
光変調した信号を目的ワークの表面に照射し、その反射
信号を受光手段で受けて電気信号に復調して位相同期さ
せるとともに、前記した位相整形された信号及び復調信
号をアナログ−ディジタルコンバータを介してコンピュ
ータに入力させて継続的に目的ワークの粗さ値の変化を
一定値に達するまで監視させることと複数の発振器と、
加算器とを少なくとも有する光源電気回路部と、その光
源電気回路部で生成された波束波の光信号の発光部と、
その光信号の反射光の受光部とを有し、かつ、前記した
光信号への変調前及び復調後の電気信号を入力させ、光
の散乱特性を監視するコンピュータとを備えていること
とを特徴としている。
In order to achieve this object, a surface roughness detecting method and apparatus according to the present invention include:
The oscillation signal electrically obtained by the signal generator is subjected to phase shaping to generate a wave packet signal having a spectral width, which is optically modulated, the surface of the target work is irradiated with this optically modulated signal, and the reflected signal is received by the light receiving means. The signal is demodulated to an electric signal to be phase-synchronized, and the phase-shaped signal and the demodulated signal are input to a computer through an analog-digital converter to continuously change the roughness value of the target work. To monitor until reaching the value and multiple oscillators,
A light source electric circuit section having at least an adder, and a light emitting section for an optical signal of a wave packet generated by the light source electric circuit section,
A light receiving part for reflected light of the optical signal, and a computer for inputting an electric signal before and after demodulation to the optical signal and monitoring a light scattering characteristic. It has a feature.

【0007】[0007]

【作用】係る構成とすることで、ワークを加工しなが
ら、波束波即ち、複数の波長のレーザーの重ね合せで得
られ、全体的に波長を擬似的に長く構成されたレーザー
を加工表面に照射することで、表面振幅および表面粗さ
空間波長との比較上、単一レーザー波長よりも小さい表
面振幅をもつ超精密仕上げ面での測定と近似的とするこ
とができ、通常の精密仕上げの粗さに対して理論的解析
性のある測定とすることができる。また、その波束波を
連続的に加工中のワーク表面に照射し、粗さ値の変化を
監視することで予定する粗さ値まで加工が進行すれば、
その時点で加工処理を停止する制御を行なうことができ
るのである。
With this structure, while processing the workpiece, the processed surface is irradiated with a wave packet, that is, a laser having a plurality of wavelengths superposed, and the wavelength of which is pseudo long. In comparison with the surface amplitude and surface roughness spatial wavelength, it can be approximated to the measurement on an ultra-precision surface with a surface amplitude smaller than a single laser wavelength. The measurement can be theoretically analyzed. Also, if the wave packet is continuously irradiated to the surface of the workpiece being machined, and if the machining progresses to the expected roughness value by monitoring the change in roughness value,
At that point, control for stopping the processing can be performed.

【0008】[0008]

【実施例】次に、本発明の実施の一例を図1乃至図5を
参照して説明する。図1は本発明を実施した表面粗さ検
出装置のブロック図、図2は同じく光源部の回路ブロッ
ク図、図3は油膜透過性を示す単一正弦波と波束波の波
形図、図4は波束波による表面粗さ測定結果を示すもの
で短波長波束と長波長波束のグラフ、図5は波束波の形
成手順を示す波形図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will now be described with reference to FIGS. FIG. 1 is a block diagram of a surface roughness detecting device embodying the present invention, FIG. 2 is a circuit block diagram of the light source section, FIG. 3 is a waveform diagram of a single sine wave and a wave packet wave showing oil film permeability, and FIG. FIG. 5 is a graph showing short-wavelength wavepackets and long-wavelength wavepackets, showing a surface roughness measurement result by wavepacket waves, and FIG. 5 is a waveform diagram showing a procedure of forming wavepacket waves.

【0009】まず、図1にあって1は信号発生器、即
ち、電気回路で構成される発振器である。この信号発生
器1で発生した発振信号は位相整形されて変調回路2へ
送られる。この変調回路2までは電気信号状態でいわゆ
る時間振動波である。また、位相整形された信号は第一
のアナログ−ディジタルコンバータ3を介してパーソナ
ルコンピュータ4へ入力される。
First, in FIG. 1, 1 is a signal generator, that is, an oscillator composed of an electric circuit. The oscillation signal generated by the signal generator 1 is phase-shaped and sent to the modulation circuit 2. Up to the modulation circuit 2, it is a so-called time-oscillation wave in an electric signal state. The phase-shaped signal is input to the personal computer 4 via the first analog-digital converter 3.

【0010】また、光変調された信号(後述するように
波束波となる)をワークの表面に照射し、その反射光を
フォトダイオードで受光(光検波)し、その受光信号を
復調回路5で電気信号に復調する。この復調された信号
は位相同期される(電圧値の変化を見る)が、同時に第
二のアナログ−ディジタルコンバータ6を介してパーソ
ナルコンピュータ4へ送られることとなる。即ち、表面
仕上げ状況を電気信号として画面上目視可能としている
(アナライザーによる解析)。
Further, a light-modulated signal (which becomes a wave-pack wave as described later) is applied to the surface of the work, and the reflected light is received (photodetected) by a photodiode, and the received signal is demodulated by the demodulation circuit 5. Demodulate to an electric signal. This demodulated signal is phase-synchronized (see the change in voltage value), but at the same time, it is sent to the personal computer 4 via the second analog-digital converter 6. That is, the surface finish status is made visible on the screen as an electric signal (analysis by an analyzer).

【0011】以上が、検知装置の概要であるが、ここ
で、ワークの表面に照射される光信号を生成する光源部
について説明すると、図2に示すように発振器は複数個
用意され、各々異なる波長の発振信号が生成される。こ
の各発振信号は可変抵抗器を介して加算器により重合さ
れた波束信号とされ、ドライバを経由してLEDから発
光される。なお、この発光は光変調方式を用いるため赤
外発光ダイオードが使用され、受光素子としてはピンフ
ォトダイオードが使用される。
The above is an outline of the detection apparatus. Here, the light source section for generating an optical signal for irradiating the surface of the work will be described. As shown in FIG. 2, a plurality of oscillators are prepared and different from each other. A wavelength oscillating signal is generated. Each of these oscillation signals is converted into a wave packet signal by the adder via the variable resistor, and emitted from the LED via the driver. Since this light emission uses a light modulation method, an infrared light emitting diode is used, and a pin photodiode is used as a light receiving element.

【0012】また、図3には入力信号として正弦波信号
を用いた場合(A)と、波束信号を用いた場合(B)の
波形(テスト結果)を示す。(A)、(B)の各々に対
応する(1)は入力波形、(2)は油膜ありのときの反
射波形、(3)は油膜なしのときの反射波形である。こ
こで使用切削油はスピンドル油2種3号を用い、照射光
は垂直入射とし、表面は0.2Sラップ仕上げとした。
この図の反射波形の比較から(A)では油膜ありの場合
(2)の波形振幅が油膜なし(3)のときより小さく、
(B)ではその差が著しくないことより、波束波の方が
反射光に減衰が少なく油膜透過性に優れていることが判
かる。
FIG. 3 shows waveforms (test results) when a sine wave signal is used as an input signal (A) and when a wave packet signal is used (B). (1) corresponding to each of (A) and (B) is an input waveform, (2) is a reflected waveform with an oil film, and (3) is a reflected waveform without an oil film. The cutting oil used here was spindle oil type 2, No. 3, irradiation light was vertically incident, and the surface was 0.2S lap finish.
From the comparison of the reflected waveforms in this figure, in (A), the waveform amplitude in the case with the oil film (2) is smaller than that in the case without the oil film (3),
Since the difference is not significant in (B), it can be seen that the wave packet has less attenuation of reflected light and is superior in oil film permeability.

【0013】さらに、図4には波束波による表面粗さ判
定(測定)の結果を示す。グラフ中白い点が油膜なし、
黒い点が油膜ありの状態で(A)は入力電気信号のスペ
クトル幅を変化させて作った波束波のうち短波長、
(B)には長波長の照射光の場合を示し、その散乱光強
度を粗さ値(中心線平均粗さRa)に対して示したもの
で、表面粗さの小さい場合には(A)が、大きい場合に
は(B)が、それぞれ散乱光強度が大きく変化するのが
判かる(図中矢印)。これはその形状の周波数に対応す
る波束が照射された時に散乱特性が変わることを意味
し、ここに表面粗さ値の予定の精度を設定し対応させる
ことで加工中のワーク表面の仕上げ度を検知監視するこ
とができることとなる。
Further, FIG. 4 shows the result of the surface roughness judgment (measurement) by the wave packet. The white dots in the graph indicate no oil film,
(A) shows the short wavelength of the wave packet generated by changing the spectral width of the input electric signal when the black dot is the oil film,
(B) shows the case of irradiation light with a long wavelength, and the scattered light intensity is shown with respect to the roughness value (center line average roughness Ra). When the surface roughness is small, (A) However, it can be seen that when (B) is large, the scattered light intensity changes greatly (arrow in the figure). This means that the scattering characteristics change when the wave packet corresponding to the frequency of the shape is irradiated, and by setting the expected accuracy of the surface roughness value here and making it correspond, the finishing degree of the workpiece surface during machining can be improved. It will be possible to detect and monitor.

【0014】正弦波は前記したように複数種発振生成さ
れるが、図5に示すように、例えばAとBの正弦波を重
ねるとCの状態となり、Dで示す包絡線の波長λ3が波
束波の波長として作用することとなり、この波束波の波
長λ3は予定する表面粗さ値の振幅と対応して生成して
いくことができる。
A plurality of types of sine waves are oscillated and generated as described above, but as shown in FIG. 5, for example, when the sine waves of A and B are overlapped, the state becomes C, and the wavelength λ 3 of the envelope shown by D is It acts as the wavelength of the wave packet, and the wavelength λ 3 of this wave packet can be generated corresponding to the amplitude of the surface roughness value to be planned.

【0015】本実施例に係る表面粗さの検知方法及び装
置は上記のように構成されている。従来、超精密仕上げ
の粗さ値測定にレーザーが使用可能なのは、照射面形状
の振幅がレーザーの波長より極めて小さい領域では散乱
光の空間分布は表面微細形状のパワースペクトル密度と
直接対応して散乱光の積分値から粗さ値を評価できるた
めで、この理論と対照させて波束波を送出して照射面形
状の振幅とその波束波の波長が略一致するあるいは照射
面形状が照射光(波束光)波長より小さい領域(精密仕
上領域)を作ることで超精密仕上げにおける理論を近似
的に適用できることとなる。
The surface roughness detecting method and apparatus according to the present embodiment are configured as described above. Conventionally, lasers can be used to measure roughness values for ultra-precision finishing because the spatial distribution of scattered light directly corresponds to the power spectral density of surface fine shapes in the region where the amplitude of the irradiation surface shape is extremely smaller than the wavelength of the laser. This is because the roughness value can be evaluated from the integrated value of light. In contrast to this theory, a wave packet wave is transmitted and the amplitude of the irradiation surface shape and the wavelength of the wave packet wave are substantially the same, or the irradiation surface shape is The theory in ultra-precision finishing can be applied approximately by creating a region (precision finishing region) smaller than the (light) wavelength.

【0016】即ち、超精密仕上げにおける理論とは、あ
る表面に平面波に近い波束を一定領域作り出して波の解
析量を積分量で考えると、表面からの結像面における振
幅分布は表面形状のフーリエ変換となる。そして、その
フーリエ係数が形状の空間周波数に対応するので、表面
粗さの形状は、像の強度分布と相関し合う。具体的に
は、上記振幅分布を空間周波数帯域で積分したものは、
その帯域幅におけるRq(二乗平均平方根粗さ)を与え
ると考えられている。そこで、小さな波数Δkによる長
さΔ〜2π/Δkの波束を作ると、光変調波は元来より
も大きな波長をもつこととなって超精密仕上げの粗さ測
定理論が、もっと粗さの値の大きな領域でも近似的に適
用することができることとなる。
In other words, the theory in ultra-precision finishing is that when a wave packet close to a plane wave is created in a certain area on a certain surface and the analysis amount of the wave is considered as an integral amount, the amplitude distribution on the image plane from the surface is the Fourier distribution of the surface shape. It becomes a conversion. Then, since the Fourier coefficient corresponds to the spatial frequency of the shape, the shape of the surface roughness correlates with the intensity distribution of the image. Specifically, the one obtained by integrating the above amplitude distribution in the spatial frequency band is
It is believed to give Rq (root mean square roughness) in that bandwidth. Therefore, if a wave packet with a length Δ to 2π / Δk is created with a small wave number Δk, the light modulation wave has a wavelength larger than originally, and the roughness measurement theory of ultra-precision finishing uses a more rough value. It can be applied approximately even in a large region of.

【0017】[0017]

【発明の効果】本発明に係る表面粗さの検知方法及び装
置は上述のように構成されている。そのため、通常の精
密仕上げ、あるいはもっと粗さ値の大きな領域にあって
も光によって信頼のできる測定値が得られることとな
り、予定する粗さ値に合せて波束波の波長を選択生成
し、継続的に監視することでその粗さ値に到達したこと
を検知することができ、不必要な加工を続けたり、再測
定する必要もなくなる。また、構成的にも従来に比して
安価なものとでき、加工中の測定にあっての信号波の油
膜透過性も大きく向上し、実用的なものとなっている。
The method and apparatus for detecting surface roughness according to the present invention are constructed as described above. Therefore, a reliable measured value can be obtained by light even in a normal precision finish or in a region where the roughness value is larger, and the wavelength of the wave packet is selected and generated according to the expected roughness value and continued. It is possible to detect that the roughness value has been reached by performing a dynamic monitoring, and it is not necessary to continue unnecessary processing or to measure again. In addition, the structure can be made cheaper than the conventional one, and the oil film permeability of the signal wave in the measurement during processing is greatly improved, which is practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した表面粗さの検知装置のブロッ
ク図である。
FIG. 1 is a block diagram of a surface roughness detection device embodying the present invention.

【図2】光源部の回路ブロック図である。FIG. 2 is a circuit block diagram of a light source unit.

【図3】油剤透過性を示す波形図で、(A)は単一正弦
波、(B)は波束波の波形図である。
FIG. 3 is a waveform diagram showing the oil permeability, (A) is a single sine wave, and (B) is a wave packet wave diagram.

【図4】波束波による表面粗さ測定結果を示すグラフで
(A)は短波長波束、(B)は長波長波束のグラフであ
る。
FIG. 4 is a graph showing a surface roughness measurement result by a wave packet, where (A) is a short wavelength wave packet and (B) is a long wavelength wave packet.

【図5】波束波の生成を説明する波形図である。FIG. 5 is a waveform diagram illustrating generation of a wave packet.

【図6】一般的な非接触方式による表面粗さ測定機構の
ブロック図である。
FIG. 6 is a block diagram of a general non-contact type surface roughness measuring mechanism.

【符号の説明】[Explanation of symbols]

1 信号発生器 2 変調回路 3 第一のアナログ−ディジタルコンバータ 4 パーソナルコンピュータ 5 復調回路 6 第二のアナログ−ディジタルコンバータ 1 signal generator 2 modulation circuit 3 first analog-digital converter 4 personal computer 5 demodulation circuit 6 second analog-digital converter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 信号発生器により電気的に得た発振信号
を位相整形してスペクトル幅をもつ波束信号を生成して
光変調し、この光変調した信号を目的ワークの表面に照
射し、その反射信号を受光手段で受けて電気信号に復調
して位相同期させるとともに、前記した位相整形された
信号及び復調信号をアナログ−ディジタルコンバータを
介してコンピュータに入力させて継続的に目的ワークの
粗さ値の変化を一定値に達するまで監視させることを特
徴とする表面粗さの検知方法。
1. An oscillation signal electrically obtained by a signal generator is subjected to phase shaping to generate a wave packet signal having a spectral width and is optically modulated, and the optically modulated signal is applied to the surface of a target work. The reflected signal is received by the light receiving means and demodulated into an electric signal for phase synchronization, and the phase-shaped signal and the demodulated signal are input to the computer through the analog-digital converter to continuously obtain the roughness of the target work. A method for detecting surface roughness, characterized in that the change in the value is monitored until it reaches a certain value.
【請求項2】 複数の発振器と、加算器とを少なくとも
有する光源電気回路部と、その光源電気回路部で生成さ
れた波束波の光信号の発光部と、その光信号の反射光の
受光部とを有し、かつ、前記した光信号への変調前及び
復調後の電気信号を入力させ、光の散乱特性を監視する
コンピュータとを備えていることを特徴とする表面粗さ
の検知装置。
2. A light source electric circuit section having at least a plurality of oscillators and an adder, a light emitting section for an optical signal of a wave packet generated by the light source electric circuit section, and a light receiving section for reflected light of the optical signal. And a computer for inputting an electric signal before and after demodulation to the above-mentioned optical signal and monitoring a light scattering characteristic.
JP24601993A 1993-09-06 1993-09-06 Method and device for sensing surface roughness Pending JPH0771946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24601993A JPH0771946A (en) 1993-09-06 1993-09-06 Method and device for sensing surface roughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24601993A JPH0771946A (en) 1993-09-06 1993-09-06 Method and device for sensing surface roughness

Publications (1)

Publication Number Publication Date
JPH0771946A true JPH0771946A (en) 1995-03-17

Family

ID=17142248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24601993A Pending JPH0771946A (en) 1993-09-06 1993-09-06 Method and device for sensing surface roughness

Country Status (1)

Country Link
JP (1) JPH0771946A (en)

Similar Documents

Publication Publication Date Title
US7936464B2 (en) Determining surface and thickness
EP1108501B1 (en) Apparatus and method for in-situ endpoint detection and monitoring for chemical mechanical polishing operations
US4650330A (en) Surface condition measurement apparatus
JPH0428005Y2 (en)
KR100473923B1 (en) Ellipsometer with two lasers
US20090027688A1 (en) Multi-channel laser interferometric method and apparatus for detection of ultrasonic motion from a surface
JPH06148072A (en) Method and instrument for measuring concentration of gas
JPH0771946A (en) Method and device for sensing surface roughness
KR101731273B1 (en) Method and device for detecting motion
US6952261B2 (en) System for performing ellipsometry using an auxiliary pump beam to reduce effective measurement spot size
US6295131B1 (en) Interference detecting system for use in interferometer
JPH07159144A (en) Monitoring and judging method for surface roughness in noncontact type measurement
JP2002323303A (en) Diafragm thickness measurement method, its device, and manufacturing method for semiconductor device
JPS6371675A (en) Laser distance measuring instrument
JPS6018288A (en) Monitoring method of laser working device
JPH06294777A (en) Measuring method for ultrasonic vibration
Suemoto Laser heterodyne and homodyne measurements of impulsive displacement
JPH05288720A (en) Evaluating method of sample by ultrasonic vibration measurement
JPH07229911A (en) Speedometer
JPH0536727B2 (en)
JPH0339563B2 (en)
JP2629319B2 (en) Film thickness monitor
JPH03148005A (en) Non-contacting surface roughness measuring apparatus for on-machine measurement
CN114562942A (en) Measuring system and measuring method
JPH02291913A (en) Optical-displacement measuring apparatus