JPH0771945A - Method and device for measuring surface shape - Google Patents

Method and device for measuring surface shape

Info

Publication number
JPH0771945A
JPH0771945A JP4211670A JP21167092A JPH0771945A JP H0771945 A JPH0771945 A JP H0771945A JP 4211670 A JP4211670 A JP 4211670A JP 21167092 A JP21167092 A JP 21167092A JP H0771945 A JPH0771945 A JP H0771945A
Authority
JP
Japan
Prior art keywords
light
irradiation
angle
skin
paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4211670A
Other languages
Japanese (ja)
Inventor
Koji Minami
浩治 南
Hajime Hotta
肇 堀田
Fumio Maruyama
文夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Sumita Optical Glass Inc
Original Assignee
Kao Corp
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Sumita Optical Glass Inc filed Critical Kao Corp
Priority to JP4211670A priority Critical patent/JPH0771945A/en
Publication of JPH0771945A publication Critical patent/JPH0771945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To precisely analyze the surface condition of an object as to gloss, etc., by applying light to the surface for analysis of an object with the varying angle of illumination of plural illuminating light paths, measuring the reflectivity of the light, and comparing the reflectivity with a reference reflectivity measured in advance. CONSTITUTION:To measure the surface reflectivity of the skin of a human body, a head 4 is made to abut on a predetermined portion to be measured, and inputs from an input portion 6, a control portion 7 and an output portion 8 are turned on to measure the surface reflectivity of the skin. Light is applied to the surface for analysis of an object from one of plural illuminating light paths 2a, 2b and a plurality of receiving light paths 3c-3d each receive the illuminating light reflected from the surface for analysis. While an angle of analysis, which is the sum of the angle at which the optical paths 3c-3e receive the light and the angle at which the optical paths 2a, 2b give off light, is varied by the selecting of the optical paths 2a, 2b in sequence, the reflectivity of the light on the surface for analysis is measured and compared with the premeasured reflectivity of light on a reference surface, so as to analyze the surface condition of the object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体の表面の状態、特
に人体の皮膚表面における「質感」、「光沢」や「つ
や」等の状態を解析する表面性状測定方法及びその装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface texture measuring method and apparatus for analyzing the surface condition of an object, particularly the condition such as "texture", "gloss" and "luster" on the skin surface of a human body.

【0002】[0002]

【従来の技術】一般に、物体表面の凹凸、平坦度、光
沢、つや等の表面状態を解析する方法として、物体表面
における光反射率を測定する方法が知られている。例え
ば、特開昭52ー62082号公報には、鏡面の表面に
光を照射し、該照射光の反射光を検光器が検出して、正
反射強度を測定することによって、鏡の平坦度等の表面
状態を解析する方法が開示されている。
2. Description of the Related Art Generally, as a method of analyzing surface conditions such as unevenness, flatness, gloss, and gloss of an object surface, a method of measuring light reflectance on the object surface is known. For example, in Japanese Unexamined Patent Publication (Kokai) No. 52-62082, the surface of the mirror surface is irradiated with light, the reflected light of the irradiation light is detected by an analyzer, and the specular reflection intensity is measured to determine the flatness of the mirror. A method for analyzing the surface condition of the above is disclosed.

【0003】また、特開平2ー57949号公報には、
照射器を固定し、受光器の受光角を種々変化させて皮膚
表面を測定する技術が開示されており、即ち、入射角を
一定とし、受光角を、20°、45°、60°等種々変
化させ、それぞれの角度における反射面からの反射光の
強度を測定し、これによって鏡面光沢度等を解析してい
る。
Further, Japanese Patent Laid-Open No. 2-57949 discloses that
A technique is disclosed in which the illuminator is fixed and the light-receiving angle of the light-receiving device is variously changed to measure the skin surface, that is, the incident angle is constant and the light-receiving angle is variously 20 °, 45 °, 60 °, and the like. The intensity of the reflected light from the reflecting surface at each angle is changed, and the specular glossiness and the like are analyzed.

【0004】[0004]

【発明が解決しようとする課題】しかし乍ら、上述した
前者の従来技術にあっては、入射角と受光角とは、それ
ぞれ固定されており、常に一定の角度を形成して測定す
るものであるから、対象となる被解析面が鏡等における
単なる平坦度を測定する場合には、このように、一定の
反射光のみを受光するもので充分であるが、人体の肌等
の複雑な方向の凹凸を有する被解析面の光沢等の状態を
解析することができない。
However, in the former prior art described above, the incident angle and the light receiving angle are fixed, and a constant angle is always formed for measurement. Therefore, when measuring the flatness of a target surface to be analyzed, such as a mirror, it is sufficient to receive only a certain amount of reflected light, but in a complicated direction such as the skin of the human body. It is not possible to analyze the condition such as the gloss of the surface to be analyzed having the unevenness.

【0005】一方、後者の従来技術にあっては、受光角
を変化させるものであるから、皮膚等の複雑な凹凸を有
する表面状態の解析をすることができるが、受光光路の
なす角度を変化させただけでは、被解析面における微小
素面分布を測定することができない。ここで、微小素面
は、皮膚の凹凸面の壁面を形成する種々の方向を向いた
面であって、微小素面分布は、一定の方向を向いた微小
素面の分布状態をいう。即ち、肌等のような複雑な凹凸
を有する被解析面において光沢等を測定する場合、単に
平坦度や反射の度合では足りず、凹凸面を形成する微小
素面分布を測定することが必要である。
On the other hand, in the latter prior art, since the light receiving angle is changed, it is possible to analyze the surface state having complicated irregularities such as skin, but the angle formed by the light receiving optical path is changed. It is not possible to measure the minute surface distribution on the surface to be analyzed only by performing the above. Here, the minute surface is a surface that faces various directions forming the wall surface of the uneven surface of the skin, and the minute surface distribution means a distribution state of the minute surface that faces a certain direction. That is, when measuring gloss or the like on a surface to be analyzed having complicated irregularities such as the skin, it is necessary to measure the fine surface distribution that forms the irregular surface, because the degree of flatness or reflection is not sufficient. .

【0006】具体的には、粗い形状をもった物体表面の
反射光は、広い角度範囲にわたって分布するが、反射光
分布の測定を効率よく行うためには、受光角度のみなら
ず、照射角度を種々変化させ、しかもその測定を自動的
に短時間でおこなう必要がある。また、粗い形状をもっ
た物体表面の「つや」、「光沢」等の見え方と、その物
体の表面の形状とを関連させて表面状態の解析をおこな
うためには、照射光路と受光光路とのなす角度を種々変
化させて反射強度の測定を行う必要がある。なぜなら、
この方法で測定した反射光分布は、照射方向と受光方向
を2等分する方向を向いた微小素面の分布に一致するか
らである。しかし、従来の技術では、かかる微小素面分
布を測定することができず、複雑な凹凸を有する皮膚表
面の「肌の光沢」や「肌のつや」を適確に測定すること
ができないという問題点があった。
Specifically, the reflected light on the surface of the object having a rough shape is distributed over a wide angle range. However, in order to efficiently measure the reflected light distribution, not only the light receiving angle but also the irradiation angle is set. It is necessary to make various changes and automatically perform the measurement in a short time. Also, in order to analyze the surface condition by associating the appearance of "luster", "glossy", etc. on the surface of an object with a rough shape with the shape of the surface of the object, the irradiation light path and the receiving light path must be combined. It is necessary to measure the reflection intensity by variously changing the angle formed by. Because
This is because the reflected light distribution measured by this method coincides with the distribution of the minute bare surface that bisects the irradiation direction and the light receiving direction. However, the conventional technology cannot measure such a minute surface distribution, and cannot accurately measure the “skin gloss” and “skin gloss” of the skin surface having complicated unevenness. was there.

【0007】従って、本発明の目的は、物体表面におけ
る「質感」、「光沢」、「つや」等の状態を適確に解析
できる表面性状測定方法及びその装置を提供することで
ある。
Accordingly, an object of the present invention is to provide a surface texture measuring method and apparatus capable of accurately analyzing the states of "texture", "gloss", "luster", etc. on the surface of an object.

【0008】[0008]

【課題を解決するための手段】本発明は、互いに照射角
の異なる複数の照射光路の一つから物体表面の被解析面
に光を照射し、被解析面で反射した上記照射光の反射光
を互いに受光角の異なる複数の受光光路で受光させ、上
記複数の照射光路を種々選択することによって照射光路
の照射角を変化させて上記受光角と上記照射角との和で
ある解析角を種々変え、複数の解析角における被解析面
に対する光の反射率を測定し、予め測定された基準とな
る表面の光の反射率と比較して物体の表面の状態を解析
することを特徴とする表面性状測定方法を提供すること
により、上記目的を達成したものである。更に本発明
は、物体表面の被解析面に光を照射する、互いに照射角
が異なる複数の照射光路と、上記被解析面で反射した上
記照射光の反射光を受光する複数の受光光路と、上記複
数の照射光路を種々選択する入力部と、上記全ての受光
光路から受光した光の反射率を出力信号に変換する制御
部と、予め測定された基準となる表面の光の反射率と比
較して皮膚表面の状態を解析する出力部とを備えること
を特徴とする表面性状測定装置を提供することにより上
記目的を達成したものである。
SUMMARY OF THE INVENTION The present invention irradiates a surface to be analyzed of an object surface with light from one of a plurality of irradiation light paths having different irradiation angles, and the reflected light of the irradiation light reflected by the surface to be analyzed. Are received by a plurality of light-receiving optical paths having different light-receiving angles, and the irradiation angle of the irradiation optical path is changed by variously selecting the plurality of irradiation optical paths to obtain various analysis angles that are the sum of the light-receiving angle and the irradiation angle. Alternately, the surface is characterized by measuring the light reflectance to the surface to be analyzed at a plurality of analysis angles and comparing the light reflectance of the reference surface measured in advance to analyze the state of the surface of the object. The above object is achieved by providing a property measuring method. Furthermore, the present invention irradiates light on the surface to be analyzed of the object surface, a plurality of irradiation optical paths having mutually different irradiation angles, and a plurality of light receiving optical paths for receiving reflected light of the irradiation light reflected on the surface to be analyzed, An input unit for selecting various ones of the plurality of irradiation light paths, a control unit for converting the reflectance of the light received from all the light receiving optical paths into an output signal, and comparison with the reflectance of the light on the reference surface measured in advance. The present invention has achieved the above object by providing a surface texture measuring device characterized by comprising an output unit for analyzing the condition of the skin surface.

【0009】[0009]

【作用】本発明の表面性状測定方法は、まず、予め所定
の角度に設定された複数の照射光路の中の一つを特定
し、照射光を物体表面の被解析面に導き、互いに受光角
の異なる複数の受光光路における反射光強度を測定す
る。続いて、照射角度の異なる他の照射光路についても
同様に測定し、種々の照射角度及び種々の受光角度にお
ける反射光強度を測定する。次に、上述した反射率の測
定値から反射光分布を予め基準となる反射光分布と比較
して、被測定物体表面の「質感」、「光沢」、「つや」
等の表面状態を解析する。
According to the surface texture measuring method of the present invention, first, one of a plurality of irradiation light paths set in advance at a predetermined angle is specified, the irradiation light is guided to the surface to be analyzed of the object surface, and the light receiving angles are mutually different. The reflected light intensities in the plurality of light receiving optical paths different from each other are measured. Subsequently, the other irradiation optical paths having different irradiation angles are similarly measured, and the reflected light intensities at various irradiation angles and various light receiving angles are measured. Next, the reflected light distribution is compared with a reference reflected light distribution in advance from the above-described reflectance measurement values, and the "texture", "gloss", and "luster" of the measured object surface are compared.
Analyze the surface condition of the etc.

【0010】[0010]

【実施例】以下に、添付図面を参照して、本考案の好ま
しい実施例を説明する。尚、以下の実施例では、被解析
面として人体の肌を例に用いた場合について説明する。
最初に、本発明の実施例に用いられる表面性状測定装置
1について説明する。表面性状測定装置1には、図1〜
図4に示すように、照射光路2a〜2d及び受光光路3
a〜3eが配置され、被解析面に当てるヘッド4と、ヘ
ッド4における照射光路2a〜2d及び受光光路3a〜
3eを制御する本体5から構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. In the following examples, the case where human skin is used as the analyzed surface will be described.
First, the surface texture measuring device 1 used in the examples of the present invention will be described. The surface texture measuring device 1 is shown in FIG.
As shown in FIG. 4, the irradiation optical paths 2a to 2d and the receiving optical path 3 are shown.
a to 3e are arranged, the head 4 to be applied to the surface to be analyzed, the irradiation light paths 2a to 2d and the light reception light paths 3a to 3d in the head 4 are arranged.
It is composed of a main body 5 for controlling 3e.

【0011】本体5は、照射光路2a〜2dの光源及び
受光光路3a〜3eを制御する入力部6と、入力部の作
動及び反射率の出力信号を制御する制御部7と、該出力
信号を処理して表示し、または予め測定された基準とな
る表面の光の反射率と比較して皮膚表面の状態を解析す
る出力部8とを備えており、更に、表面性状測定装置1
には、被解析面の表面状態を写し出すビデオカメラ9が
装備されている。
The main body 5 includes an input section 6 for controlling the light sources of the irradiation optical paths 2a to 2d and the receiving optical paths 3a to 3e, a control section 7 for controlling the operation of the input section and the output signal of the reflectance, and the output signal. An output unit 8 for analyzing the skin surface condition by processing and displaying or comparing with the light reflectance of the reference surface measured in advance, and further, the surface texture measuring device 1
Is equipped with a video camera 9 for displaying the surface state of the surface to be analyzed.

【0012】ヘッド4は、手の平程度のコンパクトなサ
イズに形成されており、片手で持って肌の表面上を移動
できる寸法である。このヘッド4には、図2〜図4に示
すように、入射光路として4本の入射用光ファイバー2
a〜2dと、受光光路として5本の受光用光ファイバー
3a〜3eが配置されており、これらの入射用光ファイ
バー2a〜2dと受光用光ファイバー3a〜3eとは、
凹み状の半球面11において、それぞれ所定角度を形成
するように配置されている。
The head 4 is formed in a compact size of the palm of the hand, and has a size such that it can be held on one hand and moved on the surface of the skin. As shown in FIGS. 2 to 4, the head 4 has four incident optical fibers 2 as incident optical paths.
a to 2d and five light receiving optical fibers 3a to 3e are arranged as a light receiving optical path, and these incident optical fibers 2a to 2d and light receiving optical fibers 3a to 3e are
The concave hemispherical surfaces 11 are arranged so as to form respective predetermined angles.

【0013】即ち、図2において、入射用光ファイバー
2a、2b及び受光用光ファイバー3c、3d、3e
と、入射用光ファイバー2c、2d及び受光用光ファイ
バー3c、3b、3aとが、凹状球面において、それぞ
れ一列状に配置されており、互いの列が図2において直
交するように配置されている。そして、各光ファイバー
2a〜2d、3a〜3eはそれぞれ所定の角度θ1 、θ
2 、θ3 、θ4 、θ5 、θ6 、θ7 、θ8 を形成してい
る。ここで、図3及び図4において、θ1 は入射用光フ
ァイバー2aと入射用光ファイバー2bとの成す角度、
θ2 は入射用光ファイバー2bと受光用光ファイバー3
cとの成す角度、θ3 は受光用光ファイバー3cと受光
用光ファイバー3dとの成す角度、θ4 は受光用光ファ
イバー3dと受光用光ファイバー3eとの成す角度、θ
5 は受光用光ファイバー3aと受光用光ファイバー3b
との成す角度、θ6 は受光用光ファイバー3bと受光用
光ファイバー3cとの成す角度、θ7 は受光用光ファイ
バー3cと入射用光ファイバー2cとの成す角度、θ8
は受光用光ファイバー3cと入射用光ファイバー2cと
の成す角度である。
That is, in FIG. 2, incident optical fibers 2a, 2b and light receiving optical fibers 3c, 3d, 3e are shown.
, And the optical fibers 2c, 2d for incidence and the optical fibers 3c, 3b, 3a for light reception are arranged in a line on the concave spherical surface, and the lines are arranged so as to be orthogonal to each other in FIG. The optical fibers 2a to 2d and 3a to 3e have predetermined angles θ 1 and θ, respectively.
2 , θ 3 , θ 4 , θ 5 , θ 6 , θ 7 , and θ 8 are formed. Here, in FIG. 3 and FIG. 4, θ 1 is the angle formed by the incident optical fiber 2a and the incident optical fiber 2b,
θ 2 is an incident optical fiber 2b and a light receiving optical fiber 3
angle formed is c, the angle theta 3 formed by the light-receiving optical fibers 3d and light receiving optical fiber 3c, the angle theta 4 is formed between the light-receiving optical fiber 3e and the light receiving optical fiber 3d, theta
5 is a light receiving optical fiber 3a and a light receiving optical fiber 3b
Angle between the bets, the angle theta 6 formed between the light-receiving optical fiber 3c and the light receiving optical fiber 3b, the angle theta 7 formed between the incident optical fiber 2c and the light receiving optical fiber 3c, theta 8
Is an angle formed by the light receiving optical fiber 3c and the incident optical fiber 2c.

【0014】かかる各角度θ1 〜θ8 は、任意の角度に
設定されるが、本実施例では、θ1が30°、θ2 が4
5°、θ3 が15°、θ4 が30°、θ5 が30°、θ
6 が30°、θ7 が30°、θ8 が30°である。合計
9本の各入射用光ファイバー2a〜2d及び受光用光フ
ァイバー3a〜3eはそれぞれ入力部6に接続されてお
り、その入射及び受光が制御されている。ヘッド4に
は、更にビデオカメラの映像取り込み用ファイバー12
が配置されており、ビデオカメラによる撮影ができるよ
うになっている。
Although each of the angles θ 1 to θ 8 is set to an arbitrary angle, in the present embodiment, θ 1 is 30 ° and θ 2 is 4 °.
5 °, θ 3 15 °, θ 4 30 °, θ 5 30 °, θ
6 is 30 °, θ 7 is 30 °, and θ 8 is 30 °. A total of nine incident optical fibers 2a to 2d and light receiving optical fibers 3a to 3e are connected to the input unit 6, respectively, and their incidence and light reception are controlled. The head 4 is further provided with a fiber 12 for capturing the image of the video camera.
Has been set up so that you can shoot with a video camera.

【0015】入力部6は、光源として、各入射用光ファ
イバー2a〜2dの基端に接続された4個のランプ1
3、及びランプスイッチ14、ランプ点灯制御装置15
が設けられており、所定の入射用光ファイバー2a〜2
dから選択的に且つ連続的に順次光照射するようになっ
ている。また、入力部6において、各受光用光ファイバ
ー3a〜3eの基端にはそれぞれ5個の受光素子16
と、アナログ信号増幅器17、増幅制御装置18が接続
されており、受光した光の強度を出力信号に変換するよ
うになっている。
The input section 6 serves as a light source, and the four lamps 1 connected to the base ends of the respective incident optical fibers 2a to 2d.
3, lamp switch 14, lamp lighting control device 15
Are provided, and predetermined optical fibers for incidence 2a-2
Light is selectively and continuously emitted from d. Further, in the input section 6, five light receiving elements 16 are respectively provided at the base ends of the respective light receiving optical fibers 3a to 3e.
The analog signal amplifier 17 and the amplification control device 18 are connected to convert the intensity of the received light into an output signal.

【0016】更に、入力部6には、映像取り込み用ファ
イバー12の映像の制御をするビデオカメラ19とこの
ビデオカメラを制御するカメラ制御装置20が設けら
れ、ファイバー12に取り込まれる映像を制御するよう
になっている。
Further, the input section 6 is provided with a video camera 19 for controlling the image of the image capturing fiber 12 and a camera controller 20 for controlling the image camera so as to control the image captured by the fiber 12. It has become.

【0017】制御部7には、ランプ点灯制御装置15と
増幅器制御装置18とに連結されたアナログ回路制御装
置21、アナログ信号増幅器に連結されたアナログ/デ
ジタル信号処理変換器22、ビデオカメラ19に連結さ
れ、出力装置8のCRT(カソードレイチップ)を制御
するCRT制御装置23が設けられており、これらのア
ナログ回路制御装置21、アナログ/デジタル信号処理
変換器22、CRT制御装置23はデジタル信号処理装
置24に接続されており、測定データをデジタル処理す
るとともにマイクロコンピュータからの命令を各装置に
伝達するようになっている。
The control unit 7 includes an analog circuit controller 21 connected to the lamp lighting controller 15 and an amplifier controller 18, an analog / digital signal processing converter 22 connected to an analog signal amplifier, and a video camera 19. A CRT control device 23 that is connected and controls the CRT (cathode ray chip) of the output device 8 is provided. These analog circuit control device 21, analog / digital signal processing converter 22, and CRT control device 23 are digital signals. It is connected to the processing unit 24 and digitally processes the measurement data and transmits a command from the microcomputer to each unit.

【0018】出力部8には、マイクロコンピュータ25
及びCRT26が設けられており、予め測定された基準
となる物体の表面の光の反射率と比較して、演算処理し
て、必要に応じてグラフ化し、またはランク付けによる
評価をするようになっている。具体的には、被解析面が
肌の場合には、予め「肌の光沢」やいわゆる「肌のつ
や」と反射率の相関関係を入力しておいたデータに基づ
いて演算し、かかる「肌荒れ状態」を指標する。一方、
CRT26では同時に、ビデオカメラで撮影した皮膚表
面の状態が拡大映像で表示される。
The output unit 8 has a microcomputer 25.
And a CRT 26 are provided so that the light reflectance of the surface of an object serving as a reference, which has been measured in advance, is compared, arithmetic processing is performed, graphing is performed as necessary, or evaluation by ranking is performed. ing. Specifically, when the surface to be analyzed is skin, calculation is performed based on the data in which the correlation between the “gloss of skin” or the so-called “skin gloss” and the reflectance is input in advance, and the “skin roughness” is calculated. Indicating "state". on the other hand,
At the same time, on the CRT 26, the state of the skin surface taken by the video camera is displayed as an enlarged image.

【0019】次に、表面性状測定装置を用いた本実施例
の作用について説明する。まず、人体の肌の表面反射率
を測定する際には、ヘッド4を測定すべき所定の部位、
例えば、額、頬に当接させ、入力部6、制御部7及び出
力部8の入力をONにして、肌の表面反射率を測定す
る。
Next, the operation of this embodiment using the surface texture measuring device will be described. First, when measuring the surface reflectance of human skin, the head 4 is to be measured at a predetermined site,
For example, it is brought into contact with the forehead and the cheek, and the inputs of the input unit 6, the control unit 7, and the output unit 8 are turned on, and the surface reflectance of the skin is measured.

【0020】本実施例による表面性状測定方法は、図3
及び図4に示すように、複数の照射光路2a〜2dの一
つから物体表面の被解析面に光を照射し、複数の受光光
路3a〜3eのそれぞれが上記照射光の被解析面に対す
る反射光を受光する。そして、上記複数の照射光路2a
〜2dを順次選択することによって、該受光光路3a〜
3eの受光角θ3 、θ4 、θ5 、θ6 と照射光路2a〜
2dの照射角θ1 、θ 2 、θ7 、θ8 との和である解析
角を種々変えて、複数の解析角における被解析面に対す
る光の反射率を測定し、予め測定された基準となる表面
の光の反射率と比較して物体の表面の状態を解析する。
かかる照射と受光は、まず、入力部6におけるランプ点
灯制御装置15と、増幅器制御装置18とにより制御に
され、すべての受光光路3a〜3eと所定の照射光路2
a〜2dの一つとが選択される。
The surface texture measuring method according to this embodiment is shown in FIG.
And, as shown in FIG. 4, one of the plurality of irradiation optical paths 2a to 2d.
From one object to the surface to be analyzed,
Each of the paths 3a to 3e faces the analyzed surface of the irradiation light.
Received reflected light. Then, the plurality of irradiation optical paths 2a
~ 2d are sequentially selected so that the light receiving optical path 3a ~
3e acceptance angle θ3, ΘFour, ΘFive, Θ6And irradiation light path 2a-
2d irradiation angle θ1, Θ 2, Θ7, Θ8Analysis that is the sum of
By changing the angle variously, it can be applied to the surface to be analyzed at multiple analysis angles.
The surface that serves as a pre-measured reference surface by measuring the reflectance of light
The state of the surface of the object is analyzed by comparing with the reflectance of the light.
The irradiation and the light reception are first performed by the ramp point in the input unit 6.
Control by the lamp control device 15 and the amplifier control device 18
All the light receiving optical paths 3a to 3e and the predetermined irradiation optical path 2
One of a to 2d is selected.

【0021】次に、下記表1に示す各解析角度における
照射角度と受光角度との組合わせから、マイクロコンピ
ュータ25、アナログ回路制御装置21による制御がな
され、順次該受光光路3a〜3eと照射光路2a〜2d
を選択するようになっている。
Next, the microcomputer 25 and the analog circuit control device 21 perform control based on the combination of the irradiation angle and the light receiving angle at each analysis angle shown in Table 1 below, and the light receiving optical paths 3a to 3e and the irradiation optical path are sequentially performed. 2a-2d
Is to be selected.

【0022】[0022]

【表1】 [Table 1]

【0023】例えば、解析角90°の場合には、照射角
度75°(θ1 +θ2 )となる照射光路2aと、受光角
度15°(θ3 )となる照射光路3d、次に、60°
(θ7+θ8 )となる2dと、30°(θ6 )となる3
b、更に45°(θ2 )となる2bと、45°(θ3
θ4 )となる3eの順に選択する。そして、受光光路に
より受光された光はアナログ信号増幅器17により増幅
後、アナログ/デジタル信号変換器22により所定の出
力信号に変換された後、マイクロコンピュータ25によ
り解析される。
For example, when the analysis angle is 90 °, the irradiation light path 2a having an irradiation angle of 75 ° (θ 1 + θ 2 ), the irradiation light path 3d having a light receiving angle of 15 ° (θ 3 ) and then 60 °.
2d, which is (θ 7 + θ 8 ), and 3 which is 30 ° (θ 6 ).
b, and 2b which becomes 45 ° (θ 2 ) and 45 ° (θ 3 +
θ 4 ) is selected in the order of 3e. The light received by the light receiving optical path is amplified by the analog signal amplifier 17, converted into a predetermined output signal by the analog / digital signal converter 22, and then analyzed by the microcomputer 25.

【0024】照射光は、図7に示すように、最も理想的
な状態では、光照射の皮膚表面に対する照射角に対して
これと等しい反射角を中心に空間的広がりをもって反射
する。従って、皮膚表面に対する照射光の入射角と等し
い反射角の角度に受光器6を保持すれば、皮膚表面にお
いて吸収される光を除きほとんどがそのまま反射光とし
て受光されることになる。しかし、皮膚表面は微小素面
により凹凸状に形成されているので、微小素面Aの反射
光は種々の方向に反射されるから、その面の入射角に対
する受光角を定めれば、所定方向に傾いた微小素面Aの
量に応じて受光する光の量が変化する。即ち、一方方向
に傾いた微小素面の分布は、解析角xを保持したまま受
光角を変えることにより、その角度における反射率Rを
測定する。反射率Rは、以下の式にて表わすことができ
る。
As shown in FIG. 7, in the most ideal state, the irradiation light is reflected with a spatial spread around a reflection angle equal to the irradiation angle of the light irradiation with respect to the skin surface. Therefore, if the light receiver 6 is held at an angle of reflection equal to the angle of incidence of the irradiation light on the skin surface, almost all light except the light absorbed on the skin surface will be received as reflected light. However, since the skin surface is formed in a concavo-convex shape by the minute surface, the reflected light from the minute surface A is reflected in various directions. Therefore, if the light receiving angle with respect to the incident angle of the surface is determined, the skin is inclined in the predetermined direction. The amount of light received changes according to the amount of the minute surface A. That is, for the distribution of the minute surface tilted in one direction, the reflectance R at that angle is measured by changing the light receiving angle while keeping the analysis angle x. The reflectance R can be expressed by the following formula.

【0025】[0025]

【数1】R(r)=f〔(i+r)/2〕*g(θ)## EQU1 ## R (r) = f [(i + r) / 2] * g (θ)

【0026】ここで、f〔(i+r)/2〕はフレネル
の反射率に基づく関数であって、受光角rによらず一定
である。g(θ)は、θ方向をむく微小素面Aの数であ
る。即ち、反射率R(r)は、微小素面Aの分布g
(θ)そのものとなる。従って、反射率R(r)を測定
することによって、微小素面Aの分布の状態が解析でき
るのである。
Here, f [(i + r) / 2] is a function based on the Fresnel reflectance and is constant regardless of the light receiving angle r. g (θ) is the number of minute bare surfaces A facing in the θ direction. That is, the reflectance R (r) is the distribution g of the minute surface A.
(Θ) itself. Therefore, by measuring the reflectance R (r), the distribution state of the minute surface A can be analyzed.

【0027】一方、マイクロコンピュータ25には、予
め所定の状態における皮膚の反射率を測定しておき、こ
れを基準データとして、これと比較することによって、
「肌の光沢」または「肌のつや」等を測定することがで
きる。基準データとしては、所望の皮膚状態を解析する
ものであれば種々のものを基準データとして用いること
ができる。そして、種々の基準データと測定値とを比較
して、被解析面における状態を、「肌の光沢」、「肌の
つや」、「肌の老化」等の程度を判断する。かかる判断
は、グラフを比較して解析者が行ってもよく、または、
コンピュータ25に予め上記したような基準となる所要
のデータを入力しておき、測定値をこれらのデータと比
較演算してその度合いを所定の段階で評価値、例えば
「A」、「B」等により表示すものであってもよい。
On the other hand, in the microcomputer 25, the reflectance of the skin in a predetermined state is measured in advance, and this is used as reference data to compare it with
The "skin gloss" or "skin gloss" etc. can be measured. As the reference data, various data can be used as long as it can analyze a desired skin condition. Then, various reference data and measured values are compared to determine the degree of "skin gloss", "skin gloss", "skin aging", etc., on the surface to be analyzed. Such a determination may be made by an analyst by comparing the graphs, or
Required data that serves as a reference as described above is input to the computer 25 in advance, the measured value is compared and calculated with these data, and the degree thereof is evaluated value at a predetermined stage, for example, "A", "B", etc. It may be displayed by.

【0028】尚、このような解析状態にもとづいて被験
者は「肌の光沢」や「肌のつや」に基づいた適当な肌の
手入れを行い、またはファンデーションの塗布を適当に
行うことができる。同時にCRT26では、皮膚表面の
拡大画面が表示され、光の反射率のみによらないで、目
視により表面性状を適確に把握する。
Based on such an analysis state, the subject can properly care for the skin based on "skin gloss" and "skin gloss" or apply the foundation appropriately. At the same time, on the CRT 26, an enlarged screen of the skin surface is displayed, and the surface texture is accurately grasped by visual observation without depending only on the reflectance of light.

【0029】次に、図8〜図11を参照して本実施例の
実験例について説明する。図8は受光変角法による受光
角と反射強度との関係を示すグラフ図であり、図9は試
料変角法による受光角と反射強度との関係を示すグラフ
図であり、図10は反射率の入射角依存性の関係を示す
グラフ図であり、図11は受光変角法による反射光分布
を示すグラフ図である。物体表面の形状すなわち、凹凸
の大きさと、その表面反射の分布の基本的関係を調べる
ため、粗さの異なるサンドペーパーの歯科印象剤による
レプリカを取り、その表面反射光分布の測定を行った。
サンプルは、80、400、1500メッシュのものに
ついて行った。
Next, an experimental example of this embodiment will be described with reference to FIGS. FIG. 8 is a graph showing the relationship between the light receiving angle and the reflection intensity by the light receiving angle changing method, FIG. 9 is a graph showing the relationship between the light receiving angle and the reflection intensity by the sample angle changing method, and FIG. FIG. 12 is a graph showing the relationship of the incident angle dependence of the index, and FIG. 11 is a graph showing the distribution of reflected light by the light-receiving angle-change method. In order to investigate the basic relationship between the shape of the object surface, that is, the size of the unevenness and the distribution of the surface reflection, a replica of sandpaper with different roughness was taken with a dental impression material, and the surface reflection light distribution was measured.
The samples were of 80, 400, 1500 mesh.

【0030】〔測定条件〕図8に示す受光変角法では、 照射角i=45°、 受光角r=(0〜80°) 絞り=(入射/受光)3.0/1.0 感度=950/950、角形スリット使用。 図9に示す試料変角法では、 照射角i+r=90°、 受光角r=(15〜75°) 絞り=(入射/受光)3.0/1.0 感度=950/731、角形スリット使用。[Measurement Conditions] In the light receiving deflection method shown in FIG. 8, irradiation angle i = 45 °, light receiving angle r = (0 to 80 °) diaphragm = (incident / light receiving) 3.0 / 1.0 sensitivity = 950/950, square slit is used. In the sample bending method shown in FIG. 9, irradiation angle i + r = 90 °, light receiving angle r = (15 to 75 °) diaphragm = (incident / light receiving) 3.0 / 1.0 sensitivity = 950/731, square slit used .

【0031】尚、図8及び図9には示していないが、2
40、800メッシュ(#)のレプリカの反射強度分布
は、それぞれ、80と400メッシュ及び400と15
00メッシュの中間の値が出力されていたが、ここで
は、説明を簡単にするため240、800メッシュのグ
ラフは省略する。
Although not shown in FIGS. 8 and 9, 2
The reflection intensity distributions of the 40 and 800 mesh (#) replicas are 80 and 400 mesh and 400 and 15 respectively.
An intermediate value of 00 mesh was output, but the graphs of 240 and 800 mesh are omitted here for simplification of description.

【0032】かかる測定結果から以下の結果〜が導
き出される。 かかる図8及び図9から、受光変角法において表面反
射光分布は受光角の大きい側で反射強度が相対的に大き
くなり、試料変角法においては、鏡面方向(r=45
°)を中心に対象な分布を示していることが分かる。 粗面の表面反射光は、均等拡散には達していないもの
の、その分布は0〜80°まで広い範囲に分布してい
る。 表面粗さによって、表面の反射強度と分布は変化し、
中間の粗さのもの(400メッシュ)が最も表面反射強
度が大きい。
The following results are derived from the measurement results. From these FIGS. 8 and 9, the surface reflection light distribution has a relatively large reflection intensity on the side where the light receiving angle is large in the light receiving angle changing method, and in the sample angle changing method, the mirror surface direction (r = 45
It can be seen that the target distribution is shown around (). The surface-reflected light on the rough surface does not reach uniform diffusion, but its distribution is in a wide range from 0 to 80 °. The surface roughness changes the reflection intensity and distribution of the surface,
The surface roughness of the medium roughness (400 mesh) is the highest.

【0033】図11は、平滑面のレプリカの反射率の入
射角依存性を実測してフレネル係数にあたるものを導出
したもので、図9に示す変角法によって得られた測定値
に、図10の反射率をかけあわせた値(受光角r=45
°の反射強度で規格化して実線で示す)は、図11に示
す受光変角法による測定値(図中一点鎖線で示す)によ
く一致していることが分かる。かかる実験結果から、照
射角と受光角を種々変化させた試料変角法による測定が
より適切であることが分かる。このことは、通常、我々
が表面を観察するときに試料を入射面内で回転させて見
たときの光沢ぐあいであると考えることができる。
FIG. 11 is a graph in which the incident angle dependence of the reflectance of the replica of the smooth surface is measured and the one corresponding to the Fresnel coefficient is derived. The measured values obtained by the gonio-variation method shown in FIG. Value obtained by multiplying the reflectance of
It can be seen that the value normalized by the reflection intensity of ° and shown by the solid line) is in good agreement with the measurement value (shown by the alternate long and short dash line in the figure) by the light receiving deflection method shown in FIG. From such experimental results, it is understood that the measurement by the sample bending method in which the irradiation angle and the light receiving angle are variously changed is more appropriate. This can usually be thought of as the glossiness of the sample as we rotate it into the plane of incidence when observing the surface.

【0034】本考案は、上述した一実施例に限定され
ず、本考案の要旨を逸脱しない範囲で種々変形可能であ
る。例えば、照射光は自然光を用いることにかぎらず、
図6に示すように、偏光フィルタ28を使用した偏光を
用いるものであってもよい。例えば、照射光を入射面に
垂直な振動面を持つ偏光S(S偏光)とし、受光器では
S偏光の反射率を測定するものとする。このとき、測定
される反射強度は表面で反射された全ての光(Ss )と
内部拡散光(Ds )との和(Rss)となる。そこで、次
に、入射光を入射面と平行な振動面を持つ光(P偏光)
とし、受光側のS偏光を測定をすれば、表面反射光は観
測されず、内部拡散光(Ds )のみが反射強度(Rps)
として測定されるから、(Rss)から(Rps)を引いた
値が表面反射強度として確実に測定することができる。
従って、かかる偏光を用いて測定すれば、より適確な皮
膚表面解析をすることができる。特に、同様にして内部
拡散光(Ds )のみを測定することによって、肌の表面
で反射する光をカットして、肌の表面状態、肌荒れやが
さつきに無関係な肌の内部状態の測定が可能となる。ま
た、照射光路及び受光光路は、光の通過する媒体であれ
ばよく、光ファイバーに限らず、レンズ等の他の媒体で
あってもよい。尚、言うまでもなく、肌に限らず、金属
等の他の表面状態に用いても良い。
The present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention. For example, irradiation light is not limited to using natural light,
As shown in FIG. 6, polarized light using a polarizing filter 28 may be used. For example, it is assumed that the irradiation light is polarized light S (S-polarized light) having a vibrating surface perpendicular to the incident surface, and the light receiver measures the reflectance of the S-polarized light. At this time, the measured reflection intensity is the sum (Rss) of all the light (Ss) reflected on the surface and the internal diffused light (Ds). Therefore, next, the incident light is light having a vibrating surface parallel to the incident surface (P polarized light).
When the S-polarized light on the light receiving side is measured, surface reflected light is not observed, and only internal diffused light (Ds) is reflected in intensity (Rps).
Therefore, the value obtained by subtracting (Rps) from (Rss) can be reliably measured as the surface reflection intensity.
Therefore, if measurement is performed using such polarized light, more accurate skin surface analysis can be performed. In particular, by measuring only the internal diffused light (Ds) in the same manner, the light reflected on the surface of the skin can be cut and the internal condition of the skin, which is unrelated to the surface condition of the skin and the roughness and roughness of the skin, can be measured. Becomes Further, the irradiation light path and the light reception light path may be any medium that allows light to pass through, and is not limited to an optical fiber and may be another medium such as a lens. Needless to say, not only the skin but also other surface states such as metal may be used.

【0035】[0035]

【発明の効果】本発明の表面性状測定方法及びその装置
によれば、光の照射角度及び受光角度を種々設定し、か
つ種々の角度を変化させて物体の表面の反射光強度を測
定することによって、物体表面における「質感」、「光
沢」、「つや」等の状態を適確に解析できる。
According to the surface texture measuring method and the apparatus therefor of the present invention, the light irradiation angle and the light receiving angle are variously set, and the various angles are changed to measure the reflected light intensity on the surface of the object. With this, it is possible to accurately analyze the states such as “texture”, “gloss”, and “luster” on the surface of the object.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いられる表面性状測定装置
の概略構成図。
FIG. 1 is a schematic configuration diagram of a surface texture measuring device used in an embodiment of the present invention.

【図2】図1に示す表面性状測定装置のヘッドの平面
図。
FIG. 2 is a plan view of a head of the surface texture measuring device shown in FIG.

【図3】図1に示すヘッドをIII-III 線に沿って切断し
た概略断面図。
3 is a schematic sectional view of the head shown in FIG. 1 taken along line III-III.

【図4】図1に示すヘッドをIV-IV 線に沿って切断した
概略断面図。
FIG. 4 is a schematic sectional view of the head shown in FIG. 1 taken along line IV-IV.

【図5】図1に示す表面性状測定装置の制御機構を示す
ブロック図。
5 is a block diagram showing a control mechanism of the surface texture measuring device shown in FIG.

【図6】本発明の他の実施例による表面性状測定装置の
ヘッドの平面図。
FIG. 6 is a plan view of a head of a surface texture measuring device according to another embodiment of the present invention.

【図7】本発明による測定原理を説明する図。FIG. 7 is a diagram illustrating a measurement principle according to the present invention.

【図8】受光変角法による受光角と反射強度との関係を
示すグラフ図である。
FIG. 8 is a graph showing a relationship between a light receiving angle and a reflection intensity by a light receiving bending method.

【図9】試料変角法による受光角と反射強度との関係を
示すグラフ図である。
FIG. 9 is a graph showing the relationship between the light receiving angle and the reflection intensity by the sample bending method.

【図10】反射率の入射角依存性の関係を示すグラフ図
である。
FIG. 10 is a graph showing the relationship between the reflectance and the incident angle dependency.

【図11】受光変角法にる反射光分布を示すグラフ図で
ある。
FIG. 11 is a graph showing a distribution of reflected light according to the light receiving deflection method.

【符号の説明】[Explanation of symbols]

1 表面性状測定装置 2a〜2d 照射光路(入射用光ファイバー) 3a〜3e 受光光路(受光用光ファイバー) 4 ヘッド 5 本体 6 入力部 7 制御部 8 出力部 DESCRIPTION OF SYMBOLS 1 Surface texture measuring device 2a-2d Irradiation optical path (incident optical fiber) 3a-3e Receiving optical path (optical receiving fiber) 4 Head 5 Main body 6 Input section 7 Control section 8 Output section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 互いに照射角の異なる複数の照射光路の
一つから物体表面の被解析面に光を照射し、被解析面で
反射した上記照射光の反射光を互いに受光角の異なる複
数の受光光路で受光させ、上記複数の照射光路を種々選
択することによって照射光路の照射角を変化させて上記
受光角と上記照射角との和である解析角を種々変え、複
数の解析角における被解析面に対する光の反射率を測定
し、予め測定された基準となる表面の光の反射率と比較
して物体の表面の状態を解析することを特徴とする表面
性状測定方法。
1. A surface of an object to be analyzed is irradiated with light from one of a plurality of irradiation optical paths having different irradiation angles, and the reflected light of the irradiation light reflected by the surface to be analyzed is reflected at a plurality of different receiving angles. The light is received by the light-receiving optical path, and the irradiation angle of the irradiation optical path is changed by variously selecting the plurality of irradiation optical paths to change the analysis angle that is the sum of the light-receiving angle and the irradiation angle. A surface property measuring method characterized by measuring the reflectance of light with respect to an analysis surface and comparing it with the reflectance of light on a reference surface which has been measured in advance to analyze the state of the surface of an object.
【請求項2】 物体表面の被解析面に光を照射する、互
いに照射角が異なる複数の照射光路と、上記被解析面で
反射した上記照射光の反射光を受光する複数の受光光路
と、上記複数の照射光路を種々選択する入力部と、上記
全ての受光光路から受光した光の反射率を出力信号に変
換する制御部と、予め測定された基準となる表面の光の
反射率と比較して皮膚表面の状態を解析する出力部とを
備えることを特徴とする表面性状測定装置。
2. A plurality of irradiation light paths that irradiate light on a surface to be analyzed of an object surface and have different irradiation angles, and a plurality of light reception optical paths that receive reflected light of the irradiation light reflected on the surface to be analyzed. An input unit for selecting various ones of the plurality of irradiation light paths, a control unit for converting the reflectance of the light received from all the light receiving optical paths into an output signal, and comparison with the reflectance of the light on the reference surface measured in advance. And an output unit that analyzes the state of the skin surface.
JP4211670A 1992-08-07 1992-08-07 Method and device for measuring surface shape Pending JPH0771945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4211670A JPH0771945A (en) 1992-08-07 1992-08-07 Method and device for measuring surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4211670A JPH0771945A (en) 1992-08-07 1992-08-07 Method and device for measuring surface shape

Publications (1)

Publication Number Publication Date
JPH0771945A true JPH0771945A (en) 1995-03-17

Family

ID=16609653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4211670A Pending JPH0771945A (en) 1992-08-07 1992-08-07 Method and device for measuring surface shape

Country Status (1)

Country Link
JP (1) JPH0771945A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017689A (en) * 2000-07-07 2002-01-22 Naris Cosmetics Co Ltd Method of measuring and evaluating quality sensation of skin, and use of compound showing effectiveness by this method
JP2003149148A (en) * 2001-11-08 2003-05-21 East:Kk Method and device for measuring undesired shine
JP2004166801A (en) * 2002-11-18 2004-06-17 Kose Corp Evaluation method for luster of skin
EP1518494A1 (en) * 2003-09-24 2005-03-30 Hitachi, Ltd. Optical measurement apparatus and blood sugar level measuring apparatus using the same
US6954661B2 (en) 2003-06-23 2005-10-11 Hitachi, Ltd. Blood sugar level measuring apparatus
US7120478B2 (en) 2003-07-11 2006-10-10 Hitachi, Ltd. Blood sugar level measuring apparatus
US7156810B2 (en) 2003-10-08 2007-01-02 Hitachi, Ltd. Blood sugar level measuring method and apparatus
US7215983B2 (en) 2004-06-30 2007-05-08 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251515B2 (en) 2004-02-17 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251517B2 (en) 2004-06-30 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251514B2 (en) 2004-02-26 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7254428B2 (en) 2004-02-17 2007-08-07 Hitachi, Ltd. Blood sugar level measuring apparatus
US7254430B2 (en) 2003-05-07 2007-08-07 Hitachi, Ltd. Measuring apparatus for measuring a metabolic characteristic in a human body
JP2008117290A (en) * 2006-11-07 2008-05-22 Olympus Corp Device and method for acquiring texture information
US7986987B2 (en) 2001-07-09 2011-07-26 L' Oréal Device, system and method for observing a typological characteristic of the body
US8351041B2 (en) 2004-11-26 2013-01-08 L'oreal Method of observing biological tissue, in particular human skin
JP2016075561A (en) * 2014-10-06 2016-05-12 パナソニックIpマネジメント株式会社 Gloss determination device and gloss determination method
JP2016517019A (en) * 2013-04-26 2016-06-09 ゼネラル・エレクトリック・カンパニイ Surface roughness measuring device
EP3312591A1 (en) * 2016-10-21 2018-04-25 Canon Kabushiki Kaisha Measuring apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017689A (en) * 2000-07-07 2002-01-22 Naris Cosmetics Co Ltd Method of measuring and evaluating quality sensation of skin, and use of compound showing effectiveness by this method
US7986987B2 (en) 2001-07-09 2011-07-26 L' Oréal Device, system and method for observing a typological characteristic of the body
JP2003149148A (en) * 2001-11-08 2003-05-21 East:Kk Method and device for measuring undesired shine
JP2004166801A (en) * 2002-11-18 2004-06-17 Kose Corp Evaluation method for luster of skin
US7254426B2 (en) 2003-05-07 2007-08-07 Hitachi, Ltd. Blood sugar level measuring apparatus
US7254430B2 (en) 2003-05-07 2007-08-07 Hitachi, Ltd. Measuring apparatus for measuring a metabolic characteristic in a human body
US6954661B2 (en) 2003-06-23 2005-10-11 Hitachi, Ltd. Blood sugar level measuring apparatus
US7120478B2 (en) 2003-07-11 2006-10-10 Hitachi, Ltd. Blood sugar level measuring apparatus
EP1518494A1 (en) * 2003-09-24 2005-03-30 Hitachi, Ltd. Optical measurement apparatus and blood sugar level measuring apparatus using the same
CN1325021C (en) * 2003-09-24 2007-07-11 株式会社日立制作所 Optical measurement apparatus and blood sugar level measuring apparatus using the same
US7254427B2 (en) 2003-09-24 2007-08-07 Hitachi, Ltd. Optical measurements apparatus and blood sugar level measuring apparatus using the same
US7156810B2 (en) 2003-10-08 2007-01-02 Hitachi, Ltd. Blood sugar level measuring method and apparatus
US7254428B2 (en) 2004-02-17 2007-08-07 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251515B2 (en) 2004-02-17 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251514B2 (en) 2004-02-26 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251517B2 (en) 2004-06-30 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7215983B2 (en) 2004-06-30 2007-05-08 Hitachi, Ltd. Blood sugar level measuring apparatus
US8351041B2 (en) 2004-11-26 2013-01-08 L'oreal Method of observing biological tissue, in particular human skin
JP2008117290A (en) * 2006-11-07 2008-05-22 Olympus Corp Device and method for acquiring texture information
JP2016517019A (en) * 2013-04-26 2016-06-09 ゼネラル・エレクトリック・カンパニイ Surface roughness measuring device
JP2016075561A (en) * 2014-10-06 2016-05-12 パナソニックIpマネジメント株式会社 Gloss determination device and gloss determination method
EP3312591A1 (en) * 2016-10-21 2018-04-25 Canon Kabushiki Kaisha Measuring apparatus
JP2018066712A (en) * 2016-10-21 2018-04-26 キヤノン株式会社 Measuring device
US10634611B2 (en) 2016-10-21 2020-04-28 Canon Kabushiki Kaisha Measuring apparatus

Similar Documents

Publication Publication Date Title
JPH0771945A (en) Method and device for measuring surface shape
JP5537778B2 (en) Angle measuring equipment for optical surface characteristics
AU753746B2 (en) Method and device for analyzing surface structure
US4929846A (en) Surface quality analyzer apparatus and method
US7460218B2 (en) Device and method for determining the properties of surfaces
AU2001240744B2 (en) Non-invasive measurement of skin bilirubin level
US6795201B2 (en) Method of objectively evaluating a surface mark
US8422007B2 (en) Optical measurement device with reduced contact area
JP2002078683A (en) Device and method for inspecting surface
US5122672A (en) Surface quality analyzer apparatus and method
JP2004309240A (en) Three-dimensional shape measuring apparatus
JP3353560B2 (en) Reflection characteristic measuring device
JPH11211673A (en) Apparatus and method for evaluation of surface property
JPH10311779A (en) Equipment for measuring characteristics of lens
EP1914529B1 (en) Method for analyzing the apparent colour and the gonio reflectance of an object
JPH1048207A (en) Method and apparatus for measuring color of urine
JPH04294224A (en) Multichannel spectrometer
JPH057555A (en) Analysis method of skin surface
JPH08327538A (en) Spectral analysis measuring device
WO1999006868A1 (en) Light projecting method, surface inspection method, and apparatus used to implement these methods
JP4517800B2 (en) Measuring device for optical properties of skin
JPH06174452A (en) Lighting system for optical measuring instrument
JP2001027604A (en) Gloss meter
JPH1073490A (en) Device for measuring brightness and color tone of skin
JP3433565B2 (en) Refractive index measuring method and measuring device