JPH0771423B2 - Reduced pressure storage method and apparatus - Google Patents

Reduced pressure storage method and apparatus

Info

Publication number
JPH0771423B2
JPH0771423B2 JP417492A JP417492A JPH0771423B2 JP H0771423 B2 JPH0771423 B2 JP H0771423B2 JP 417492 A JP417492 A JP 417492A JP 417492 A JP417492 A JP 417492A JP H0771423 B2 JPH0771423 B2 JP H0771423B2
Authority
JP
Japan
Prior art keywords
pressure
storage
low
vacuum
vacuum tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP417492A
Other languages
Japanese (ja)
Other versions
JPH05184237A (en
Inventor
武 井本
敬司 山本
貞夫 書川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc filed Critical Shikoku Research Institute Inc
Priority to JP417492A priority Critical patent/JPH0771423B2/en
Publication of JPH05184237A publication Critical patent/JPH05184237A/en
Publication of JPH0771423B2 publication Critical patent/JPH0771423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、貯蔵物を減圧状態で
貯蔵する減圧貯蔵方法及びその装置の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduced pressure storage method for storing a stored material in a reduced pressure state and an improvement of the apparatus.

【0002】[0002]

【従来の技術】従来、農産物等の貯蔵物を、一気圧以下
の低圧状態に減圧保持した貯蔵室に貯蔵する減圧貯蔵方
法として、差圧式減圧貯蔵方法が知られている。
2. Description of the Related Art Conventionally, a differential pressure type reduced pressure storage method has been known as a reduced pressure storage method for storing a stored product such as an agricultural product in a storage chamber which is maintained at a reduced pressure of less than 1 atm.

【0003】ところで、収穫された青果物は、加工処理
されるまでは一個の独立した生体食品であり、生命を維
持するために呼吸作用を営んでいる。そして、この呼吸
作用によって酸素を吸収し、炭酸ガスを放出することで
体内の糖や酸等の栄養分を消耗する代謝活動が行われて
いる。
By the way, the harvested fruits and vegetables are independent living foods until they are processed, and have a respiratory action to maintain life. Then, by this respiratory action, oxygen is absorbed and carbon dioxide gas is released, so that metabolic activity is carried out to consume nutrients such as sugar and acid in the body.

【0004】従って、長期に貯蔵するためには、呼吸作
用を低下させて代謝活動を抑え体内の栄養分の消耗を抑
制させる必要がある。
Therefore, in order to store for a long period of time, it is necessary to reduce the respiratory action to suppress metabolic activity and suppress the consumption of nutrients in the body.

【0005】この呼吸作用を抑制するための一つの方法
として、貯蔵環境として貯蔵庫内空気組織をコントロー
ルする貯蔵法(Controlled Atmosph
ere Storage;略称CA貯蔵)があり、この
CA条件を満足させる方法の一つとして減圧下で行う減
圧貯蔵法がある。
[0005] As one method for suppressing this respiratory action, a storage method (Controlled Atmosph) for controlling the air structure in a storage as a storage environment.
ere Storage; abbreviated as CA storage), and there is a reduced pressure storage method performed under reduced pressure as one of the methods for satisfying this CA condition.

【0006】このとき、青果物の貯蔵環境として庫内の
空気組成をコントロールするCA条件は青果物によって
それぞれ異なるが、園芸学資料(園芸学全編[利用部
門、萩沼]、1973.Hort Review No
2C.A.B.、[Fidler等、1972])によ
ると、概ね庫内温度0〜4℃の冷蔵域では、酸素ガス濃
度は約3%、炭酸ガス濃度は約5%で、これらのガス濃
度を共に保つことが青果物の鮮度を保持する上から大切
である。
At this time, the CA conditions for controlling the air composition in the storage as a storage environment for fruits and vegetables are different depending on the fruits and vegetables, but horticultural materials (all horticultural science [use department, Haginuma], 1973. Hort Review No.
2C. A. B. , [Fidler et al., 1972]), the oxygen gas concentration is about 3% and the carbon dioxide concentration is about 5% in the refrigerating region where the internal temperature is 0 to 4 ° C., and these gas concentrations can be maintained together. It is important for maintaining the freshness of fruits and vegetables.

【0007】なお、炭酸ガス濃度を高めることは、エチ
レンガスの発生を抑えることから、青果物の老化・成熟
を抑制させて鮮度保持する効果も有しているが、逆に、
余り炭酸ガス濃度を高め過ぎると、青果物が一種の生理
障害を起こして貯蔵物の傷みを早めることから、貯蔵期
間を短縮させる結果となる。
[0007] Increasing the concentration of carbon dioxide has the effect of suppressing the aging and maturation of fruits and vegetables and maintaining the freshness because it suppresses the generation of ethylene gas, but conversely,
If the carbon dioxide concentration is too high, the fruits and vegetables cause a kind of physiological disorder to accelerate the damage of the stored products, resulting in a shortened storage period.

【0008】差圧式減圧貯蔵方法は、所定幅の異なった
二つの圧力を設定し、その二つの圧力の範囲内を往復さ
せながら経時的に圧力変動を行っており、その装置は、
貯蔵用の真空タンク内に装着された吸気用電磁弁及び真
空ポンプを有し、この吸気用電磁弁の開閉に伴う真空ポ
ンプ運転によって、空気を真空タンク内に導入する吸気
域と真空タンクの気体を真空タンク外へと排出する排気
域を繰り返し、真空タンク内の圧力を変動させるもので
ある。
In the differential pressure type reduced pressure storage method, two pressures having different predetermined widths are set, and the pressure fluctuates with time while reciprocating within the range of the two pressures.
It has an intake solenoid valve and a vacuum pump that are installed in a vacuum tank for storage, and the vacuum pump operation that accompanies the opening and closing of the intake solenoid valve introduces air into the vacuum tank and the gas in the vacuum tank. The pressure in the vacuum tank is fluctuated by repeating the exhaust region for discharging the gas to the outside of the vacuum tank.

【0009】この場合の真空タンク内の圧力変動を、図
3に示す。
The pressure fluctuation in the vacuum tank in this case is shown in FIG.

【0010】畑等から収穫され真空タンクに入庫された
青果物や果樹は、呼吸作用によって酸素ガスを吸収し代
わりに炭酸ガスを放出しており、吸気域における炭酸ガ
ス濃度は、外気(空気)導入によって薄められることか
ら、真空タンク内の炭酸ガス濃度は緩やかな時間経過で
増加する。
Fruits and vegetables harvested from fields and stored in vacuum tanks absorb oxygen gas by breathing action and release carbon dioxide gas instead, and the concentration of carbon dioxide gas in the intake region is the outside air (air) introduction. The concentration of carbon dioxide gas in the vacuum tank increases over time because it is diluted by.

【0011】真空タンク内が炭酸ガス濃度の上限値であ
る設定圧力に到達したとき、今度は排気域に移って真空
タンク内圧力は酸素ガス濃度の下限値である設定圧力ま
で排気され、この結果炭酸ガス濃度は減少する。
When the inside of the vacuum tank reaches the set pressure which is the upper limit value of the carbon dioxide concentration, this time it moves to the exhaust region and the pressure inside the vacuum tank is exhausted to the set pressure which is the lower limit value of the oxygen gas concentration. Carbon dioxide concentration decreases.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、このよ
うな差圧式減圧貯蔵方法においては、低圧且つ低酸素ガ
ス濃度(例えば{100/760}×21%=2.76
%)にすることは容易であったが、炭酸ガス濃度の増加
は緩慢であるため時間がかかり、しかも低濃度点と高濃
度点との濃度間を略直線的に変動しそれを繰り返すこと
から、濃度差が比較的大きくなってしまい、炭酸ガス濃
度をCA条件を満足する程(例えば4%)に早く高めて
それを長時間保つことは困難であるという問題点があっ
た。
However, in such a differential pressure type reduced pressure storage method, low pressure and low oxygen gas concentration (for example, {100/760} × 21% = 2.76).
%) Was easy, but since the increase in carbon dioxide concentration was slow, it took time, and the concentration between the low concentration point and the high concentration point fluctuated almost linearly and was repeated. However, there is a problem that the difference in concentration becomes relatively large, and it is difficult to increase the concentration of carbon dioxide gas as fast as the CA condition is satisfied (for example, 4%) and maintain it for a long time.

【0013】また、圧力を一定(例えば100mmH
g)にして連続的に換気する方法(定圧式:特公昭57
−4298号公報参照)もあるが、この場合、貯蔵物か
ら水分が目減りするばかりでなく、貯蔵装置に設ける真
空ポンプが大容量を要するのに加え運転時間も長くなる
という問題点もあった。
Further, the pressure is constant (for example, 100 mmH
g) and continuously ventilating (constant pressure type: Japanese Patent Publication No. 57)
However, in this case, there is a problem that not only the water content is depleted from the stored material, but also the vacuum pump provided in the storage device requires a large capacity and the operating time becomes long.

【0014】更に、予め設定した圧力P1(例えば10
0mmHg)にまで真空ポンプで下げた後真空ポンプの
作動を停止し、真空タンクのリーク調節装置等で空気
(酸素O2)を補給し、圧力P2(例えば300mmH
g)になると真空ポンプを作動させて換気し圧力をP1
に下げ、その後真空ポンプを停止する。以下この動作を
繰り返す方法(差圧式:特公昭53−24347号公報
参照)もあるが、この場合、極めて短時間の内に換気を
しなければならないため、真空ポンプの排気容量が大き
くなって装置が高価になるという問題点もあった。
Further, a preset pressure P1 (for example, 10
To stop the operation of the vacuum pump was lowered with a vacuum pump to a 0 mmHg), supplemented with air (oxygen O 2) in the leak adjustment device such as a vacuum tank, the pressure P 2 (e.g. 300mmH
g), the vacuum pump is operated to ventilate and the pressure is adjusted to P 1
And then stop the vacuum pump. There is also a method of repeating this operation (differential pressure type: refer to Japanese Patent Publication No. 53-24347), but in this case, since the ventilation must be performed within an extremely short time, the exhaust capacity of the vacuum pump increases and the device There was also a problem that it became expensive.

【0015】この発明は、上記問題点に鑑みてなされた
ものであり、その目的とするところは、小形小容量の減
圧手段を用いた低価格の装置により、比較的短時間に炭
酸ガス濃度をCA条件を満足する程に高め、しかもその
状態を長時間保つことができる減圧貯蔵方法及びその装
置を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to reduce the carbon dioxide concentration in a relatively short time by a low-cost device using a small-sized and small-capacity decompression means. It is an object of the present invention to provide a reduced pressure storage method and an apparatus thereof which can be increased to the extent that the CA condition is satisfied and can be kept in that state for a long time.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、この発明に係る減圧貯蔵方法は、貯蔵物を、一気圧
以下の低圧状態に減圧保持した複数個の貯蔵室に貯蔵す
る減圧貯蔵方法において、前記各貯蔵室を減圧手段によ
って順番に減圧し、前記各貯蔵室を低圧状態の第一圧力
に設定した後、前記貯蔵室の内部を密閉状態にして前
記第一圧力を一定期間保持する低圧保持域を設け、前記
低圧保持域から前記低圧状態の第二圧力へと変動させ、
更に前記第二圧力から前記第一圧力へと変動させて、前
記低圧保持域から前記第二圧力を経て前記第一圧力まで
の連続的な圧力変動を、各貯蔵室について繰り返し行な
うことを特徴としている。
In order to achieve the above object, a reduced pressure storage method according to the present invention is a reduced pressure storage method for storing a stored material in a plurality of storage chambers which are held at a reduced pressure of 1 atm or less. In the above, each storage chamber is
Then, the pressure is sequentially reduced, and each storage chamber is set to a first pressure in a low pressure state, and then a low pressure holding region is provided to hold the first pressure for a certain period by sealing the inside of each storage chamber, Varying from the low pressure holding region to the second pressure in the low pressure state,
Further, the second pressure is changed to the first pressure, and continuous pressure fluctuation from the low pressure holding region to the first pressure via the second pressure is repeatedly performed for each storage chamber. There is.

【0017】また、この発明に係る減圧貯蔵装置は、貯
蔵物を貯蔵するための一気圧以下の低圧状態に減圧保持
した複数個の貯蔵室を有する減圧貯蔵装置において、前
貯蔵室を減圧状態に設定する減圧手段、前記減圧手
段を前記貯蔵室に個別に機能させる排気手段、及び各貯
蔵室の個々に吸気手段を設け、前記排気手段及び前記吸
気手段を制御して、前記低圧状態の第一圧力に設定した
後、前記貯蔵室の内部を密閉状態にして前記第一圧力を
一定期間保持する低圧保持域を設け、前記低圧保持域か
ら前記低圧状態の第二圧力へと変動させ、更に前記第二
圧力から前記第一圧力へと変動させる制御手段を設け、
前記低圧保持域から前記第二圧力を経て前記第一圧力ま
での連続的な圧力変動を繰り返し行なわせ、前記各貯蔵
室を前記減圧手段によって順番に減圧することを特徴と
している。
Further, vacuum storage device according to the present invention, in a vacuum storage device having a plurality of storage chamber which is vacuum held to the low pressure of less than one atmosphere for storing the reservoir, vacuum the storage rooms state Pressure reducing means, the exhausting means for individually causing the decompressing means to function in the storage chamber, and the intake means for each of the storage chambers, and controlling the exhausting means and the intake means to control the pressure in the low pressure state. After being set to one pressure, a low pressure holding region for keeping the inside of the storage chamber in a closed state to hold the first pressure for a certain period is provided, and the pressure is changed from the low pressure holding region to the second pressure in the low pressure state. Providing control means for varying from the second pressure to the first pressure,
Continuous pressure fluctuation from the low pressure holding region to the first pressure through the second pressure is repeatedly performed, and each storage
It is characterized in that the chambers are sequentially decompressed by the decompression means .

【0018】[0018]

【作用】上記構成を有する減圧貯蔵装置は、各貯蔵室を
低圧状態の第一圧力に設定した後、貯蔵室の内部を密
閉状態にして第一圧力を一定期間保持する低圧保持域を
設け、低圧保持域から低圧状態の第二圧力へと変動さ
せ、更に第二圧力から第一圧力へと変動させて、低圧保
持域から第二圧力を経て第一圧力までに連続的に圧力を
変動させる圧力変動を、各貯蔵室について繰り返し行な
う。
In the decompression storage device having the above structure, after setting each storage chamber to the first pressure in the low pressure state, the inside of each storage chamber is hermetically closed and the first pressure is maintained for a certain period of time. A holding area is provided, and it is changed from the low pressure holding area to the second pressure in the low pressure state, and further from the second pressure to the first pressure, and continuously from the low pressure holding area to the second pressure through the first pressure. The pressure fluctuation for changing the pressure is repeatedly performed for each storage chamber .

【0019】[0019]

【実施例】以下に、本発明に係る減圧貯蔵装置の実施例
を、図面を参照しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a reduced pressure storage device according to the present invention will be described below with reference to the drawings.

【0020】図1に示すように、減圧貯蔵装置10は、
貯蔵室としての真空タンク11と、減圧手段としての真
空ポンプ12と、圧力計13と、吸気手段としての電磁
弁14及び流量調節弁19と、排気手段としての電磁弁
15と、冷蔵庫16とを有している。
As shown in FIG. 1, the reduced pressure storage device 10 includes
A vacuum tank 11 as a storage chamber, a vacuum pump 12 as a pressure reducing means, a pressure gauge 13, a solenoid valve 14 and a flow rate control valve 19 as an intake means, a solenoid valve 15 as an exhaust means, and a refrigerator 16. Have

【0021】電磁弁14は、制御タイマー(図示せず)
からの出力信号によりその開閉が制御されるものであ
る。
The solenoid valve 14 is a control timer (not shown).
The opening / closing is controlled by the output signal from.

【0022】冷蔵庫16には、冷凍機17が付属してお
り、冷凍機17が作り出す冷気はファン17aにより撹
拌され冷蔵庫16内に送り込まれる。
A refrigerator 17 is attached to the refrigerator 16, and cold air produced by the refrigerator 17 is agitated by a fan 17a and sent into the refrigerator 16.

【0023】また、冷蔵庫16内には、薄い壁厚(例え
ば2mm)により形成された四個の真空タンク11A,
11B,11C,11Dが格納されており、更に、加湿
器18が設置されている。
In the refrigerator 16, four vacuum tanks 11A having a thin wall thickness (for example, 2 mm),
11B, 11C, 11D are stored, and a humidifier 18 is further installed.

【0024】各真空タンク11には、各真空タンク11
毎に設けた電磁弁15を介して、冷蔵庫16外に設置さ
れた真空ポンプ12が接続されていると共に、個別に、
圧力計13、電磁弁14と流量調節弁19、制御手段と
しての圧力スイッチ20、及び真空破壊用としての手動
弁21がそれぞれ装着されている。
Each vacuum tank 11 includes
A vacuum pump 12 installed outside the refrigerator 16 is connected via an electromagnetic valve 15 provided for each, and individually,
A pressure gauge 13, an electromagnetic valve 14 and a flow rate control valve 19, a pressure switch 20 as a control means, and a manual valve 21 for breaking the vacuum are respectively mounted.

【0025】真空ポンプ12は、逆止弁22を介して電
磁弁15に接続されている。
The vacuum pump 12 is connected to the solenoid valve 15 via a check valve 22.

【0026】次に、上記構成を有する減圧貯蔵装置の作
用を説明する。
Next, the operation of the reduced pressure storage device having the above structure will be described.

【0027】図2は、減圧貯蔵装置10の作動による、
真空タンク11A内の圧力変動及び炭酸ガス濃度変化を
示す。
FIG. 2 shows the operation of the vacuum storage device 10.
The pressure fluctuation and the carbon dioxide concentration change in the vacuum tank 11A are shown.

【0028】先ず、冷蔵庫16内の真空タンク11内に
農産物aを収容する。収容された農産物aは、真空タン
ク11の薄い壁を介して収穫直後の温度(例えば25
℃)から貯蔵温度(例えば2℃)に冷却される。
First, the agricultural product a is stored in the vacuum tank 11 in the refrigerator 16. The stored agricultural product a passes through the thin wall of the vacuum tank 11 at a temperature immediately after harvest (for example, 25
C) to a storage temperature (eg 2 C).

【0029】真空タンク11Aに農産物aを収容した
後、真空ポンプ12を作動させると共に電磁弁15を開
いて排気する。
After accommodating the agricultural product a in the vacuum tank 11A, the vacuum pump 12 is operated and the electromagnetic valve 15 is opened to evacuate.

【0030】この排気により、真空タンク11A内に
は、真空タンク11A内を一気圧以下の低圧状態に減圧
する減圧域T1(減圧開始から時間t0後、図2参照)が
形成される。
By this evacuation, a decompression region T 1 is formed in the vacuum tank 11A to decompress the interior of the vacuum tank 11A to a low pressure state of 1 atm or less (after the time t 0 from the start of decompression, see FIG. 2).

【0031】このとき、電磁弁14、手動弁21、
並びに残りの真空タンク11B,11C,11Dのそれ
ぞれの電磁弁15は閉じている。
At this time, each solenoid valve 14, each manual valve 21,
In addition, the respective solenoid valves 15 of the remaining vacuum tanks 11B, 11C and 11D are closed.

【0032】なお、真空ポンプ12は、排気が行われる
間連続運転されており、真空タンク11A内が、圧力ス
イッチ20の設定値である圧力P1(第一圧力、例えば
200mmHg)になったら(減圧開始から時間t
0後、図2参照)、電磁弁15は自動的に閉じられる。
The vacuum pump 12 is continuously operated while exhausting, and when the inside of the vacuum tank 11A reaches the pressure P 1 (first pressure, for example, 200 mmHg) which is the set value of the pressure switch 20 ( Time t from decompression start
After 0 , refer to FIG. 2), the solenoid valve 15 is automatically closed.

【0033】その後、上記操作を真空タンク11B,1
1C,11Dのそれぞれについても行ない(順不同でよ
い)、全ての真空タンク11が圧力P1になったら真空
ポンプ12は自動的に停止する。
After that, the above operation is carried out in the vacuum tanks 11B, 1B.
The steps 1C and 11D are also performed (in any order), and the vacuum pump 12 is automatically stopped when all the vacuum tanks 11 reach the pressure P 1 .

【0034】真空ポンプ12が停止することにより、密
閉状態である真空タンク11内には、圧力P1が一定期
間保持される低圧保持域T2が形成される。
When the vacuum pump 12 is stopped, a low pressure holding region T 2 in which the pressure P 1 is held for a certain period is formed in the vacuum tank 11 which is in a sealed state.

【0035】低圧保持域が一定期間保持された後(減圧
開始から時間t1後、図2参照)、図示しない制御盤内
に置かれた制御タイマーから予め後述の条件などにより
プログラムされた出力信号により電磁弁14が開く。
In the control panel (not shown ) after the low-pressure holding region is held for a certain period (time t 1 from the start of depressurization, see FIG. 2)
In advance by the below condition from the control timer placed
The solenoid valve 14 is opened by the programmed output signal.

【0036】電磁弁14が開くことにより、流量調節弁
19で設定された量の冷蔵庫16内の冷気が真空タンク
11内に導入される。
When the electromagnetic valve 14 is opened, the amount of cold air in the refrigerator 16 set by the flow control valve 19 is introduced into the vacuum tank 11.

【0037】冷気(酸素O2)の導入により真空タンク
11内の圧力が上昇し、真空タンク11A内には、一定
時間後に圧力P2(第二圧力、例えば300mmHg)
に昇圧される昇圧域T3(減圧開始から時間t2後、図2
参照)が形成される。
The pressure in the vacuum tank 11 rises due to the introduction of cold air (oxygen O 2 ), and the pressure P 2 (second pressure, eg, 300 mmHg) in the vacuum tank 11A after a certain time.
Pressure rising region T 3 (when time t 2 has elapsed since the start of pressure reduction,
(See) is formed.

【0038】このときの冷蔵庫16内の温度及び湿度
は、冷凍機17で作られた冷気をファン17aで攪拌
し、更に加湿器18で必要量加湿することで、コントロ
ールされている。
The temperature and humidity inside the refrigerator 16 at this time are controlled by stirring the cool air produced by the refrigerator 17 with the fan 17a and then humidifying the required amount with the humidifier 18.

【0039】ところで、減圧開始から電磁弁14が開く
迄の時間t1(減圧域T1と低圧保持域T2を合わせた時
間)は、農産物aの貯蔵温度(例えば2℃)における呼
吸作用により真空タンク11内に排出される二酸化炭素
CO2量が、圧力P1(例えば200mmHg,CA条件
の酸素O2量5.5%に相当)に達するまでに容積比4%
(CA条件)となるように、計算値と実験によって事前
に圧力スイッチ20及び制御タイマーに設定されてい
る。
By the way, the time t 1 from the start of depressurization to the opening of the solenoid valve 14 (the total time of the depressurization area T 1 and the low pressure holding area T 2 ) depends on the breathing action at the storage temperature (eg, 2 ° C.) of the agricultural product a. By the time the amount of carbon dioxide CO2 discharged into the vacuum tank 11 reaches the pressure P 1 (e.g., equivalent to 5.5% of oxygen O 2 under 200 mmHg and CA conditions), the volume ratio is 4%.
The pressure switch 20 and the control timer are set in advance by a calculated value and an experiment so as to satisfy (CA condition).

【0040】そして、真空タンク11内の圧力が圧力P
2に達することにより、圧力スイッチ20からの出力信
号により電磁弁14が閉じ、同時に、真空ポンプ12が
起動して電磁弁15が開き、真空タンク11内は圧力P
1まで排気される排気域T4が形成される。
The pressure in the vacuum tank 11 is the pressure P.
When it reaches 2 , the solenoid valve 14 is closed by the output signal from the pressure switch 20, at the same time, the vacuum pump 12 is activated and the solenoid valve 15 is opened, and the pressure P in the vacuum tank 11 is increased.
An exhaust region T 4 that is exhausted to 1 is formed.

【0041】以下、低圧保持域から第二圧力を経て第一
圧力までに連続的に圧力を変動させる圧力変動が繰り返
される。
Hereinafter, the pressure fluctuation for continuously varying the pressure from the low pressure holding region to the first pressure through the second pressure is repeated.

【0042】なお、貯蔵途中での検品や貯蔵終了後の搬
出時には、手動弁21を開いて冷蔵庫16内の冷気を真
空タンク11内に導入し、圧力計13の圧力が760m
mHgであることを確認の上、真空タンク11の扉を開
ける。
When inspecting during storage or carrying out after storage, the manual valve 21 is opened to introduce the cold air in the refrigerator 16 into the vacuum tank 11, and the pressure of the pressure gauge 13 is 760 m.
After confirming that the pressure is mHg, the door of the vacuum tank 11 is opened.

【0043】このように、真空タンク11を密閉状態に
してベース圧力である圧力P1を保持する低圧保持域、
吸気用の電磁弁14を開くことにより圧力P1から圧力
2へ推移する吸気域、及び吸気用の電磁弁14を閉じ
て真空ポンプ12を運転することにより圧力P2から圧
力P1に戻す排気域の一連の動作を繰り返している。
In this way, the vacuum tank 11 is hermetically closed and the low pressure holding region for holding the pressure P 1 which is the base pressure,
By opening the electromagnetic valve 14 for intake, the intake region where the pressure changes from P 1 to P 2 and by closing the electromagnetic valve 14 for intake and operating the vacuum pump 12, the pressure P 2 is restored to the pressure P 1 . A series of operations in the exhaust area is repeated.

【0044】ここで、真空タンク11内の炭酸ガス濃度
及び酸素ガス濃度の変化を調べる。
Here, changes in carbon dioxide concentration and oxygen gas concentration in the vacuum tank 11 are examined.

【0045】炭酸ガス濃度は、最初は微小濃度である
が、低圧保持域では、密閉状態で青果物等の農産物aが
呼吸作用を行うことによって、次第に炭酸ガス濃度は増
加する。その増加の割合は、外気(酸素O2)が導入さ
れる差圧式に比較して大きく、時間的にはCA条件の炭
酸ガス濃度の設定値に早く到達する。
The carbon dioxide concentration is initially a minute concentration, but in the low-pressure holding region, the agricultural product a such as fruits and vegetables performs a respiration action in a sealed state, whereby the carbon dioxide concentration gradually increases. The rate of increase is larger than that in the differential pressure formula in which outside air (oxygen O 2 ) is introduced, and the set value of the carbon dioxide concentration under the CA condition is reached earlier in terms of time.

【0046】その後、吸気域では、CA効果により炭酸
ガス濃度の増加は非常に少なくなる。なお、条件によっ
ては減少する場合もあるが、そのときの外気導入率と炭
酸ガス濃度増加率を等しくとれば炭酸ガス濃度は略一定
となり得る。
Thereafter, in the intake region, the increase in carbon dioxide concentration is very small due to the CA effect. Although it may decrease depending on the conditions, the carbon dioxide concentration can be substantially constant if the outside air introduction rate and the carbon dioxide concentration increase rate at that time are made equal.

【0047】排気域では、真空タンク11内の圧力はベ
ース圧力である圧力P1まで排気され、炭酸ガス濃度は
減少し始め遂には微小濃度となる。
In the exhaust region, the pressure in the vacuum tank 11 is exhausted to the pressure P 1 which is the base pressure, and the carbon dioxide concentration starts to decrease and finally becomes a minute concentration.

【0048】以上から、炭酸ガス濃度は、差圧式に比較
してCA条件とする設定目標に早く到達し、炭酸ガス濃
度を長時間保持することができる。
From the above, the carbon dioxide concentration reaches the set target for the CA condition earlier than the differential pressure type, and the carbon dioxide concentration can be maintained for a long time.

【0049】一方、酸素ガス濃度は、農産物aの呼吸に
よる酸素消費量を略一定として無視すれば、圧力P1
圧力P2それぞれの酸素ガス濃度の間を圧力に略応じて
推移することになり、差圧式と余り変わらないことにな
る。詳しくは、T 2 域において酸素ガス濃度は、果実a
の呼吸作用により若干減少するが、現実の装置では、バ
ルブ、継手から僅少であるがリークにより空気が真空タ
ンク11内に侵入し、この結果、ほぼ一定になる。ま
た、真空タンク11内の圧力も僅かながら上昇する。
On the other hand, the oxygen gas concentration changes between the oxygen gas concentrations of the pressure P 1 and the pressure P 2 substantially according to the pressure, if the oxygen consumption due to the breathing of the agricultural product a is neglected. Therefore, it is not much different from the differential pressure type. Specifically, in the T 2 region, the oxygen gas concentration is fruit a
It is slightly reduced by the breathing action of the
The air leaks from the lube
It penetrates into the link 11 and becomes almost constant as a result. Well
Moreover, the pressure in the vacuum tank 11 also rises slightly.

【0050】このように、この発明に係る減圧貯蔵方法
にあっては、以下に示す効果を得ることができる。
As described above, the following effects can be obtained in the reduced pressure storage method according to the present invention.

【0051】1.真空タンク11は、圧力P1をベース
圧力としての運転を行い圧力変動させるので、酸素O2
濃度の調整は圧力P1で設定すればより簡単である。
1. Since the vacuum tank 11 operates by using the pressure P 1 as the base pressure to change the pressure, the oxygen O 2
Adjustment of the concentration is easier if it is set by the pressure P 1 .

【0052】しかも、換気の際の吸気或は排気運転時以
外は、真空タンク11は圧力一定の略密閉状態で保持さ
れるので、炭ガス濃度を簡単に高めることができ、貯
蔵環境としてのCA条件を容易且つ安価に得ることがで
きる。
[0052] Moreover, except when the intake or exhaust operation during ventilation, since the vacuum tank 11 is maintained in a substantially sealed condition of constant pressure, it is possible to increase easily the carbon dioxide gas concentration, as environmental storage The CA condition can be obtained easily and inexpensively.

【0053】2.真空タンク11に対する吸気或は排気
は、常に温度・湿度をコントロールした新鮮な空気によ
り短時間に圧力差をもって行われる。
2. Intake or exhaust of the vacuum tank 11 is always performed with a pressure difference in a short time by fresh air whose temperature and humidity are controlled.

【0054】即ち、真空タンク11内の圧力変化によ
り、低温空気の流れが貯蔵物である農産物a内部にまで
存在するので、収納された農産物aの堆積方法や包装方
法に関係なく、新鮮空気の補給と換気を均一且つ簡単に
行なうことができる。
That is, since the flow of low-temperature air exists even inside the agricultural product a as a storage due to the pressure change in the vacuum tank 11, the fresh air is irrelevant regardless of the accumulation method or the packaging method of the stored agricultural product a. Replenishment and ventilation can be performed uniformly and easily.

【0055】また、農産物aの老化を早めるエチレンガ
ス等を容易に真空タンク11内から排出できることか
ら、青果物の鮮度を保持させて貯蔵性を高めることがで
きる。
Further, since ethylene gas or the like which accelerates the aging of the agricultural product a can be easily discharged from the vacuum tank 11, the freshness of fruits and vegetables can be maintained and the storability can be improved.

【0056】3.低圧保持域における運転時には、農産
物aは真空タンク11内にて略密閉状態で保持されるの
で、真空タンク11内は農産物aの呼吸作用により湿度
が上昇する。
3. During operation in the low-pressure holding region, the agricultural product a is held in the vacuum tank 11 in a substantially sealed state, so that the humidity inside the vacuum tank 11 increases due to the breathing action of the agricultural product a.

【0057】また、換気の際には、新鮮空気に予め温度
及び湿度調節した湿った空気をタンク内に吸気すること
から、真空タンク11内は、常に湿った空気で満たされ
る状態が確保されるので、他の貯蔵方法である冷風を循
環させる冷蔵や常に新鮮空気を吸気している定圧式減圧
貯蔵方法(従来例参照)に比較して、農産物a表面から
の水分蒸散も少なく目減りが抑制される。
In addition, during ventilation, since the moist air whose temperature and humidity have been previously adjusted to the fresh air is sucked into the tank, the vacuum tank 11 is always filled with the moist air. Therefore, compared with other storage methods such as refrigeration in which cold air is circulated and constant pressure decompression storage method in which fresh air is constantly taken in (see the conventional example), less water is evaporated from the surface of the agricultural product a and the loss is suppressed. It

【0058】4.真空タンク11は、小形小容量のもの
を複数個用いるので、小排気容量の真空ポンプ12によ
る真空タンク11内の排気が可能となり、低価格の装置
が可能となる。
4. Since a plurality of small-sized and small-capacity vacuum tanks are used, the vacuum pump 11 having a small exhaust capacity can evacuate the inside of the vacuum tank 11, and a low-cost device can be realized.

【0059】また、換気量の多い定圧式や急激に換気を
行なう差圧式の何れよりも、真空ポンプ12の消費する
電力量を低減させることができる。
Moreover, the amount of electric power consumed by the vacuum pump 12 can be reduced as compared with the constant pressure type with a large ventilation amount and the differential pressure type with abrupt ventilation.

【0060】5.冷蔵設備である冷蔵庫16内に真空タ
ンク11を設置するので、農産物aの乾燥及び老化の促
進度合が低減される。
5. Since the vacuum tank 11 is installed in the refrigerator 16 which is a refrigerating facility, the degree of acceleration of drying and aging of the agricultural product a is reduced.

【0061】即ち、真空タンク11へと吸入される空気
は、冷蔵庫16内の空気であって、真空タンク11内部
との温度差がないのに加えて充分な湿度が確保されてい
るので、農産物aの乾燥及び老化の促進阻止が可能とな
る。
That is, since the air sucked into the vacuum tank 11 is the air in the refrigerator 16 and there is no temperature difference with the inside of the vacuum tank 11 and sufficient humidity is secured, the agricultural products It is possible to prevent the drying of a and acceleration of aging.

【0062】6.四基の真空タンク11は、それぞれ独
立し個別に制御することができるので、出庫に必要な真
空タンク11のみを扉開放し、他の真空タンク11に影
響させることなく出荷させることができ、更に、仮に病
害の発生や老化物のガス排出等があっても、真空タンク
11内は常に負圧になっているので各個別に管理するこ
とができる。
6. Since the four vacuum tanks 11 can be controlled independently of each other, only the vacuum tanks 11 required for shipping can be opened and the vacuum tanks 11 can be shipped without affecting other vacuum tanks 11. Even if a disease occurs or a gas of an aging substance is exhausted, the vacuum tank 11 is always under a negative pressure, so that it can be managed individually.

【0063】7.真空タンク11内への農産物aの入庫
量が少ないときは、炭酸ガス濃度の上昇は難しいが、こ
のときにでも、低圧保持域を長くとることによって炭酸
ガス濃度を設定目標に近付けることができ、減圧貯蔵が
可能となる。
7. When the amount of the agricultural product a stored in the vacuum tank 11 is small, it is difficult to increase the carbon dioxide concentration, but even at this time, the carbon dioxide concentration can be brought close to the set target by setting the low pressure holding region long. Reduced pressure storage is possible.

【0064】従って、酸素ガス濃度及び炭酸ガス濃度を
最適貯蔵条件となるように調節することで、貯蔵物が代
謝する余分なエネルギーを抑えると共に水分の蒸発を防
止することにより、より一層の長期貯蔵を図ることがで
きる。
Therefore, by adjusting the oxygen gas concentration and the carbon dioxide concentration so as to obtain the optimum storage conditions, it is possible to suppress the excess energy that the stored products metabolize and to prevent the evaporation of water, so that further long-term storage is possible. Can be achieved.

【0065】また、炭酸ガス濃度を貯蔵物に適正な濃度
にするためには、時間(t2−t0)及び圧力P2を調節
して設定する。更に、圧力P1及び低圧保持時間は、貯
蔵期間中に変化する貯蔵物の生理状況、老化状況等にあ
わせて、経時的に手動調節又はプログラム設定による自
動調節を行う。
Further, in order to make the concentration of carbon dioxide gas appropriate for the stored product, the time (t 2 -t 0 ) and the pressure P 2 are adjusted and set. Further, the pressure P 1 and the low pressure holding time are manually adjusted or automatically adjusted by a program according to the physiological condition, aging condition, etc. of the stored product which changes during the storage period.

【0066】[0066]

【発明の効果】この発明に係る請求項1記載の減圧貯蔵
方法及び、請求項2記載の減圧貯蔵装置によれば、小形
で高い能力を有しない減圧手段を用いた低価格の装置を
提供すると共に、比較的短時間に炭酸ガス濃度をCA条
件を満足する程に高め、しかもその状態を長時間保持で
きる。
EFFECT OF THE INVENTION Vacuum storage according to claim 1 of the present invention
According to the method and the reduced pressure storage device according to claim 2, a small-sized storage device is provided.
A low-cost device using decompression means that does not have high performance
While providing the carbon dioxide concentration in a relatively short time,
High enough to satisfy the requirements, and keep that state for a long time
Wear.

【0067】[0067]

【0068】[0068]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る減圧貯蔵装置の概略構成を示す
説明図である。
FIG. 1 is an explanatory diagram showing a schematic configuration of a reduced pressure storage device according to the present invention.

【図2】減圧貯蔵装置の圧力変動及び炭酸ガス濃度変化
を示す説明図である。
FIG. 2 is an explanatory diagram showing a pressure fluctuation and a carbon dioxide gas concentration change in the reduced pressure storage device.

【図3】差圧式減圧貯蔵装置の圧力変動及び炭酸ガス濃
度変化を示す説明図である。
FIG. 3 is an explanatory diagram showing pressure fluctuations and carbon dioxide concentration changes in the differential pressure type reduced pressure storage device.

【符号の説明】[Explanation of symbols]

10 減圧貯蔵装置 11 真空タンク(貯蔵室) 12 真空ポンプ(減圧手段) 13 圧力計 14 電磁弁(吸気手段) 15 電磁弁(排気手段) 19 流量調節弁(吸気手段) 20 圧力スイッチ(制御手段) a 農産物(貯蔵物) 10 Decompression storage device 11 Vacuum tank (storage room) 12 Vacuum pump (decompression means) 13 Pressure gauge 14 Electromagnetic valve (intake means) 15 Electromagnetic valve (exhaust means) 19 Flow rate control valve (intake means) 20 Pressure switch (control means) a Agricultural product (storage)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 書川 貞夫 東京都大田区蒲田本町1丁目9−3 株式 会社新潟鉄工所事業開発センター内 (56)参考文献 特開 昭52−61555(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadao Shogawa 1-9-3 Kamatahonmachi, Ota-ku, Tokyo Inside Niigata Iron Works Business Development Center (56) References JP-A-52-61555 (JP, A) )

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 貯蔵物を、一気圧以下の低圧状態に減圧
保持した複数個の貯蔵室に貯蔵する減圧貯蔵方法におい
て、前記各貯蔵室を減圧手段によって順番に減圧し、 前記
貯蔵室を低圧状態の第一圧力に設定した後、前記貯蔵
室の内部を密閉状態にして前記第一圧力を一定期間保持
する低圧保持域を設け、前記低圧保持域から前記低圧状
態の第二圧力へと変動させ、更に前記第二圧力から前記
第一圧力へと変動させて、前記低圧保持域から前記第二
圧力を経て前記第一圧力までの連続的な圧力変動を、各
貯蔵室について繰り返し行なうことを特徴とする減圧貯
蔵方法。
The method according to claim 1] reservoir, the vacuum storage method of storing a plurality of storage chamber which is vacuum held to the low pressure below one atmosphere, the pressure was reduced in order the storage rooms by vacuum means, each
After setting the storage chamber to the first pressure in the low pressure state, the inside of each storage chamber is hermetically closed to provide a low pressure holding region for holding the first pressure for a certain period of time, and from the low pressure holding region to the first pressure in the low pressure state. To a second pressure, further from the second pressure to the first pressure, continuous pressure fluctuation from the low pressure holding region through the second pressure to the first pressure ,
A reduced pressure storage method characterized in that the storage chamber is repeatedly performed.
【請求項2】 貯蔵物を貯蔵するための一気圧以下の低
圧状態に減圧保持した複数個の貯蔵室を有する減圧貯蔵
装置において、 前記貯蔵室を減圧状態に設定する減圧手段、前記減圧
手段を前記貯蔵室に個別に機能させる排気手段、及び各
貯蔵室の個々に吸気手段を設け、 前記排気手段及び前記吸気手段を制御して、前記低圧状
態の第一圧力に設定した後、前記貯蔵室の内部を密閉状
態にして前記第一圧力を一定期間保持する低圧保持域を
設け、前記低圧保持域から前記低圧状態の第二圧力へと
変動させ、更に前記第二圧力から前記第一圧力へと変動
させる制御手段を設け、前記低圧保持域から前記第二圧
力を経て前記第一圧力までの連続的な圧力変動を繰り返
し行なわせ、前記各貯蔵室を前記減圧手段によって順番
に減圧することを特徴とする減圧貯蔵装置。
2. A decompression storage device having a plurality of storage chambers for decompressing and holding at a low pressure of 1 atm or less for storing a stored material, the decompression means for setting each of the storage chambers to a decompression state, and the decompression means. The storage means is individually provided with an exhaust means, and each storage room is provided with an intake means, and the exhaust means and the intake means are controlled to set the first pressure in the low pressure state, and then the storage is performed. A low-pressure holding region for holding the first pressure in a closed state for a certain period of time is provided by changing the inside of the chamber to a second pressure in the low-pressure state, and further from the second pressure to the first pressure. Control means for changing the pressure of the storage chamber from the low pressure holding region to the first pressure through the second pressure is repeatedly performed, and the storage chambers are sequentially operated by the pressure reducing means.
Vacuum storage apparatus characterized by reducing the pressure.
JP417492A 1992-01-13 1992-01-13 Reduced pressure storage method and apparatus Expired - Lifetime JPH0771423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP417492A JPH0771423B2 (en) 1992-01-13 1992-01-13 Reduced pressure storage method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP417492A JPH0771423B2 (en) 1992-01-13 1992-01-13 Reduced pressure storage method and apparatus

Publications (2)

Publication Number Publication Date
JPH05184237A JPH05184237A (en) 1993-07-27
JPH0771423B2 true JPH0771423B2 (en) 1995-08-02

Family

ID=11577358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP417492A Expired - Lifetime JPH0771423B2 (en) 1992-01-13 1992-01-13 Reduced pressure storage method and apparatus

Country Status (1)

Country Link
JP (1) JPH0771423B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822687B2 (en) 2002-09-16 2010-10-26 Francois Brillon Jukebox with customizable avatar
JP6446921B2 (en) * 2014-08-29 2019-01-09 株式会社サタケ Grain storage silo and raw grain quality maintenance method in country elevator
KR102091453B1 (en) * 2018-04-09 2020-03-20 주식회사 위프 Storage apparatus for agricultural products

Also Published As

Publication number Publication date
JPH05184237A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
US11696588B2 (en) Movable controlled atmosphere store for fruits and vegetables
US5649995A (en) Nitrogen generation control systems and methods for controlling oxygen content in containers for perishable goods
CN100506048C (en) Edible fungus antistaling method and apparatus
CN106813442B (en) Refrigerating device and its fresh-keeping control method
CN106642912B (en) Refrigerating device and its fresh-keeping control method
US4685305A (en) Hypobaric storage of respiring plant matter without supplementary humidification
JPH05227881A (en) Preservation house
JP2017190935A (en) Inside air adjustment device and refrigeration device for container including the same
US20020012728A1 (en) Hypobaric storage device
JPH0771423B2 (en) Reduced pressure storage method and apparatus
US11559062B2 (en) Inside air control apparatus and container refrigeration apparatus including the same
JPH063044A (en) Preservation storage
JPH0658A (en) Food presentation apparatus
CN111387280A (en) Fruit and vegetable cell preservation warehouse and preservation method during coagulation
JPH0272824A (en) Method and apparatus for preserving plant, vegetable substance, meat or other organic substance
US10919656B1 (en) Procedures for operating a vacuum to store perishables by controlling pressure and oxygen levels independent of each other as well as setting floor and ceiling operating parameters
CN212116900U (en) Fruit vegetables cell fresh-keeping storehouse of congealing time
JP7014959B2 (en) An air conditioner inside the refrigerator and a refrigerating device for containers equipped with it.
JPH043875A (en) Refrigerator
US20020129709A1 (en) Storage device utilizing a differentially permeable membrane to control gaseous content
JPH10103849A (en) Refrigerator
CN213029639U (en) Air replacement system for fruit and vegetable fresh keeping
CN110089557A (en) The essential oil application device and application method fresh-keeping for small-sized fruit air conditioned storage, shelf
US20040033162A1 (en) Storage device utilizing zeolites to control gaseous content
JPH04218332A (en) Method for preserving fruits for long period and its apparatus