JPH077134B2 - Waveguide type grating coupler - Google Patents

Waveguide type grating coupler

Info

Publication number
JPH077134B2
JPH077134B2 JP29532586A JP29532586A JPH077134B2 JP H077134 B2 JPH077134 B2 JP H077134B2 JP 29532586 A JP29532586 A JP 29532586A JP 29532586 A JP29532586 A JP 29532586A JP H077134 B2 JPH077134 B2 JP H077134B2
Authority
JP
Japan
Prior art keywords
waveguide
grating coupler
wavelength
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29532586A
Other languages
Japanese (ja)
Other versions
JPS63147113A (en
Inventor
豊 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29532586A priority Critical patent/JPH077134B2/en
Publication of JPS63147113A publication Critical patent/JPS63147113A/en
Publication of JPH077134B2 publication Critical patent/JPH077134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導波路型グレーティング結合器に関し、特に導
波路を用いて光情報処理を行う光導波素子に用いる導波
路型グレーティング結合器に関する。
The present invention relates to a waveguide grating coupler, and more particularly to a waveguide grating coupler used for an optical waveguide element that performs optical information processing using a waveguide.

〔従来の技術〕[Conventional technology]

光を伝搬する薄膜導波路は、レンズや回折格子を用いる
ことで多波長の光分波や光合成の回路を、また導波光と
表面弾性波を干渉させることによって光スペクトルアナ
ライザを構成したりすることができ、光情報処理用の重
要なデバイスである。
A thin film waveguide that propagates light can be used as a circuit for multi-wavelength optical demultiplexing or photosynthesis by using a lens or a diffraction grating, or as an optical spectrum analyzer by interfering guided light and surface acoustic waves. It is an important device for optical information processing.

第3図は従来の導波路型グレーティング結合器の一例を
示す模式的側面図である。従来、基板1に設けた薄膜導
波路2から導波路外(ここでは空気中)へ導波光を放射
光として取り出す場合は、第3図に示すように薄膜導波
路2上に空気とは異なる屈折率の物質を周期的に構成し
た構造のグレーティング結合器4を用いる。この例で
は、薄膜導波路2の端面から結合した半導体レーザ5の
発する導波光をグレーティング結合器4により導波路2
外に放射角θ方向に放射光として出射している。
FIG. 3 is a schematic side view showing an example of a conventional waveguide type grating coupler. Conventionally, when the guided light is extracted from the thin film waveguide 2 provided on the substrate 1 to the outside of the waveguide (here, in the air) as radiated light, as shown in FIG. 3, the thin film waveguide 2 is refracted differently from air. A grating coupler 4 having a structure in which a material having a refractive index is formed periodically is used. In this example, the guided light emitted from the semiconductor laser 5 coupled from the end face of the thin film waveguide 2 is guided to the waveguide 2 by the grating coupler 4.
It is emitted as radiated light in the radiation angle θ direction to the outside.

次に、グレーティング結合器4から出射される放射光の
放射角θについて説明する。薄膜導波路2のグレーティ
ング結合器4に対面する部分では、所定の導波モードで
伝搬する導波光から多くの空間高調波が発生する。この
高調波の結合器4における伝搬定数βhは、導波路2に
おける導波光の伝搬定数をβ、グレーティング結合器4
のグレーティング構造の周期(グレーティング周期)を
p,高調波の次数をmとすると、(1)式で表わされる。
Next, the emission angle θ of the emitted light emitted from the grating coupler 4 will be described. In the portion of the thin film waveguide 2 facing the grating coupler 4, many spatial harmonics are generated from the guided light propagating in a predetermined waveguide mode. The propagation constant βh of the harmonic in the coupler 4 is β, the propagation constant of the guided light in the waveguide 2 is β, and the grating coupler 4 is
Of the grating structure of (grating period)
If p and the order of the harmonic are m, they are expressed by the equation (1).

βh=β−2mπ/p (m=0,±1,±2,…) (1) ここで、グレーティング結合器4での高調波の伝搬定数
βhは、上記放射光伝搬定数β0の上記導波光進行方向
の成分と伝搬定数βhの同方向成分とが一致する必要が
ある。いま、上記放射光の空気中における波長をλ0,伝
搬定数をβ0とすると、(2)式が成立する。
βh = β−2mπ / p (m = 0, ± 1, ± 2, ...) (1) Here, the propagation constant βh of the harmonic in the grating coupler 4 is the guided light of the radiated light propagation constant β0. The component in the traveling direction and the component in the same direction of the propagation constant βh need to match. Now, assuming that the wavelength of the emitted light in air is λ0 and the propagation constant is β0, the equation (2) is established.

βh=β0・sinθ(2π/λ0)・sinθ (2) 導波路2を伝搬する導波光の等価屈折率をN(=β/β
0)とすると、β=N・2π/λ0であるから、(1)
式は(3)式に変形できる。
βh = β0 · sin θ (2π / λ0) · sin θ (2) The equivalent refractive index of the guided light propagating in the waveguide 2 is N (= β / β
0), β = N · 2π / λ0, so (1)
The equation can be transformed into equation (3).

(N−sinθ)/λ0=m/p=k (3) (3)式を放射角θの正弦波関数である(4)式に整理
する。
(N-sin θ) / λ0 = m / p = k (3) Formula (3) is rearranged into formula (4) which is a sine wave function of the radiation angle θ.

sinθ=N−kλ0 (4) 即ち、グレーティング結合器4で発生する高調波の次数
mを適切に選び、この選ばれたm次高調波を導波路外に
導くべき放射光とすると、この放射光の放射角θは、導
波路2を所定の導波モードで伝搬する導波光の等価屈折
率Nと、上記導波光の空気中における波長λ0と、グレ
ーティング結合器4のグレーティング周期pおよび上記
放射光の高調波次数mで決定されるグレーティング結合
器4の構造定数kとの関数となる。
sin θ = N−kλ 0 (4) That is, when the order m of the harmonics generated in the grating coupler 4 is properly selected and the selected m-th order harmonic is the radiated light to be guided outside the waveguide, this radiated light The radiation angle θ of is the equivalent refractive index N of the guided light propagating in the waveguide 2 in a predetermined guided mode, the wavelength λ0 of the guided light in air, the grating period p of the grating coupler 4 and the radiated light. It is a function of the structural constant k of the grating coupler 4 determined by the harmonic order m of.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来の導波路型グレーティング結合器では、式
(4)から分かるように、放射光の波長λ0の変化につ
れてその放射角θが変動することになる。
In the above-mentioned conventional waveguide type grating coupler, as can be seen from the equation (4), the radiation angle θ changes as the wavelength λ0 of the emitted light changes.

一般に半導体レーザは温度によりレーザ光の波長λ0が
変動するので、この導波路型グレーティング結合器で
は、放射角θも変化することになり、導波路外の回路へ
結合されるレーザ光の強度が変化し、実用上の問題が生
じる。
Since the wavelength λ0 of laser light generally fluctuates with temperature in a semiconductor laser, the radiation angle θ also changes in this waveguide type grating coupler, and the intensity of laser light coupled to a circuit outside the waveguide changes. However, a practical problem occurs.

本発明の目的は、導波路を伝搬する導波光の波長が変化
しても放射光の放射角変動が少ない導波路型グレーティ
ング結合器を提供することにある。
An object of the present invention is to provide a waveguide type grating coupler in which the variation of the emission angle of the emitted light is small even if the wavelength of the guided light propagating in the waveguide changes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の導波路型グレーティング結合器は、所定導波モ
ードで伝搬する導波路内の導波光を前記導波路に設けた
屈折率の周期的変動手段により放射光として導波路外へ
導く導波路型グレーティング結合器において、前記導波
光の空気中における波長λ0の変化に際し、前記周期的
変動手段に対面する前記導波路の等価屈折率Nの変化量
を、前記周期的変動手段のグレーティング周期を含む構
造定数kと前記波長λ0との積k・λ0の変化量にほぼ
等しくする手段を備えている。
A waveguide type grating coupler of the present invention is a waveguide type waveguide coupler that guides guided light in a waveguide propagating in a predetermined waveguide mode to the outside of the waveguide as radiated light by means of periodical refractive index changing means provided in the waveguide. In the grating coupler, when the wavelength λ0 of the guided light in air changes, the amount of change in the equivalent refractive index N of the waveguide facing the periodic changing means includes the grating period of the periodic changing means. Means for making the amount of change of the product k · λ0 of the constant k and the wavelength λ0 substantially equal to each other are provided.

〔作用〕[Action]

上記式(4)において、薄膜導波路の等価屈折率Nは導
波光の波長λ0によってはほとんど変化しないため、従
来の導波路型グレーティング結合器では放射光の放射角
θの変動を招いている。そこで本発明では、薄膜導波路
を伝搬する導波光の波長λ0が増加したとき、それにつ
れて薄膜導波路の等価屈折率Nが増加するような構造に
して両者の変動を相殺しているので、放射角θの変化が
少なくなる。
In the above formula (4), since the equivalent refractive index N of the thin film waveguide hardly changes depending on the wavelength λ0 of the guided light, the conventional waveguide type grating coupler causes the variation of the radiation angle θ of the radiated light. Therefore, in the present invention, when the wavelength λ0 of the guided light propagating through the thin film waveguide increases, the structure is such that the equivalent refractive index N of the thin film waveguide increases, and the fluctuations of the two are canceled out. The change in the angle θ is reduced.

〔実施例〕〔Example〕

次に、本発明について第1図および第2図を参照して説
明する。
Next, the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明の導波路型グレーティング結合器の一実
施例を示す模式的側面図、第2図は第1図におけるクラ
ッド層3に用いる材料の一特性例を示す図である。
FIG. 1 is a schematic side view showing one embodiment of the waveguide type grating coupler of the present invention, and FIG. 2 is a view showing one characteristic example of the material used for the cladding layer 3 in FIG.

第1図に示すように、本実施例は、第3図に示した基板
1と薄膜導波路2とグレーティング結合器4とを含む従
来例の構造において、薄膜導波路2とグレーティング結
合器4との間に、グレーティング結合器4に対面させて
クラッド層3をさらに配置している。クラッド層3は、
導波光3の波長λ0の変化範囲において、波長λ0の増
加につれて屈折率が増加する材料である。クラッド層3
に用いる材料としては、第2図の屈折率nおよび吸収係
数αに示すように、双極子吸収による屈折率分散を有す
る物質,例えばエキシトン吸収を有するGaAs(砒素化ガ
リウム)などを利用できる。但し、この吸収の中心,つ
まり吸収係数αの極大値付近ではクラッド層3による導
波光の伝搬損失も大きくなるので、波長λ0はクラッド
層3材料の吸収の中心を外れた波長域を選定する必要が
ある。
As shown in FIG. 1, in the present embodiment, in the structure of the conventional example including the substrate 1, the thin film waveguide 2 and the grating coupler 4 shown in FIG. 3, the thin film waveguide 2 and the grating coupler 4 are provided. In between, the cladding layer 3 is further arranged so as to face the grating coupler 4. The clad layer 3 is
In the change range of the wavelength λ0 of the guided light 3, the refractive index increases as the wavelength λ0 increases. Clad layer 3
As the material used for, a substance having a refractive index dispersion due to dipole absorption, such as GaAs (gallium arsenide) having exciton absorption, can be used as shown by the refractive index n and the absorption coefficient α in FIG. However, since the propagation loss of the guided light due to the cladding layer 3 becomes large near the absorption center, that is, the maximum value of the absorption coefficient α, the wavelength λ0 needs to be selected in a wavelength range outside the absorption center of the material of the cladding layer 3. There is.

上述のとおりの構成にすると、薄膜導波路2の等価屈折
率Nにもクラッド層3と同様の波長変化を持たせること
ができるので、等価屈折率Nの変動とk・λ0の変動を
相殺して放射角θの変化を少なくできる。特に、(4)
式におけるsinθ=N−kλ0となるように、導波光の
波長λ0の変化量に合った屈折率変化を有するクラッド
層3を選ぶと、波長λ0の変動による放射角θの変動を
ほとんどなくすことができる。
With the configuration as described above, the equivalent refractive index N of the thin film waveguide 2 can have the same wavelength change as that of the cladding layer 3, so that the fluctuation of the equivalent refractive index N and the fluctuation of k · λ0 are canceled. The change in the radiation angle θ can be reduced. Especially (4)
If the cladding layer 3 having a refractive index change that matches the amount of change of the wavelength λ0 of the guided light is selected so that sin θ = N−kλ0 in the equation, the change of the radiation angle θ due to the change of the wavelength λ0 can be almost eliminated. it can.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、導波光の空気中における
波長λ0の変化に際し、周期的変動手段に対面する導波
路の等価屈折率Nの変化量を、前記周期的変動手段のグ
レーティング周期を含む構造定数kと前記波長λ0との
積k・λ0の変化量にほぼ等しくする手段を備えるの
で、上記導波光の波長が変化しても、導波路外への放射
光の放射角の変動を少くする効果がある。
As described above, according to the present invention, when the wavelength λ0 of the guided light changes in the air, the change amount of the equivalent refractive index N of the waveguide facing the periodic changing means includes the grating period of the periodic changing means. Since the means for making the amount of change of the product k · λ0 of the structural constant k and the wavelength λ0 substantially equal to each other is provided, even if the wavelength of the guided light is changed, the fluctuation of the radiation angle of the radiated light outside the waveguide is reduced. Has the effect of

【図面の簡単な説明】 第1図は本発明の導波路型グレーティング結合器の一実
施例を示す模式的側面図、第2図は第1図におけるクラ
ッド層3に用いる材料の一特性を示す図、第3図は従来
の導波路型グレーティング結合器の一例を示す模式的側
面図である。 1……基板、2……薄膜導波路、3……クラッド層、4
……グレーティング結合器、5……半導体レーザ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view showing an embodiment of a waveguide type grating coupler of the present invention, and FIG. 2 shows one characteristic of a material used for the cladding layer 3 in FIG. FIG. 3 and FIG. 3 are schematic side views showing an example of a conventional waveguide type grating coupler. 1 ... Substrate, 2 ... Thin film waveguide, 3 ... Clad layer, 4
…… Grating coupler, 5 …… Semiconductor laser.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定導波モードで伝搬する導波路内の導波
光を前記導波路に設けた屈折率の周期的変動手段により
放射光として導波路外へ導く導波路型グレーティング結
合器において、 前記導波光の空気中における波長λ0の変化に際し、前
記周期的変動手段に対面する前記導波路の等価屈折率N
の変化量を、前記周期的変動手段のグレーティング周期
を含む構造定数kと前記波長λ0との積k・λ0の変化
量にほぼ等しくする手段を備えることを特徴とする導波
路型グレーティング結合器。
1. A waveguide type grating coupler for guiding guided light in a waveguide propagating in a predetermined guided mode to the outside of the waveguide as radiated light by means of periodic fluctuation means of a refractive index provided in the waveguide. When the wavelength λ0 of the guided light changes in the air, the equivalent refractive index N of the waveguide facing the periodically varying means is N.
The waveguide grating coupler is characterized in that it comprises means for making the amount of change of (1) substantially equal to the amount of change of the product k · λ0 of the structural constant k including the grating period of the periodic varying means and the wavelength λ0.
JP29532586A 1986-12-10 1986-12-10 Waveguide type grating coupler Expired - Lifetime JPH077134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29532586A JPH077134B2 (en) 1986-12-10 1986-12-10 Waveguide type grating coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29532586A JPH077134B2 (en) 1986-12-10 1986-12-10 Waveguide type grating coupler

Publications (2)

Publication Number Publication Date
JPS63147113A JPS63147113A (en) 1988-06-20
JPH077134B2 true JPH077134B2 (en) 1995-01-30

Family

ID=17819153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29532586A Expired - Lifetime JPH077134B2 (en) 1986-12-10 1986-12-10 Waveguide type grating coupler

Country Status (1)

Country Link
JP (1) JPH077134B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389830B1 (en) * 2001-08-20 2003-07-02 삼성전자주식회사 Imaging apparatus and method for light distribution of planar waveguide circuit

Also Published As

Publication number Publication date
JPS63147113A (en) 1988-06-20

Similar Documents

Publication Publication Date Title
Adar et al. Broad-band array multiplexers made with silica waveguides on silicon
US3883221A (en) Portable prism-grating coupler
US4776661A (en) Integrated optical device
EP0753768B1 (en) Wavelength changing device and laser beam generating apparatus
JP3522117B2 (en) Self-guided optical circuit
US4881791A (en) Optical device
WO2002025336A2 (en) Transverse-longitudinal integrated resonator
US4831631A (en) Laser transmitter comprising a semiconductor laser and an external resonator
US5848207A (en) Optical device formed with grating therein, add/drop filter using same, and method of fabricating same
JPS60222805A (en) Stable fiber optic polarizer
US6219478B1 (en) Light wave diffraction device
US4852961A (en) Nonlinear optical waveguide device including grating for changing of the wavelength of light
US11733455B2 (en) Amplitude and phase light modulator based on miniature optical resonators
US7515804B2 (en) Optical waveguide device
JPH077134B2 (en) Waveguide type grating coupler
JPH1184117A (en) Reflection type optical waveguide grating
JP2527363B2 (en) Method of coupling guided light and external light
KR910700560A (en) Semiconductor laser amplifier
JPH01145620A (en) Frequency deviator for wave within intermediate infrared rays range
US10908355B2 (en) Wave plate and divided prism member
JPH0261005B2 (en)
JP2551477B2 (en) Method of coupling guided light and external light
JPH0816728B2 (en) Optical coupling device
JP3402401B2 (en) Coupling method between guided light and external light
US20140185987A1 (en) Waveguide lens for coupling laser light source and optical element