JP3402401B2 - Coupling method between guided light and external light - Google Patents

Coupling method between guided light and external light

Info

Publication number
JP3402401B2
JP3402401B2 JP12237894A JP12237894A JP3402401B2 JP 3402401 B2 JP3402401 B2 JP 3402401B2 JP 12237894 A JP12237894 A JP 12237894A JP 12237894 A JP12237894 A JP 12237894A JP 3402401 B2 JP3402401 B2 JP 3402401B2
Authority
JP
Japan
Prior art keywords
substrate
light
optical waveguide
temperature
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12237894A
Other languages
Japanese (ja)
Other versions
JPH07333464A (en
Inventor
寛 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP12237894A priority Critical patent/JP3402401B2/en
Publication of JPH07333464A publication Critical patent/JPH07333464A/en
Application granted granted Critical
Publication of JP3402401B2 publication Critical patent/JP3402401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、基板に形成された光導
波路内を導波する光を回折格子により光導波路外に出力
させ、あるいは外部光を回折格子によって光導波路内に
入力させる方法に関するものでり、特に詳細には、基板
温度の変化により入力効率が低下したり、基板端面から
の光出射角が変動してしまうことを防止するようにした
導波光と外部光との結合方法に関するものである。 【0002】 【従来の技術】光導波路において光を導波させる際に、
外部光を光導波路内に入力させるため、あるいは導波光
を光導波路外に出力させるために、従来より、光導波路
表面に回折格子(グレーティング・カプラ)を設け、こ
の回折格子により外部光と導波光とを結合させることが
考えられている。このような回折格子は、その他の例え
ばプリズムカプラ等の光入出力手段に比べれば、光導波
路素子の小型軽量化の点で有利である。 【0003】 【発明が解決しようとする課題】しかしその半面この回
折格子は、周囲温度の変動に応じて、光入力に用いる場
合は入力効率が低下し、また光出力に用いる場合は回折
格子からの光出射角が敏感に変動し、ひいては光導波路
素子からの光出射角が変動するという問題を有してい
る。 【0004】このような問題を解決する導波光と外部光
との結合方法として、従来より、特開平2−21380
7号公報に開示されている方法が知られている。この方
法は、外部光を光導波路の基板の端面に通して、そこで
回折格子による回折の向きと同方向に屈折させ、そして
上記基板端面が光導波路に対してなす角度を特定値に設
定しておくことにより、外部光入力の場合は、基板温度
変化による基板端面における外部光の屈折角変化を利用
して、回折格子への外部光入射角を最大回折効率が得ら
れる位相整合入射角(これは基板温度に応じて変化す
る)に自動設定するようにしたものである。 【0005】なお、導波光出力の場合は、回折格子から
出射した外部光を上述の角度に設定された基板端面に通
すことにより、基板温度変化による回折格子からの出射
角変動が補償されて、該端面からの外部光出射角が一定
になる。 【0006】この従来方法は確かに効果的なものである
が、それでも、基板温度変化に起因する入力効率低下あ
るいは光出射角の変動を十分には防ぎ切れず、この点に
改良の余地が残されていた。 【0007】本発明は上記の事情に鑑みてなされたもの
であり、基板温度が変化しても、光入力効率の低下、あ
るいは基板端面からの光出射角変動を極めて少なく抑え
ることができる、導波光と外部光との結合方法を提供す
ることを目的とするものである。 【0008】 【課題を解決するための手段】本発明による導波光と外
部光との結合方法は、先に述べたように基板上の光導波
路の表面(これは、空気側あるいは基板側の表面のどち
らでもよい)に設けた回折格子によって導波光と外部光
とを結合する方法において、外部光を光導波路の基板の
端面に通して、そこで上記回折格子による回折の向きと
同方向に屈折させ、この基板端面が光導波路に対してな
す角度αを、 【0009】 【数2】 【0010】ただし、φは任意の温度tにおける回
折格子に対する外部光の入射角あるいは出射角 Λは任意の温度tにおける回折格子周期 λは真空中の光波長 nは任意の温度tにおける基板屈折率 aは基板屈折率の温度係数 bは光導波路の線膨張係数 なる関係をほぼ満たす値に設定しておくことを特徴とす
るものである。 【0011】なお上記の「回折の向きと同方向に屈折さ
せる」とは、回折格子における回折の向きが、ある方向
から見た際に例えば光の進行方向に対して右側になって
いるとすれば、それと同じ方向から見た際に基板端面に
おける屈折の向きが、光の進行方向に対して同じく右側
になるように屈折させるということを意味する。 【0012】 【作用および発明の効果】本発明者の研究によると、前
述の特開平2−213807号公報に開示されている従
来方法は、回折格子に対する位相整合入射角を考える上
で、光導波路の熱膨張による回折格子の周期変化を考慮
していないために、基板温度変化に起因する入力効率低
下あるいは光出射角の変動を十分に防ぎ切れないもので
あることが判明した。 【0013】本発明による導波光と外部光との結合方法
は、この光導波路の熱膨張による回折格子の周期変化を
も考慮して、基板温度変化に起因する入力効率低下ある
いは光出射角の変動を防止するようにしたものであり、
以下、その作用および効果を図1を参照して詳しく説明
する。なお以下の説明は、図示の通り、外部光17を回折
格子13を介して光導波路12に入力させる場合について行
なう。 【0014】まず、光入力用回折格子13における位相整
合入射角φの温度依存性を考える。本方法のように、外
部光17を基板11側から入射させる場合、光導波路表面の
回折格子13における位相整合条件は、通常利用される−
1次光については、 nksin φ=Nk−K ……(2) ただし、nは基板屈折率 Nは光導波路の実効屈折率 kは真空中の光の波数ベクトルの大きさ Kは回折格子の波数ベクトルの大きさ となる。ここで真空中の光波長をλ、回折格子周期をΛ
とすると、k=2π/λ、K=2π/Λである。 【0015】光導波路実効屈折率N=n(1+δ)と示
し、またこの光導波路実効屈折率Nが基板屈折率nと同
じ温度係数を持つものとみなして、(2) 式をφについて
整理すると、 【0016】 【数3】 【0017】となる。この式において温度依存性がある
パラメーターは、基板屈折率nと回折格子周期Λであ
る。 【0018】すなわち、基板屈折率nの温度係数をa、
光導波路12の線膨張係数をbとすると、上記位相整合入
射角φは温度の関数として、 【0019】 【数4】 【0020】と表わせる。なおtは温度変化量、Λ0
t=0での回折格子周期、n0 はt=0での基板屈折率
である。 【0021】そこで、φをtについて微分すると、t=
0での位相整合入射角φの温度係数dφ/dtが、 【0022】 【数5】 【0023】として求められる。 【0024】次に、外部光の基板端面での屈折による入
射角φの温度依存性を考える。図1に示すように、基板
端面11aにおける外部光17の入射角、出射角をそれぞれ
θ、θとし、また周囲媒質である空気の屈折を1
とすると、 【0025】 【数6】 【0026】であり、また θ2 =α−φ ………(6) である。そこで外部光17の回折格子13への入射角φは、 【0027】 【数7】 【0028】と表わせる。 【0029】この場合、温度依存性があるパラメーター
は基板屈折率nのみであるから、入射角φは温度の関数
として、 【0030】 【数8】 【0031】と表わせる。そこで、φをtについて微分
すると、t=0での入射角φの温度係数dφ/dtが、 【0032】 【数9】 【0033】として求められる。 【0034】次に、この(7) 式で示される基板端面屈折
後の入射角φの温度依存性と、前記(4) 式で示される位
相整合入射角φの温度依存性とが一致するようになる基
板端面の角度αを求める。これら2つの温度依存性が一
致することから、 【0035】 【数10】 【0036】であり、また前記(5) 式および(6) 式よ
り、 sin θ1 =n0 sin (α−φ) ………(9) である。これら(8) 、(9) 式より、 【0037】 【数11】 【0038】となる。この温度変化量t=0の場合を示
す上式において、Λ0 およびn0 をそれぞれ一般的に任
意の温度t0 における値Λ、nとすれば、先に示した
(1) 式が導き出される。 【0039】以上のようにして、基板端面が光導波路に
対してなす角度αを(1) 式で規定される値に設定してお
けば、入射角φは、基板温度変化にともなう基板屈折率
変化により(つまり基板端面における出射角θ2 の変化
により)、基板屈折率変化および、光導波路の熱膨張に
起因する回折格子周期変化に応じて変化する位相整合入
射角に自動的に設定されるようになり、回折格子におけ
る光入力効率が高く保たれる。 【0040】以上、光入力の場合を説明したが、回折格
子から出力された外部光を上述のような角度αに設定さ
れた基板端面に通すことにより、回折格子からの出射角
変動が補償されて、該端面からの外部光出射角が一定に
なることは、光入力と光出力の場合の相反定理から明ら
かである。 【0041】なお上の説明は、基板屈折率nに対する光
導波路実効屈折率Nの比(1+δ)が、基板屈折率nが
変化しても一定であることを前提としており、多くの光
導波路素子においても事実そのようになる。しかし本発
明は、この比(1+δ)が基板屈折率nの変化に応じて
若干変動する光導波路素子に対しても有効である。つま
りそのような光導波路素子においても、基板端面が光導
波路となす角度αを前記(1) 式で規定される値に設定し
ておけば、基板温度が変化したとき、光入力の場合なら
ば、回折格子における位相整合がある程度劣化すること
はあるものの、全く何の対策も講じない場合に比べれ
ば、光入力効率をより高く維持できる。また光出力の場
合は、同様にして基板端面からの光出射角変動をより小
さく抑えることができる。 【0042】 【実施例】以下、図面に示す実施例に基づいて本発明を
詳細に説明する。図1と図2は、本発明の方法によって
外部光を光導波路内に入力させるようにした光導波路素
子の一例を示すものである。この光導波路素子10は、透
明な基板11上に形成されたスラブ状光導波路12と、この
光導波路12の表面において互いに離して設けられた光入
力用回折格子(Linear Grating Coupler:以下LG
Cと称する)13および光出力用LGC14とを有してい
る。 【0043】本実施例においては一例として、基板11に
LiNbO3 ウェハを用い、このウェハの表面にプロト
ン交換層を設けることにより光導波路12を形成してい
る。例えばアルゴンレーザ15等の光源は、基板11側から
LGC13に向けて光ビーム(レーザビーム)17を射出す
るように配置されている。この光ビーム17は、斜めにカ
ットされた基板端面11aを通ってこの基板11側からLG
C13の部分に入射する。光ビーム17はこのLGC13で回
折して光導波路12内に入射し、該光導波路12内を導波モ
ードで矢印A方向に進行する。この導波光17’はLGC
14において回折して、光導波路12から基板11側に出射す
る。光導波路12から出射して外部光となった光ビーム1
7”は、基板端面11bから素子外に出射する。 【0044】ここで本実施例においては、光導波路素子
10の各要素を設計する上での基準温度t0 =15℃とす
る。この温度においては基板屈折率n=2.24、光導波路
実効屈折率N=2.245 であり、またこの温度においてL
GC13の長さL=2000μm、LGC13の格子周期Λ=2.
1 μmとする。そして基板屈折率nの温度係数a=5.3
×10-5、光導波路12の線膨張係数b=1.5 ×10-5、光ビ
ーム17の真空中の波長λ=514.5 nmである。 【0045】以上の数値から、基準温度t0 =15℃にお
ける位相整合入射角φ、および基板端面11aが光導波路
12となす角度αをそれぞれ前述の(3) 式、(1) 式に基づ
いて求めるとφ=63.23 °、α=80.54 °となる。この
ように、α=80.54 °としたとき入射角φ=63.23 °と
なるようにするため、基板端面11aにおける屈折の向き
がLGC13における回折の向きと同方向となるように光
ビーム17を入射させ、また端面11aに対する光ビーム17
の入射角θ1 は、(5) 式および(6) 式に基づいて41.80
°に設定する。 【0046】以上のように各条件を設定すると、基板温
度が変化して基板屈折率nおよびLGC13の格子周期Λ
が変動しても、先に述べた理由により、LGC13におけ
る光入力効率がt0 =15℃の場合とほぼ等しく保たれ
る。 【0047】図3および図4には、光入力効率が基板温
度変化量に応じて変化する様子を示す。これら両図は同
じ測定結果を示すものであり、図4は図3の一部を拡大
表示している。またこれらの図の縦軸の光入力効率は、
基準温度t0 =15℃における効率をI0 としてそれに対
する相対値I/I0 で示し、一方横軸の温度変化量Δt
は、基板温度から基準温度t0 =15℃を引いた値で示し
てある。なおこの場合とは反対に、基板温度から基準温
度t0 =15℃を引いた値が負値になる場合も、それらの
差の絶対値を温度変化量Δtとすれば、基本的に図3お
よび図4と同様の特性となる。 【0048】図中、曲線aが上記実施例のもの(α=8
0.54 °)、曲線bが上記実施例のものに対して角度α
を1°だけ小さくしたもの(α=79.54 °)、曲線cが
前述の特開平2−213807号公報に開示されている
方法で角度αを設定したもの(α=76.88 °)、曲線d
が全く基板温度変化に対する補正を行なわずに基板端面
11aに光ビーム17を垂直入射させたもの(α=63.23
°)の測定結果をそれぞれ示している。これらの図3お
よび図4からも、本発明によれば、基板温度が変化して
も光入力効率は極めて僅かしか低下しないことが明らか
である。 【0049】なお図4に明確に示されているように、角
度αが前記(1) 式で規定される値から若干程度外れて
も、明らかに光入力効率の低下を防止する効果が得られ
る。したがって、角度αが(1) 式で規定される値から1
〜2°程度外れる構成も、本発明に含まれるものとす
る。 【0050】以上、本発明を光入力に適用した実施例に
ついて説明したが、既述の通り本発明は光出力の場合に
も適用可能であり、その場合は基板端面からの光出射角
変動を防止する効果が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of outputting light guided in an optical waveguide formed on a substrate to the outside of the optical waveguide by a diffraction grating, or diffracting external light. The present invention relates to a method of inputting light into an optical waveguide by using a grating, and more particularly, to prevent the input efficiency from being reduced due to a change in substrate temperature or to prevent the light emission angle from the end face of the substrate from fluctuating. The present invention relates to a method for coupling guided light and external light. [0002] When light is guided in an optical waveguide,
Conventionally, a diffraction grating (grating coupler) is provided on the surface of an optical waveguide to input external light into the optical waveguide or output guided light to the outside of the optical waveguide. Is considered to be combined. Such a diffraction grating is advantageous in reducing the size and weight of the optical waveguide element as compared with other light input / output means such as a prism coupler. However, on the other hand, the diffraction efficiency of this diffraction grating is reduced when used for light input, and the diffraction grating is reduced when used for light output, depending on fluctuations in ambient temperature. Has a problem that the light emission angle fluctuates sensitively and, consequently, the light emission angle from the optical waveguide element fluctuates. As a method of coupling guided light and external light to solve such a problem, a method disclosed in Japanese Patent Application Laid-Open No. Hei.
A method disclosed in Japanese Patent Publication No. 7-107 is known. In this method, external light is passed through the end face of the substrate of the optical waveguide, where it is refracted in the same direction as the direction of diffraction by the diffraction grating, and the angle formed by the end face of the substrate with respect to the optical waveguide is set to a specific value. Therefore, in the case of external light input, the incident angle of external light to the diffraction grating is adjusted to the phase-matching incident angle (this Is changed according to the substrate temperature). In the case of a guided light output, external light emitted from the diffraction grating is passed through the end face of the substrate set at the above-mentioned angle, thereby compensating for a change in the emission angle from the diffraction grating due to a change in the substrate temperature. The external light emission angle from the end face becomes constant. Although this conventional method is certainly effective, it still cannot sufficiently prevent a decrease in input efficiency or a change in light emission angle due to a change in substrate temperature, and there is room for improvement in this respect. It had been. The present invention has been made in view of the above circumstances, and it is possible to reduce the light input efficiency or to minimize the fluctuation of the light emission angle from the substrate end face even if the substrate temperature changes. It is an object of the present invention to provide a method for coupling wave light and external light. According to the present invention, there is provided a method of coupling guided light and external light according to the present invention, as described above. In the method of coupling the guided light and the external light by the diffraction grating provided in the optical waveguide, the external light is passed through the end face of the substrate of the optical waveguide, where it is refracted in the same direction as the direction of diffraction by the diffraction grating. The angle α formed by the end face of the substrate with respect to the optical waveguide is given by: [0010] However, phi is in the optical wavelength n is any temperature t 0 in a vacuum is the incident angle or exit angle Λ external light grating period λ at any temperature t 0 for the diffraction grating at any temperature t 0 The substrate refractive index a is set to a value that substantially satisfies the relationship of the substrate refractive index temperature coefficient b and the linear expansion coefficient of the optical waveguide. [0011] The above "refraction in the same direction as the direction of diffraction" means that the direction of diffraction in the diffraction grating is, for example, on the right side with respect to the traveling direction of light when viewed from a certain direction. For example, it means that the light is refracted so that the direction of refraction on the end face of the substrate is also on the right side with respect to the traveling direction of light when viewed from the same direction. According to the study of the present inventors, the conventional method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2-213807 discloses an optical waveguide in consideration of the phase matching incident angle with respect to a diffraction grating. It has been found that since the change in the period of the diffraction grating due to the thermal expansion is not taken into account, it is not possible to sufficiently prevent the reduction in input efficiency or the change in the light emission angle due to the change in the substrate temperature. The method of coupling guided light and external light according to the present invention takes into account the change in the period of the diffraction grating due to the thermal expansion of the optical waveguide, and the reduction in the input efficiency or the change in the light emission angle due to the change in the substrate temperature. Is to prevent,
Hereinafter, the operation and effects will be described in detail with reference to FIG. The following description will be made on the case where external light 17 is input to the optical waveguide 12 via the diffraction grating 13 as shown in the figure. First, the temperature dependence of the phase matching incident angle φ in the optical input diffraction grating 13 will be considered. When the external light 17 is incident from the substrate 11 side as in this method, the phase matching condition in the diffraction grating 13 on the surface of the optical waveguide is usually used.
For the primary light, nk sin φ = Nk−K (2) where n is the substrate refractive index N is the effective refractive index k of the optical waveguide k is the wave vector magnitude of light in vacuum K is the wave number of the diffraction grating The size of the vector. Here, the light wavelength in vacuum is λ, and the diffraction grating period is Λ
Then, k = 2π / λ and K = 2π / Λ. The effective refractive index N of the optical waveguide is shown as N = n (1 + δ), and the effective refractive index N of the optical waveguide is regarded as having the same temperature coefficient as the refractive index n of the substrate. ## EQU3 ## ## EQU1 ## In this equation, parameters having temperature dependency are the substrate refractive index n and the diffraction grating period Λ. That is, the temperature coefficient of the substrate refractive index n is a,
Assuming that the linear expansion coefficient of the optical waveguide 12 is b, the phase matching incident angle φ is a function of temperature as follows: ## EQU2 ## Here, t is a temperature change amount, Λ 0 is a diffraction grating period at t = 0, and n 0 is a substrate refractive index at t = 0. Then, when φ is differentiated with respect to t, t =
The temperature coefficient dφ / dt of the phase matching incident angle φ at 0 is: Is obtained. Next, consider the temperature dependence of the incident angle φ due to the refraction of the external light at the end face of the substrate. As shown in FIG. 1, the incident angle and the outgoing angle of the external light 17 on the end face 11a of the substrate are set to θ 1 and θ 2 respectively, and the refraction of air as the surrounding medium is set to 1
Then, And θ 2 = α−φ (6). Therefore, the incident angle φ of the external light 17 to the diffraction grating 13 is given by: ## EQU2 ## In this case, since the only parameter having temperature dependency is the substrate refractive index n, the incident angle φ is given by the following equation as a function of temperature. ## EQU1 ## Then, when φ is differentiated with respect to t, the temperature coefficient dφ / dt of the incident angle φ at t = 0 is given by: Is obtained. Next, the temperature dependence of the incident angle φ after the refraction of the substrate end surface shown in the equation (7) and the temperature dependence of the phase matching incident angle φ shown in the above equation (4) match. Then, the angle α of the substrate end face is obtained. Since these two temperature dependencies match, the following equation is obtained. From the above equations (5) and (6), sin θ 1 = n 0 sin (α−φ) (9) From these equations (8) and (9), the following equation is obtained. ## EQU4 ## In the above equation showing the case where the temperature change amount t = 0, if Λ 0 and n 0 are generally values Λ and n at an arbitrary temperature t 0 , respectively,
Equation (1) is derived. As described above, if the angle α formed by the end face of the substrate with respect to the optical waveguide is set to the value defined by the equation (1), the incident angle φ becomes the refractive index of the substrate due to a change in the substrate temperature. Due to the change (that is, due to the change of the emission angle θ 2 at the end face of the substrate), the phase matching incident angle is automatically set to change according to the change of the substrate refractive index and the change of the diffraction grating period caused by the thermal expansion of the optical waveguide. As a result, the light input efficiency in the diffraction grating is kept high. As described above, the case of light input has been described. By passing the external light output from the diffraction grating through the end face of the substrate set at the angle α as described above, the fluctuation of the emission angle from the diffraction grating is compensated. It is apparent from the reciprocity theorem in the case of light input and light output that the external light emission angle from the end face is constant. The above description is based on the assumption that the ratio (1 + δ) of the effective refractive index N of the optical waveguide to the refractive index n of the substrate is constant even if the refractive index n of the substrate changes. In fact, that is the case. However, the present invention is also effective for an optical waveguide device in which the ratio (1 + δ) slightly varies according to the change in the substrate refractive index n. In other words, even in such an optical waveguide element, if the angle α formed by the substrate end face and the optical waveguide is set to the value defined by the above equation (1), when the substrate temperature changes, if the optical input is used, Although the phase matching in the diffraction grating may be deteriorated to some extent, the light input efficiency can be maintained higher as compared with the case where no measure is taken. In the case of the light output, similarly, the fluctuation of the light emission angle from the end face of the substrate can be further reduced. Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. 1 and 2 show an example of an optical waveguide device in which external light is input into an optical waveguide by the method of the present invention. The optical waveguide element 10 includes a slab optical waveguide 12 formed on a transparent substrate 11 and a light input diffraction grating (hereinafter referred to as LG) provided on the surface of the optical waveguide 12 so as to be separated from each other.
C) 13 and a light output LGC 14. In this embodiment, as an example, an optical waveguide 12 is formed by using a LiNbO 3 wafer for the substrate 11 and providing a proton exchange layer on the surface of the wafer. For example, a light source such as an argon laser 15 is arranged to emit a light beam (laser beam) 17 from the substrate 11 toward the LGC 13. The light beam 17 passes through the substrate end surface 11a cut obliquely, and is
It is incident on the portion of C13. The light beam 17 is diffracted by the LGC 13 and enters the optical waveguide 12, and travels in the optical waveguide 12 in the waveguide mode in the direction of arrow A. This guided light 17 'is LGC
The light is diffracted at 14 and exits from the optical waveguide 12 to the substrate 11 side. Light beam 1 emitted from optical waveguide 12 to become external light 1
7 "is emitted out of the device from the substrate end face 11b. In this embodiment, the optical waveguide device is used.
It is assumed that a reference temperature t 0 = 15 ° C. in designing each of the ten elements. At this temperature, the substrate refractive index n = 2.24 and the effective refractive index of the optical waveguide N = 2.245.
Length L of GC13 = 2000 μm, grating period of LGC13L = 2.
1 μm. And the temperature coefficient a of the substrate refractive index n = 5.3
× 10 −5 , the coefficient of linear expansion b of the optical waveguide 12 is 1.5 × 10 −5 , and the wavelength λ of the light beam 17 in vacuum is 514.5 nm. From the above values, the phase-matching incident angle φ at the reference temperature t 0 = 15 ° C. and the substrate end face 11a indicate that the optical waveguide
When the angle α to be set to 12 is obtained based on the above-described equations (3) and (1), φ = 63.23 ° and α = 80.54 °. In this way, in order to make the incident angle φ = 63.23 ° when α = 80.54 °, the light beam 17 is incident so that the direction of refraction on the substrate end face 11a is the same as the direction of diffraction on the LGC13. And the light beam 17 against the end face 11a.
Incident angle θ 1 is 41.80 based on the equations (5) and (6).
Set to °. When the respective conditions are set as described above, the substrate temperature changes and the substrate refractive index n and the grating period of the LGC 13 Λ
Is maintained, the light input efficiency in the LGC 13 is maintained substantially equal to that in the case where t 0 = 15 ° C. for the reason described above. FIGS. 3 and 4 show how the light input efficiency changes according to the amount of change in the substrate temperature. These two figures show the same measurement results, and FIG. 4 is an enlarged view of a part of FIG. The light input efficiency on the vertical axis in these figures is
The efficiency at the reference temperature t 0 = 15 ° C. is defined as I 0 , and the efficiency is shown as a relative value I / I 0 , while the temperature change Δt on the horizontal axis
Is a value obtained by subtracting the reference temperature t 0 = 15 ° C. from the substrate temperature. Contrary to this case, even when the value obtained by subtracting the reference temperature t 0 = 15 ° C. from the substrate temperature becomes a negative value, if the absolute value of the difference is taken as the temperature change Δt, basically, FIG. And the same characteristics as those in FIG. In the figure, the curve a is that of the above embodiment (α = 8
0.54 °), and the curve b has an angle α with respect to that of the above embodiment.
Is reduced by 1 ° (α = 79.54 °), curve c is obtained by setting the angle α by the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2-213807 (α = 76.88 °), and curve d is obtained.
But without any correction for the substrate temperature change
11a in which the light beam 17 is vertically incident (α = 63.23
°) are shown. 3 and 4, it is clear that according to the present invention, even when the substrate temperature changes, the light input efficiency decreases only slightly. As clearly shown in FIG. 4, even if the angle α slightly deviates from the value defined by the above equation (1), the effect of clearly preventing the decrease of the light input efficiency can be obtained. . Therefore, the angle α is 1 from the value defined by the equation (1).
A configuration deviating by about 2 ° is also included in the present invention. The embodiment in which the present invention is applied to light input has been described above. However, as described above, the present invention is also applicable to the case of light output. The effect of preventing is obtained.

【図面の簡単な説明】 【図1】本発明の方法を実施する装置の一部を示す側面
図 【図2】図1の装置の全体構成を示す斜視図 【図3】基板温度変化量と光入力効率との関係を示すグ
ラフ 【図4】図3のグラフの一部を拡大して示すグラフ 【符号の説明】 10 光導波路素子 11 基板 12 光導波路 13 光入力用LGC 14 光出力用LGC 17 光ビーム 17’ 導波光 17” 出力光
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view showing a part of an apparatus for carrying out a method of the present invention. FIG. 2 is a perspective view showing an entire configuration of the apparatus shown in FIG. 1. FIG. Graph showing the relationship with light input efficiency [FIG. 4] Graph showing a part of the graph of FIG. 3 enlarged [Explanation of reference numerals] 10 Optical waveguide element 11 Substrate 12 Optical waveguide 13 LGC for optical input 14 LGC for optical output 17 Light beam 17 'Guided light 17 "Output light

Claims (1)

(57)【特許請求の範囲】 【請求項1】 基板上に形成された光導波路を導波する
導波光と外部光とを、該光導波路の表面に設けた回折格
子によって結合する方法において、 前記外部光を前記基板の端面に通して、そこで前記回折
格子による回折の向きと同方向に屈折させ、 この基板端面が光導波路に対してなす角度αを、 【数1】 ただし、φは任意の温度tにおける回折格子に対す
る外部光の入射角あるいは出射角 Λは任意の温度tにおける回折格子周期 λは真空中の光波長 nは任意の温度tにおける基板屈折率 aは基板屈折率の温度係数 bは光導波路の線膨張係数 なる関係をほぼ満たす値に設定しておくことを特徴とす
る導波光と外部光との結合方法。
(57) [Claim 1] A method of coupling guided light guided through an optical waveguide formed on a substrate and external light by a diffraction grating provided on the surface of the optical waveguide. The external light passes through the end face of the substrate, where it is refracted in the same direction as the direction of diffraction by the diffraction grating, and the angle α formed by the end face of the substrate with respect to the optical waveguide is given by: However, phi is a substrate refractive index at a given temperature t 0 is the incident angle or exit angle Λ external light optical wavelength n in vacuum grating period λ at any temperature t 0 for the diffraction grating at any temperature t 0 a is a temperature coefficient of the refractive index of the substrate; b is set to a value that substantially satisfies the relationship of the linear expansion coefficient of the optical waveguide;
JP12237894A 1994-06-03 1994-06-03 Coupling method between guided light and external light Expired - Fee Related JP3402401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12237894A JP3402401B2 (en) 1994-06-03 1994-06-03 Coupling method between guided light and external light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12237894A JP3402401B2 (en) 1994-06-03 1994-06-03 Coupling method between guided light and external light

Publications (2)

Publication Number Publication Date
JPH07333464A JPH07333464A (en) 1995-12-22
JP3402401B2 true JP3402401B2 (en) 2003-05-06

Family

ID=14834355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12237894A Expired - Fee Related JP3402401B2 (en) 1994-06-03 1994-06-03 Coupling method between guided light and external light

Country Status (1)

Country Link
JP (1) JP3402401B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765972B1 (en) * 1997-07-11 1999-09-24 Instruments Sa WAVELENGTH-DISPERSION OPTICAL SYSTEM

Also Published As

Publication number Publication date
JPH07333464A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
Adar et al. Broad-band array multiplexers made with silica waveguides on silicon
USRE38039E1 (en) Laser for generating narrow-band radiation
JP3522117B2 (en) Self-guided optical circuit
US7310468B2 (en) Photonic crystal waveguide, homogeneous medium waveguide, and optical device
US20030012496A1 (en) Coupling lens and semiconductor laser module
JPH0440404A (en) Optical waveguide element
US20100202477A1 (en) Wavelength conversion laser device
US7355162B2 (en) Optical wavelength measuring device using guiding body and diffractive structure
EP1041689A1 (en) Excimer laser
Gini et al. Thermal dependence of the refractive index of InP measured with integrated optical demultiplexer
JPH04107536A (en) Second harmonic generation device
JPS625677A (en) Frequency-stabilized semiconductor laser element
JP3402401B2 (en) Coupling method between guided light and external light
JP2006330661A (en) Optical wavelength conversion element and optical wavelength converter
JP3488776B2 (en) Tapered waveguide and optical waveguide device using the same
JP2527363B2 (en) Method of coupling guided light and external light
JPH0216782A (en) Narrow band laser device
Melati et al. Athermal echelle grating and tunable echelle grating demultiplexers using a Mach-Zehnder interferometer launch structure
JP3761060B2 (en) Waveguide type optical device and light source and optical apparatus using the same
JP2900703B2 (en) Narrow band laser device
US6343091B1 (en) External resonator light source
Spaulding et al. Achromatic waveguide couplers
JP2005017410A (en) Wavelength conversion laser device
JPH02213807A (en) Method for coupling waveguide light and external light
JP2906615B2 (en) Waveguide type wavelength conversion element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030212

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees