JPH0771289A - Fuel injection control device - Google Patents

Fuel injection control device

Info

Publication number
JPH0771289A
JPH0771289A JP5217731A JP21773193A JPH0771289A JP H0771289 A JPH0771289 A JP H0771289A JP 5217731 A JP5217731 A JP 5217731A JP 21773193 A JP21773193 A JP 21773193A JP H0771289 A JPH0771289 A JP H0771289A
Authority
JP
Japan
Prior art keywords
instantaneous
time
internal combustion
combustion engine
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5217731A
Other languages
Japanese (ja)
Other versions
JP3864424B2 (en
Inventor
Shigeki Hidaka
茂樹 日高
Toshimi Matsumura
敏美 松村
Hidetsugu Takemoto
英嗣 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP21773193A priority Critical patent/JP3864424B2/en
Publication of JPH0771289A publication Critical patent/JPH0771289A/en
Application granted granted Critical
Publication of JP3864424B2 publication Critical patent/JP3864424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To combine a dynamic injection characteristic with a static characteristic so as to improve a transient characteristic by deciding a fuel injection timing following a time corresponding to the surplus angle part between crank angle pulses, and applying predictive correction corresponding to a rotation fluctuating amount predictive amount to a surplus angle time at the time of acceleration and deceleration. CONSTITUTION:In an ECU 6 when a diesel engine 2 is operated, a target common rail pressure is calculated on the basis of operating condition of outputs of a rotational speed sensor 7 and an acceleration sensor 8 so as to realize fuel injection pressure having optimal engine combustion condition, and a variable discharging amount high pressure pump 5 is controlled according to the deviation between the target common rail pressure and detected pressure of a common rail pressure sensor 9. In this case, an instantaneous rotational speed in a cylinder pressure compressing stroke and an instantaneous rotational speed in a cylinder explosion stroke are calculated, and a rotational speed difference is found out as to obtain a rotational fluctuation amount predictive value. When the rotational fluctuation amount predictive value exceeds a prescribed value, a predictive correction coefficient according to the rotational fluctuation amount predictive value is multiplied by a surplus angle time interval. It is thus possible to enable predictive correction, and improve a torque shortage at the time of acceleration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば運転条件に応じて
目標燃料噴射量や目標燃料噴射時期等の燃料噴射条件を
算出し蓄圧室に一担蓄えた高圧燃料を上記燃料噴射条件
に従って噴射する内燃機関の蓄圧式燃料噴射装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention calculates fuel injection conditions such as a target fuel injection amount and a target fuel injection timing according to operating conditions, and injects high-pressure fuel stored in a pressure accumulator according to the fuel injection conditions. The present invention relates to a pressure accumulation type fuel injection device for an internal combustion engine.

【0002】[0002]

【従来の技術】従来このような分野の技術として特開昭
59−82534号公報に記載のものがある。これに記
載の内燃機関用燃料噴射量制御方法では多気筒相互間に
おける燃料噴射量のバラツキがエンジン回転数に基づい
て気筒別に補正され、具体的には燃料噴射量のバラツキ
は爆発前後の瞬時回転数の変動平均からのずれが検出さ
れ補正されている。このような制御方法の場合には、加
速されるとき、又はクラッチミート等の過渡的なエンジ
ン回転変化が生じるとき平均瞬時回転数と噴射開始時の
エンジンの瞬時回転数の対応関係にズレが生じ噴射時期
ズレによるトルク変動やハンチングなどの不具合が生じ
ている。
2. Description of the Related Art Conventionally, as a technique in such a field, there is one described in Japanese Patent Laid-Open No. 59-82534. In the fuel injection amount control method for an internal combustion engine described in this, the variation in the fuel injection amount between the multiple cylinders is corrected for each cylinder based on the engine speed, and specifically, the variation in the fuel injection amount is the instantaneous rotation before and after the explosion. Deviations from the moving average of numbers have been detected and corrected. In the case of such a control method, when the vehicle is accelerated, or when a transient engine speed change such as clutch meet occurs, a deviation occurs in the correspondence between the average instantaneous speed and the instantaneous engine speed at the start of injection. Problems such as torque fluctuations and hunting have occurred due to injection timing deviation.

【0003】この不具合を回避するために、特開昭61
−118545号公報に記載のものがあり、この公知技
術には電磁弁制御方法として角度制御及び余り角度(時
間)制御が用いられ、過渡特性を向上する以下の試みが
なされている。図5は従来の角度制御及び余り角制御を
説明する図である。本図に示すように、クランク角セン
サからのNEパルスの信号を周波数−電圧変換等により
処理したエンジンの瞬時回転数(N)に対して以下のよ
うにインジェクトパルスを形成する。ここにNEパルス
間の角度は15°CAとする。基準クランク位置からの
NEパルス数を用いて目標噴射時期はTTFINi(°
CA:Crank Angle )と表す。ここにiは今回気筒に対
応するクランク角センサの測定領域、i−1は前回気筒
に対応するクランク角の測定領域を表すサフィクスであ
る。上記目標噴射時期のうちNEパルス間の角度15°
CAの整数倍である角度制御分をTANGi(°CA)
と表す。さらに余り角制御分はTREMi(°CA)
(<15°CA)と表す。ここに、TREMiは、 TREMi=TTFINi−TANGiとして得られ
る。
In order to avoid this problem, Japanese Patent Laid-Open No. 61-61
There is one disclosed in Japanese Patent Laid-Open No. 118545, and in this known technique, an angle control and a surplus angle (time) control are used as a solenoid valve control method, and the following attempts have been made to improve transient characteristics. FIG. 5 is a diagram illustrating conventional angle control and remainder angle control. As shown in the figure, an injection pulse is formed as follows with respect to the instantaneous engine speed (N) obtained by processing the NE pulse signal from the crank angle sensor by frequency-voltage conversion or the like. Here, the angle between NE pulses is 15 ° CA. Using the NE pulse number from the reference crank position, the target injection timing is TTFINI (°
CA: Crank Angle). Here, i is a measurement area of the crank angle sensor corresponding to the current cylinder, and i-1 is a suffix representing a measurement area of the crank angle corresponding to the previous cylinder. Of the target injection timings, the angle between NE pulses is 15 °
TANGi (° CA) for angle control that is an integer multiple of CA
Express. Furthermore, the surplus angle control is TREMi (° CA)
(<15 ° CA). Here, TREMi is obtained as TREMi = TTFINI-TANGi.

【0004】また、前回の余り角を含むNEパルスの時
間間隔をTpi−1(μsec)とする(図5のNEパ
ルス2〜3の間隔)。この場合、余り角制御分を時間に
変換した余り角時間TTiは、TTi=(TREMi/
15)×Tpi−1 …(1)と角から時間間隔に
変換される。
Further, the time interval of the NE pulse including the previous surplus angle is set to Tpi-1 (μsec) (interval of NE pulses 2 to 3 in FIG. 5). In this case, the margin angle time TTi obtained by converting the margin angle control amount into time is TTi = (TREMi /
15) × Tpi−1 (1) and the angle is converted into a time interval.

【0005】TTiの演算にTpiでなく、Tpi−1
を用いるのは、今回のTpiを用いていたのでは間に合
わないからである。このようにして、目標噴射時期が時
間に変換されて設定される。
In calculating TTi, not Tpi, but Tpi-1
Is used because it is not in time to use Tpi of this time. In this way, the target injection timing is converted into time and set.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
角度制御及び余り角度(時間)制御方法では以下のよう
な問題がある。図6は加減速時の前回の余り角を含むN
Eパルスの時間間隔を説明する図である。本図に示すよ
うに、定速時には余り角を含むNEパルスの時間間隔
は、Tpi−1≒Tpi≒Tpi+1≒Tpi+2≒T
pi+3≒…となる。
However, the conventional angle control and surplus angle (time) control methods have the following problems. FIG. 6 shows N including the previous surplus angle during acceleration / deceleration.
It is a figure explaining the time interval of E pulse. As shown in the figure, the time interval of the NE pulse including the surplus angle at the constant speed is Tpi−1≈Tpi≈Tpi + 1≈Tpi + 2≈T.
pi + 3≈ ...

【0007】加速時には余り角を含むNEパルスの時間
間隔は、Tpi−1≒Tpi≒Tpi+1>Tpi+2
>Tpi+3>…となる。減速時には余り角を含むNE
パルスの時間間隔は、Tpi−1≒Tpi≒Tpi+1
<Tpi+2<Tpi+3<…となる。上記加速時には
上記式(1)での余り角時間TTiについて、仮想的に
今回の(又は定常時の前回の)NEパルスの時間間隔を
使用して得た場合の静的なインジェクトパルス(点線)
は前回のNEパルスの時間間隔を使用して得た場合の動
的インジェクトパルス(実線)よりも遅角する。
At the time of acceleration, the time interval of the NE pulse including the surplus angle is Tpi-1.apprxeq.Tpi.apprxeq.Tpi + 1> Tpi + 2.
> Tpi + 3> ... NE including extra angle when decelerating
The time interval of the pulse is Tpi−1≈Tpi≈Tpi + 1
<Tpi + 2 <Tpi + 3 <... At the time of acceleration, the residual angle time TTi in the above equation (1) is virtually obtained by using the time interval of the NE pulse of this time (or the previous time of steady state), and the static injection pulse (dotted line) )
Is more retarded than the dynamic injection pulse (solid line) obtained using the time interval of the previous NE pulse.

【0008】同様に、上記減速時には上記式(1)での
余り角時間TTiについて、仮想的に今回の(又は定常
時の前回の)NEパルスの時間間隔を使用して得た場合
の静的なインジェクトパルス(点線)は前回のNEパル
スの時間間隔を使用して得た場合の動的インジェクトパ
ルス(実線)よりも進角する。このように、1噴射間に
生ずる急激な回転変化に対して噴射時期が追従できず、
加速時には遅角によるトルク不足やHC、スモークの悪
化、さらに減速初期には進角によるデトネーションが発
生するという問題がある。
Similarly, when the deceleration is performed, the surplus angle time TTi in the equation (1) is statically obtained by virtually using the time interval of the NE pulse of this time (or the previous time of steady state). Inject pulse (dotted line) is more advanced than dynamic injector pulse (solid line) obtained by using the time interval of the previous NE pulse. In this way, the injection timing cannot follow the rapid rotation change that occurs during one injection,
There is a problem that torque is insufficient due to retardation during acceleration, HC and smoke are worsened, and detonation due to advancement occurs in the initial stage of deceleration.

【0009】次に、上記問題に加えて、加減速時の平均
瞬時回転数と回転変動量との問題について説明する。図
7は平均瞬時回転数と回転変動量を説明する図である。
本図に示すように、各回のクランク各センサの特定領域
での平均瞬時回転数Nとこの平均瞬時回転数Nと最低瞬
時回転数との差である回転数変動量は、準静的に平均瞬
時回転数が変化する場合に回転数変動量がΔN1、ΔN
2と変化し、アクセルがステップ状に加わるような場合
にΔN3、ΔN4に変化するとする。
Next, in addition to the above problems, the problems of the average instantaneous rotational speed and the rotational fluctuation amount during acceleration / deceleration will be described. FIG. 7 is a diagram for explaining the average instantaneous rotation speed and the rotation fluctuation amount.
As shown in the figure, the average instantaneous rotation speed N in each specific region of each crank sensor and the rotation speed fluctuation amount, which is the difference between this average instantaneous rotation speed N and the minimum instantaneous rotation speed, are quasi-statically averaged. When the instantaneous rotation speed changes, the rotation speed fluctuation amount is ΔN1, ΔN
2 and changes to ΔN3 and ΔN4 when the accelerator is added stepwise.

【0010】図8は平均回転数と回転変動量の関係を説
明する図である。本図に示すように、準静的に定常的に
減速負荷がかかる場合に点線に示すように、平均瞬時回
転数はが大きくなるにつれてΔN1、ΔN2等は小さく
なる。ΔN1、ΔN2は生成トルクと関係しているため
である。ところが、過渡的な回転変化に対しては平均瞬
時回転数に対して、減速負荷の場合には回転変動量は小
さくなり、さらに加速負荷の場合には回転変動量はこれ
に対して符号が逆転する。
FIG. 8 is a diagram for explaining the relationship between the average rotation speed and the rotation fluctuation amount. As shown in the figure, when the quasi-static steady deceleration load is applied, as shown by the dotted line, ΔN1, ΔN2, etc. decrease as the average instantaneous rotational speed increases. This is because ΔN1 and ΔN2 are related to the generated torque. However, in the case of a decelerating load, the amount of rotational fluctuation becomes smaller with respect to the average instantaneous rotational speed with respect to a transient rotational change, and in the case of an accelerating load, the rotational fluctuation amount has a reverse sign. To do.

【0011】図9は同一噴射時期での静的、動的噴射時
期の特性を示す図である。本図に示すように、平均瞬時
回転数が急激にΔNだけ上昇した場合には(準)静的な
噴射時期特性に対して動的にΔTだけ遅角しトルク不足
やスモークが発生する。一方、平均瞬時回転数が急激に
下降した場合には動的に進角しデトネーションが発生す
るという問題がある。
FIG. 9 is a diagram showing characteristics of static and dynamic injection timings at the same injection timing. As shown in the figure, when the average instantaneous rotational speed rapidly increases by ΔN, the torque is deficiently delayed by ΔT with respect to the (quasi) static injection timing characteristic, and torque shortage or smoke occurs. On the other hand, when the average instantaneous rotation speed suddenly drops, there is a problem that the angle is dynamically advanced and detonation occurs.

【0012】したがって、本発明は上記問題点に鑑み加
減速時にトルク不足、スモーク発生、デトネーションの
発生を防止できる燃料噴射制御装置を提供することを目
的とする。
Therefore, in view of the above problems, it is an object of the present invention to provide a fuel injection control device capable of preventing torque shortage, smoke generation, and detonation during acceleration / deceleration.

【0013】[0013]

【課題を解決するための手段】本発明は、前記問題点を
解決するために、クランク角パルス間の余り角部分を時
間に変換し、この時間に従って燃料噴射制御時期を決定
する燃料噴射制御装置において、前回の気筒圧縮行程で
の内燃機関の瞬時回転数を記憶する第1のメモリと、今
回の気筒爆発行程での内燃機関の瞬時回転数を記憶する
第2のメモリと、前記今回の気筒爆発行程での内燃機関
の瞬時回転数と前記前回の気筒圧縮行程での内燃機関の
瞬時回転数との差をとりこれを回転変動量予測値として
記憶する第3のメモリとを備え、前記回転変動量予測値
に基づいて前記余り角部分の時間を補正する。
In order to solve the above problems, the present invention converts a surplus angle portion between crank angle pulses into time and determines a fuel injection control timing according to this time. In the first cylinder, a first memory for storing the instantaneous speed of the internal combustion engine in the previous cylinder compression stroke, a second memory for storing the instantaneous speed of the internal combustion engine in the current cylinder explosion stroke, and the cylinder for the current time A third memory that stores a difference between the instantaneous speed of the internal combustion engine in the explosion stroke and the instantaneous speed of the internal combustion engine in the previous cylinder compression stroke and stores the difference as a predicted value of the rotational fluctuation amount; The time of the surplus corner portion is corrected based on the variation predicted value.

【0014】[0014]

【作用】本発明の燃料噴射制御装置によれば、加減速時
に、回転変動量予測値に対応する予測補正が前記余り角
時間に施されることにより、予測補正が可能になり動的
な噴射特性を静的特性に合わせ込むことができ、良好な
過渡特性で噴射制御を行うことができ、これにより加速
時のトルク不足、スモーク、HCの排出量低減や減速時
のデトネーションを防止できる。さらに加減速時に、平
均瞬時回転数に対する回転変動率をも補正することがで
き、良好な過渡特性で噴射制御を行うことができる。
According to the fuel injection control device of the present invention, when the acceleration / deceleration is performed, the prediction correction corresponding to the predicted value of the rotation fluctuation amount is applied to the margin angle time. The characteristics can be matched with the static characteristics, and the injection control can be performed with good transient characteristics, which can prevent torque shortage during acceleration, reduction of smoke and HC emissions, and detonation during deceleration. Further, at the time of acceleration / deceleration, the rotational fluctuation rate with respect to the average instantaneous rotational speed can also be corrected, and the injection control can be performed with good transient characteristics.

【0015】[0015]

【実施例】以下本発明の実施例について図面を参照して
詳細に説明する。図1は本発明の実施例に係るコモンレ
ール式燃料噴射制御装置であって可変吐出量ポンプを備
えるものの構成を説明する図である。本図に示すコモン
レール式燃料噴射制御装置1は、6気筒のディーゼルエ
ンジン2と、ディーゼルエンジン2の各気筒に燃料を噴
射するインジェクタ3と、このインジェクタ3に供給す
る高圧燃料を蓄圧するコモンレール4と、コモンレール
4に高圧燃料を圧送する可変吐出量ポンプ5と、これら
を制御する電子制御装置(ECU)6とを備える。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a common rail fuel injection control device according to an embodiment of the present invention, which includes a variable discharge pump. A common rail fuel injection control device 1 shown in this figure includes a diesel engine 2 having 6 cylinders, an injector 3 for injecting fuel into each cylinder of the diesel engine 2, and a common rail 4 for accumulating high-pressure fuel supplied to the injector 3. , A variable discharge pump 5 for pumping high-pressure fuel to the common rail 4, and an electronic control unit (ECU) 6 for controlling these.

【0016】ECU6は、ディーゼルエンジン2の状
態、例えば回転数センサ7の検出値やアクセルセンサ8
の検出値等の運転条件を取り込み、ディーゼルエンジン
2の燃焼状態が最適となるような燃料噴射圧を実現する
ための目標コモンレール圧PFINを算出し、コモンレ
ール4に設けたコモンレール圧センサ9の検出値に基づ
いて実コモンレール圧PCを目標コモンレール圧PFI
Nに維持するように可変吐出量高圧ポンプ5を駆動制御
するコモンレール圧フィードバック制御を行う。
The ECU 6 controls the state of the diesel engine 2, for example, the detection value of the rotation speed sensor 7 and the accelerator sensor 8.
The target common rail pressure PFIN for realizing the fuel injection pressure that optimizes the combustion state of the diesel engine 2 is calculated by taking in the operating conditions such as the detection value of the above, and the detection value of the common rail pressure sensor 9 provided in the common rail 4 is calculated. Based on the actual common rail pressure PC based on the target common rail pressure PFI
Common rail pressure feedback control is performed to drive and control the variable discharge high pressure pump 5 so as to maintain N.

【0017】可変吐出量高圧ポンプ5は、このECUか
らの制御指令に従って、燃料タンク10に蓄えられた燃
料を低圧供給ポンプ11を経て吸入し、自身の内部にて
高圧に加圧し、この加圧された高圧燃料を供給配管12
を介してコモンレール4に圧送する。各インジェクタ3
は、配管13によって、高圧燃料を蓄圧したコモンレー
ル4に連結さている。そして、各インジェクタ3に配設
されたコントロール弁14を開閉動作することで、この
コモンレール4にて蓄圧されて目標コモンレール圧PF
INとなった高圧燃料が、ディーゼルエンジン2の各気
筒の燃料室へ噴射される。このインジェクタ3のコント
ロール弁14の開閉動作は、ECU6からのインジェク
タ制御指令に基づいて実行される。このインジェクタ制
御指令は燃料噴射量や燃料噴射時期を調節するためのも
のであって、回転数センサ7やアクセルセンサ8等の運
転条件検出手段からの検出値に基づいて算出され、クラ
ンク角センサ15や気筒判別センサ16等の検出値に基
づいて、所定のタイミングでECU6から出力される。
なお、可変吐出量高圧ポンプ5に対する制御指令もクラ
ンク角センサ15や可変吐出量高圧ポンプ5に搭載のカ
ム角度センサ等からの検出値に基づいた所定のタイミン
グで出力されている。
The variable discharge high-pressure pump 5 sucks the fuel stored in the fuel tank 10 through the low-pressure supply pump 11 in accordance with a control command from this ECU, pressurizes it to a high pressure inside itself, and pressurizes it. Supplying high pressure fuel 12
To the common rail 4 by pressure. Each injector 3
Is connected to a common rail 4 that stores high-pressure fuel by a pipe 13. Then, by opening and closing the control valve 14 arranged in each injector 3, the pressure is accumulated in the common rail 4 and the target common rail pressure PF.
The high pressure fuel that has become IN is injected into the fuel chamber of each cylinder of the diesel engine 2. The opening / closing operation of the control valve 14 of the injector 3 is executed based on an injector control command from the ECU 6. This injector control command is for adjusting the fuel injection amount and the fuel injection timing, and is calculated based on the detection values from the operating condition detecting means such as the rotation speed sensor 7 and the accelerator sensor 8, and the crank angle sensor 15 It is output from the ECU 6 at a predetermined timing based on the detection value of the cylinder discrimination sensor 16 or the like.
The control command for the variable discharge high pressure pump 5 is also output at a predetermined timing based on the detected values from the crank angle sensor 15 and the cam angle sensor mounted on the variable discharge high pressure pump 5.

【0018】ここで、インジェクタへ指令を行うための
燃料噴射量と燃料噴射時期の算出方法について説明す
る。まず、燃料噴射量QFINはクランク軸回転数セン
サ7の出力回転数とアクセルセンサ8の検出値から求め
られる噴射量QBASEとクランク軸回転数から一意的
に求まる噴射量QFULLの内の小さい噴射量が選択さ
れる。ここで、QBASE算出に用いるクランク軸回転
数は噴射直前の瞬時回転数を用いることが望ましい。そ
して、インジェクタへの実際の指令には、コモンレール
4の燃料圧力PCとQFINから算出される通電時間T
QFINが用いられる。
Here, a method of calculating the fuel injection amount and the fuel injection timing for instructing the injector will be described. First, the fuel injection amount QFIN is the smaller injection amount of the injection amount QBASE obtained from the output rotation speed of the crankshaft rotation speed sensor 7 and the detection value of the accelerator sensor 8 and the injection quantity QFULL that is uniquely obtained from the crankshaft rotation speed. To be selected. Here, it is desirable to use the instantaneous rotational speed immediately before injection as the crankshaft rotational speed used for QBASE calculation. Then, the actual command to the injector includes the energization time T calculated from the fuel pressure PC and QFIN of the common rail 4.
QFIN is used.

【0019】図2は本発明の実施例に係る燃料噴射時期
の算出を説明するフローチャートである。次に、燃料噴
射時期の算出について記述するが、この部分は本発明に
係る部分であるため、図2のフローチャートに従って説
明する。ステップ101において、まずエンジンの瞬時
回転数Nと目標噴射量QFINを入力する。
FIG. 2 is a flow chart for explaining the calculation of the fuel injection timing according to the embodiment of the present invention. Next, the calculation of the fuel injection timing will be described. Since this part is a part according to the present invention, it will be described according to the flowchart of FIG. In step 101, the instantaneous engine speed N and the target injection amount QFIN are first input.

【0020】ステップ102において噴射時期TTFI
N(°CA)を算出する。ここでTTFINはNとQF
INの2次元マップで、基準クランク位置から噴射開始
までの角度として算出される。ステップ3において、次
にTTFINを角度制御分としてNEパルスの整数倍の
角度TANGi(°CA)とNEパルス1歯の角度(本
実施例では15°CA)未満の余り角TREM(°C
A)に分割する。
In step 102, the injection timing TTFI
Calculate N (° CA). Where TTFIN is N and QF
The two-dimensional map of IN is calculated as the angle from the reference crank position to the start of injection. In step 3, the angle TANGi (° CA), which is an integer multiple of the NE pulse, and the surplus angle TREM (° C, which is 15 ° CA in the present embodiment), which is an integral multiple of the NE pulse and the one tooth of the NE pulse is used in step 3.
Divide into A).

【0021】この次のステップ104から110までが
本発明の適用部分である。ステップ104と105にお
いて、前気筒圧縮行程瞬時回転数NEi−1と今回気筒
圧縮行程瞬時回転数Nciを入力し、それぞれをECU
6の第1及び第2のメモリに記憶する。ステップ106
では、回転変動量予測値ΔN’(=NEi−1−Nc
i)を以下のように算出してECU6の第3のメモリに
記憶する。
The following steps 104 to 110 are the application parts of the present invention. In steps 104 and 105, the previous cylinder compression stroke instantaneous rotational speed NEi-1 and the current cylinder compression stroke instantaneous rotational speed Nci are input, and each is input to the ECU.
6 in the first and second memories. Step 106
Then, the rotation fluctuation amount predicted value ΔN ′ (= NEi-1-Nc
i) is calculated as follows and stored in the third memory of the ECU 6.

【0022】図3は回転変動量予測値ΔN’を説明する
図である。本図に示すように、前回気筒爆発行程と今回
気筒圧縮行程の二つの瞬時回転数NEi−1、Nciを
監視し、定常から過渡又は負荷ON時になった場合には
上記瞬時回転数の差ΔN’を回転変動量予測値として、
加速時に対して、 ΔN’=NEi−1−Nci を算出する。
FIG. 3 is a diagram for explaining the rotation fluctuation amount predicted value ΔN '. As shown in this figure, the two instantaneous rotational speeds NEi-1 and Nci of the previous cylinder explosion stroke and the current cylinder compression stroke are monitored, and when the steady state is changed to transient or load ON, the difference ΔN between the instantaneous rotational speeds. 'Is the rotation fluctuation prediction value,
ΔN ′ = NEi−1−Nci is calculated for acceleration.

【0023】これにより前回噴射から1噴射間の瞬時回
転数変動が予測可能となる。ここで、NEi−1とNc
iはNEパルスの1歯時間から算出するが、それぞれの
NEパルス位置は、エンジンが一定回転数で定常運転し
ている時に、NEi−1≒Nciとなるようにされ、か
つその瞬時回転数が平均瞬時回転数に近い所を検出する
ことが望ましい。
This makes it possible to predict the instantaneous rotational speed fluctuation from the previous injection to one injection. Where NEi-1 and Nc
i is calculated from one tooth time of the NE pulse, and each NE pulse position is such that NEi-1≈Nci when the engine is in steady operation at a constant rotation speed, and its instantaneous rotation speed is It is desirable to detect a place close to the average instantaneous rotation speed.

【0024】ステップ107において、次に、回転変動
量予測値ΔN’の絶対値|ΔN’|がある値以上(フロ
ーチャートではα以上)あれば過渡状態と判定する。ス
テップ108において、ΔN’をパラメータとして予測
補正係数KDTAがマップ状に第4のメモリに記憶され
てあり、ΔN’に対応する予測補正係数KDTAがマッ
プ検索される。
In step 107, next, if the absolute value | ΔN '| In step 108, the prediction correction coefficient KDTA is stored in the fourth memory in the form of a map using ΔN ′ as a parameter, and the prediction correction coefficient KDTA corresponding to ΔN ′ is searched for in the map.

【0025】ステップ9において、ステップ107にて
「過渡状態でない(定常回転)」の場合には予測補正係
数KDTAに1がセットされる。ここで、過渡状態を判
定する係数αは、エンジンが定常回転している時の回転
変動量を上回る量であればよい。ステップ110におい
て余り角TREM(i)(°CA)と1噴射前のNEパ
ルス時間Tpi−1(μsec)、NEパルス1歯角度
(本実施例では15°CA)、予測係数KDTAを用い
て余り角を時間TTiに変換する。ここで、ステップ1
10の計算式は、従来の余り角の時間間隔変換式(1)
に予測補正係数KDTAを乗じたものである。
In step 9, if "not in a transient state (steady rotation)" in step 107, the prediction correction coefficient KDTA is set to 1. Here, the coefficient α for determining the transient state may be an amount that exceeds the rotation fluctuation amount when the engine is in steady rotation. In step 110, the remainder angle TREM (i) (° CA), the NE pulse time Tpi-1 (μsec) before one injection, the NE pulse 1 tooth angle (15 ° CA in this embodiment), and the prediction coefficient KDTA Convert angle to time TTi. Where step 1
The calculation formula of 10 is the conventional spare angle time interval conversion formula (1).
Is multiplied by the prediction correction coefficient KDTA.

【0026】ステップ111において、最後にインジェ
クタに指令を行って、燃料噴射時期制御を終了する。こ
の実施例によれば、余り角の時間変換時に回転変動の影
響を予測量で考慮することによって、加減速時や負荷O
N、OFF時等の過渡的な回転変化時に噴射時期の動的
遅れを解消し、加速時のトルク不足やスモーク悪化、減
速初期のデトネーションを防止できる。
In step 111, the injector is finally commanded to end the fuel injection timing control. According to this embodiment, the influence of the rotation fluctuation is taken into consideration in the prediction amount when the surplus angle is converted into time, so that the acceleration / deceleration or the load O
It is possible to eliminate the dynamic delay of the injection timing when the rotational speed changes transiently such as N and OFF, and prevent torque shortage during acceleration, deterioration of smoke, and detonation in the initial stage of deceleration.

【0027】以上、本発明の実施例を説明したが、本発
明はこれに限定されない。例えば図2のステップ106
では、回転変動量予測値ΔN’を2つの瞬時回転数の差
分で求めていたが、ΔN’を2つの瞬時回転数の商(例
えば、NEi−1/Nci等)で求めてもよい。図4は
予測補正係数マップを示す図である。また、図2のステ
ップ107にて、過渡状態の判定を実施しているが、過
渡状態判定の代わりに図4の予測補正係数マップに示す
ように不感帯を設けてもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this. For example, step 106 in FIG.
In the above, the rotational fluctuation amount predicted value ΔN ′ is obtained by the difference between the two instantaneous rotational speeds, but ΔN ′ may be obtained by the quotient of the two instantaneous rotational speeds (for example, NEi−1 / Nci). FIG. 4 is a diagram showing a prediction correction coefficient map. Although the determination of the transient state is performed in step 107 of FIG. 2, a dead zone may be provided as shown in the prediction correction coefficient map of FIG. 4 instead of the determination of the transient state.

【0028】さらに図4の予測補正係数マップは、Δ
N’の1次元マップであるが、瞬時回転数の影響を考慮
した平均瞬時回転数NとΔNの2次元マップとしてもよ
い。
Further, the prediction correction coefficient map of FIG.
Although it is a one-dimensional map of N ′, it may be a two-dimensional map of average instantaneous rotation speed N and ΔN in consideration of the influence of the instantaneous rotation speed.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、加
減速時に、回転変動量予測値に対応する予測補正が余り
角時間に施されるので、予測補正が可能になり動的な噴
射特性を静的特性に合わせ込むことができ、良好な過渡
特性で噴射制御を行うことができ、これにより加速時の
トルク不足、スモーク、HCの排出量低減や減速時のデ
トネーションを防止できる。さらに加減速時に、平均瞬
時回転数に対する回転変動率をも補正することができ、
良好な過渡特性で噴射制御を行うことができる。なお、
本発明はディーゼルエンジンだけでなくガソリンエンジ
ンに適用可能である。
As described above, according to the present invention, the prediction correction corresponding to the rotation fluctuation amount prediction value is applied to the extra angle time during acceleration / deceleration, so that the prediction correction becomes possible and the dynamic injection is performed. The characteristics can be matched with the static characteristics, and the injection control can be performed with good transient characteristics, which can prevent torque shortage during acceleration, reduction of smoke and HC emissions, and detonation during deceleration. Furthermore, at the time of acceleration / deceleration, it is also possible to correct the rotational fluctuation rate for the average instantaneous rotational speed,
Injection control can be performed with good transient characteristics. In addition,
The invention is applicable to gasoline engines as well as diesel engines.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るコモンレール式燃料噴射
制御装置であって可変吐出量高圧ポンプを備えるものの
構成を説明する図である。
FIG. 1 is a diagram illustrating a configuration of a common rail fuel injection control device according to an embodiment of the present invention, which includes a variable discharge high pressure pump.

【図2】本発明の実施例に係る燃料噴射時期の算出を説
明するフローチャートである。
FIG. 2 is a flowchart illustrating calculation of fuel injection timing according to the embodiment of the present invention.

【図3】回転変動量予測値ΔN’を説明する図である。FIG. 3 is a diagram illustrating a rotation fluctuation amount predicted value ΔN ′.

【図4】過渡時予測補正係数マップを示すグラフであ
る。
FIG. 4 is a graph showing a transient prediction correction coefficient map.

【図5】従来の角度制御及び余り角制御を説明する図で
ある。
FIG. 5 is a diagram illustrating conventional angle control and remainder angle control.

【図6】加速時の前回の余り角を含むNEパルスの時間
間隔を説明する図である。
FIG. 6 is a diagram illustrating a time interval of an NE pulse including a previous surplus angle during acceleration.

【図7】平均瞬時回転数と回転変動量を説明する図であ
る。
FIG. 7 is a diagram illustrating an average instantaneous rotation speed and a rotation fluctuation amount.

【図8】平均回転数と回転変動量の関係を説明する図で
ある。
FIG. 8 is a diagram illustrating a relationship between an average rotation speed and a rotation fluctuation amount.

【図9】同一噴射時期での静的、動的噴射時期の特性を
示す図である。
FIG. 9 is a diagram showing characteristics of static and dynamic injection timings at the same injection timing.

【符号の説明】[Explanation of symbols]

1…コモンレール式燃料噴射制御装置 2…ディーゼルエンジン 3…インジェクタ 4…コモンレール 5…可変吐出量高圧ポンプ 6…電子制御装置(ECU) 7…回転数センサ 8…アクセルセンサ 9…コモンレール圧センサ 10…燃料タンク 11…低圧供給ポンプ 12…供給配管 13…配管 14…コントロール弁 15…クランク角センサ 16…気筒判別センサ DESCRIPTION OF SYMBOLS 1 ... Common rail fuel injection control device 2 ... Diesel engine 3 ... Injector 4 ... Common rail 5 ... Variable discharge high pressure pump 6 ... Electronic control unit (ECU) 7 ... Rotation speed sensor 8 ... Accelerator sensor 9 ... Common rail pressure sensor 10 ... Fuel Tank 11 ... Low-pressure supply pump 12 ... Supply pipe 13 ... Pipe 14 ... Control valve 15 ... Crank angle sensor 16 ... Cylinder discrimination sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 クランク角パルス間の余り角部分を時間
に変換し、この時間に従って燃料噴射制御時期を決定す
る燃料噴射制御装置において、 前回の気筒圧縮行程での内燃機関の瞬時回転数を記憶す
る第1のメモリと、 今回の気筒爆発行程での内燃機関の瞬時回転数を記憶す
る第2のメモリと、 前記今回の気筒爆発行程での内燃機関の瞬時回転数と前
記前回の気筒圧縮行程での内燃機関の瞬時回転数との差
をとりこれを回転変動量予測値として記憶する第3のメ
モリとを備え、 前記回転変動量予測値に基づいて前記余り角部分の時間
を補正することを特徴とする燃料噴射制御装置。
1. A fuel injection control device for converting a surplus angle portion between crank angle pulses into time, and determining a fuel injection control timing according to this time, storing an instantaneous rotational speed of an internal combustion engine in a previous cylinder compression stroke. And a second memory for storing the instantaneous speed of the internal combustion engine in the current cylinder explosion stroke, the instantaneous speed of the internal combustion engine in the current cylinder explosion stroke, and the previous cylinder compression stroke And a third memory that stores the difference from the instantaneous speed of the internal combustion engine as a predicted value of rotational fluctuation amount, and corrects the time of the surplus angle portion based on the predicted value of rotational fluctuation amount. A fuel injection control device.
【請求項2】 前記今回の気筒爆発行程での内燃機関の
瞬時回転数と前記前回の気筒圧縮行程での内燃機関の瞬
時回転数との差をとる代わりに前記今回の気筒爆発行程
での内燃機関の瞬時回転数と前記前回の気筒圧縮行程で
の内燃機関の瞬時回転数との比をとることを特徴とする
請求項1に記載の燃料噴射制御装置。
2. The internal combustion engine in the cylinder explosion stroke of this time, instead of taking the difference between the instantaneous rpm of the internal combustion engine in the cylinder explosion stroke of this time and the instantaneous engine speed of the internal combustion engine in the previous cylinder compression stroke. The fuel injection control device according to claim 1, wherein a ratio between an instantaneous engine speed and an instantaneous engine speed of the internal combustion engine in the previous cylinder compression stroke is calculated.
【請求項3】 前記回転変動量予測値が所定値αを越え
る場合に前記余り角部分の時間を補正することを特徴と
する請求項1に記載の燃料噴射制御装置。
3. The fuel injection control device according to claim 1, wherein the time of the surplus angle portion is corrected when the rotation fluctuation amount predicted value exceeds a predetermined value α.
【請求項4】 内燃機関の平均瞬時回転数と、前記今回
の気筒爆発行程での内燃機関の瞬時回転数と前記前回の
気筒圧縮行程での内燃機関の瞬時回転数との差である回
転変動量予測値とをマップ状に記憶することを特徴とす
る請求項1に記載の燃料噴射制御装置。
4. A rotational fluctuation which is a difference between an average instantaneous engine speed of the internal combustion engine, an instantaneous engine speed of the internal combustion engine in the cylinder explosion stroke of the present time, and an instantaneous engine speed of the internal combustion engine in the previous cylinder compression stroke. The fuel injection control device according to claim 1, wherein the predicted amount of fuel and the amount of predicted fuel are stored in a map.
【請求項5】 前記今回の気筒爆発行程での内燃機関の
瞬時回転数と前記前回の気筒圧縮行程での内燃機関の瞬
時回転数とを定常時にほぼ平均瞬時回転数に設定するこ
とを特徴とする請求項1に記載の燃料噴射制御装置。
5. The instantaneous rotation speed of the internal combustion engine in the cylinder explosion stroke of this time and the instantaneous rotation speed of the internal combustion engine in the cylinder compression stroke of the previous time are set to substantially average instantaneous rotation speeds in a steady state. The fuel injection control device according to claim 1.
JP21773193A 1993-09-01 1993-09-01 Fuel injection control device Expired - Fee Related JP3864424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21773193A JP3864424B2 (en) 1993-09-01 1993-09-01 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21773193A JP3864424B2 (en) 1993-09-01 1993-09-01 Fuel injection control device

Publications (2)

Publication Number Publication Date
JPH0771289A true JPH0771289A (en) 1995-03-14
JP3864424B2 JP3864424B2 (en) 2006-12-27

Family

ID=16708865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21773193A Expired - Fee Related JP3864424B2 (en) 1993-09-01 1993-09-01 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP3864424B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036329A1 (en) * 2008-04-30 2011-02-17 Uwe Jung Method for determining the rail pressure in a common rail system, and common rail injection system
JP2011111901A (en) * 2009-11-24 2011-06-09 Keihin Corp Engine acceleration/deceleration state discriminating device
JP2018087557A (en) * 2016-11-30 2018-06-07 マツダ株式会社 Control method and control device of engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747338B (en) * 2013-12-26 2017-06-13 联创汽车电子有限公司 The oil quantity correction method of high pressure common rail injector zero and zero oil mass Self-correc ting control module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036329A1 (en) * 2008-04-30 2011-02-17 Uwe Jung Method for determining the rail pressure in a common rail system, and common rail injection system
US8528523B2 (en) * 2008-04-30 2013-09-10 Continental Automotive Gmbh Method for determining the rail pressure in a common rail system, and common rail injection system
JP2011111901A (en) * 2009-11-24 2011-06-09 Keihin Corp Engine acceleration/deceleration state discriminating device
JP2018087557A (en) * 2016-11-30 2018-06-07 マツダ株式会社 Control method and control device of engine

Also Published As

Publication number Publication date
JP3864424B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US6105554A (en) Method and device for fuel injection for engines
US6722345B2 (en) Fuel injection system for internal combustion engine
JP4588971B2 (en) Method and apparatus for controlling an internal combustion engine
US6102009A (en) Fuel injection method and device for engines
EP1741913B1 (en) Engine fuel control system
US6990958B2 (en) Injection control system of diesel engine
US20010045200A1 (en) Feedback control for auto-ignition two-stage combustion of gasoline in engine cylinder
US20050045158A1 (en) Fuel supply control apparatus for internal combustion engine
US7032582B2 (en) Injection control system of internal combustion engine
EP1304470A2 (en) Fuel pressure control apparatus
KR20060129031A (en) Method and apparatus for adjusting fuel injection timing
KR100612784B1 (en) Accumulator injection system
US7706957B2 (en) Apparatus for controlling quantity of fuel to be actually sprayed from injector in multiple injection mode
JP2005171931A (en) Fuel injection control device
US6571774B2 (en) Engine fuel-injection control device
JPH10288105A (en) Fuel injection device for internal combustion engine
JP3864424B2 (en) Fuel injection control device
US6446596B1 (en) Method of operating an internal combustion engine
EP1447546B1 (en) Engine control unit including phase advance compensator
US6826470B2 (en) Fuel injection control device
JP2001020796A (en) Fuel injection control system of common rail type
JP3975559B2 (en) Accumulated fuel injection control device for internal combustion engine
JP3513013B2 (en) Fuel injection control device for internal combustion engine
JP4377294B2 (en) Rotational speed control device for internal combustion engine and internal combustion engine provided with the rotational speed control device
JP2003328832A (en) Fuel supply control system for internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees