JP3864424B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP3864424B2
JP3864424B2 JP21773193A JP21773193A JP3864424B2 JP 3864424 B2 JP3864424 B2 JP 3864424B2 JP 21773193 A JP21773193 A JP 21773193A JP 21773193 A JP21773193 A JP 21773193A JP 3864424 B2 JP3864424 B2 JP 3864424B2
Authority
JP
Japan
Prior art keywords
rotational speed
fuel injection
time
instantaneous rotational
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21773193A
Other languages
Japanese (ja)
Other versions
JPH0771289A (en
Inventor
茂樹 日高
敏美 松村
英嗣 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP21773193A priority Critical patent/JP3864424B2/en
Publication of JPH0771289A publication Critical patent/JPH0771289A/en
Application granted granted Critical
Publication of JP3864424B2 publication Critical patent/JP3864424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は例えば運転条件に応じて目標燃料噴射量や目標燃料噴射時期等の燃料噴射条件を算出し蓄圧室に一担蓄えた高圧燃料を上記燃料噴射条件に従って噴射する内燃機関のコモンレール式燃料噴射装置に関する。
【0002】
【従来の技術】
従来このような分野の技術として特開昭59−82534号公報に記載のものがある。これに記載の内燃機関用燃料噴射量制御方法では多気筒相互間における燃料噴射量のバラツキがエンジン回転数に基づいて気筒別に補正され、具体的には燃料噴射量のバラツキは爆発前後の瞬時回転数の変動平均からのずれが検出され補正されている。このような制御方法の場合には、加速されるとき、又はクラッチミート等の過渡的なエンジン回転変化が生じるとき平均瞬時回転数と噴射開始時のエンジンの瞬時回転数の対応関係にズレが生じ噴射時期ズレによるトルク変動やハンチングなどの不具合が生じている。
【0003】
この不具合を回避するために、特開昭61−118545号公報に記載のものがあり、この公知技術には電磁弁制御方法として角度制御及び余り角度(時間)制御が用いられ、過渡特性を向上する以下の試みがなされている。
図5は従来の角度制御及び余り角制御を説明する図である。本図に示すように、クランク角センサからのNEパルスの信号を周波数−電圧変換等により処理したエンジンの瞬時回転数(N)に対して以下のようにインジェクトパルスを形成する。ここにNEパルス間の角度は15°CAとする。基準クランク位置からのNEパルス数を用いて目標噴射時期はTTFINi(°CA:Crank Angle )と表す。ここにiは今回気筒に対応するクランク角センサの測定領域、i−1は前回気筒に対応するクランク角の測定領域を表すサフィクスである。上記目標噴射時期のうちNEパルス間の角度15°CAの整数倍である角度制御分をTANGi(°CA)と表す。さらに余り角制御分はTREMi(°CA)(<15°CA)と表す。ここに、TREMiは、
TREMi=TTFINi−TANGiとして得られる。
【0004】
また、前回の余り角を含むNEパルスの時間間隔をTpi−1(μsec)とする(図5のNEパルス2〜3の間隔)。この場合、余り角制御分を時間に変換した余り角時間TTiは、
TTi=(TREMi/15)×Tpi−1 …(1)と角から時間間隔に変換される。
【0005】
TTiの演算にTpiでなく、Tpi−1を用いるのは、今回のTpiを用いていたのでは間に合わないからである。このようにして、目標噴射時期が時間に変換されて設定される。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の角度制御及び余り角度(時間)制御方法では以下のような問題がある。
図6は加減速時の前回の余り角を含むNEパルスの時間間隔を説明する図である。本図に示すように、定速時には余り角を含むNEパルスの時間間隔は、
Tpi−1≒Tpi≒Tpi+1≒Tpi+2≒Tpi+3≒…となる。
【0007】
加速時には余り角を含むNEパルスの時間間隔は、
Tpi−1≒Tpi≒Tpi+1>Tpi+2>Tpi+3>…となる。
減速時には余り角を含むNEパルスの時間間隔は、
Tpi−1≒Tpi≒Tpi+1<Tpi+2<Tpi+3<…となる。
上記加速時には上記式(1)での余り角時間TTiについて、前回のNEパルスの時間間隔を使用して得た場合の動的インジェクトパルス(実線)は、仮想的に今回の(又は定常時の前回の)NEパルスの時間間隔を使用して得た場合の静的なインジェクトパルス(点線)よりも遅角する。
【0008】
同様に、上記減速時には上記式(1)での余り角時間TTiについて、前回のNEパルスの時間間隔を使用して得た場合の動的インジェクトパルス(実線)は、仮想的に今回の(又は定常時の前回の)NEパルスの時間間隔を使用して得た場合の静的なインジェクトパルス(点線)よりも進角する。
このように、1噴射間に生ずる急激な回転変化に対して噴射時期が追従できず、加速時には遅角によるトルク不足やHC、スモークの悪化、さらに減速初期には進角によるデトネーションが発生するという問題がある。
【0009】
次に、上記問題に加えて、加減速時の平均瞬時回転数と回転変動量との問題について説明する。
図7は平均瞬時回転数と回転変動量を説明する図である。本図に示すように、各回のクランクセンサの特定領域での平均瞬時回転数Nとこの平均瞬時回転数Nと最低瞬時回転数との差である回転数変動量は、準静的に平均瞬時回転数が変化する場合に回転数変動量がΔN1、ΔN2と変化し、アクセルがステップ状に加わるような場合にΔN3、ΔN4に変化するとする。
【0010】
図8は平均回転数と回転変動量の関係を説明する図である。本図に示すように、準静的に定常的に減速負荷がかかる場合に点線に示すように、平均瞬時回転数はが大きくなるにつれてΔN1、ΔN2等は小さくなる。ΔN1、ΔN2は生成トルクと関係しているためである。ところが、過渡的な回転変化に対しては平均瞬時回転数に対して、減速負荷の場合には回転変動量は小さくなり、さらに加速負荷の場合には回転変動量はこれに対して符号が逆転する。
【0011】
図9は同一噴射時期での静的、動的噴射時期の特性を示す図である。本図に示すように、平均瞬時回転数が急激にΔNだけ上昇した場合には(準)静的な噴射時期特性に対して動的にΔTだけ遅角しトルク不足やスモークが発生する。一方、平均瞬時回転数が急激に下降した場合には動的に進角しデトネーションが発生するという問題がある。
【0012】
したがって、本発明は上記問題点に鑑み加減速時にトルク不足、スモーク発生、デトネーションの発生を防止できる燃料噴射制御装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、前記間題点を解決するために、コモンレールに蓄圧した燃料を、気筒ごとに設けられたインジェクタにより噴射し、このインジェクタからの燃料噴射開始時期を、クランク角パルス間の余り角部分を時間に変換し、この時間に従って燃料噴射開始時期を決定するコモンレール式燃料噴射制御装置において、
前回燃料噴射時の爆発行程中での所定パルス位置における内燃機関の瞬時回転数を記憶する第1のメモリと、
今回燃料噴射時の圧縮行程中での所定パルス位置における内燃機関の瞬時回転数を記憶する第2のメモリと、
前記今回の燃料噴射時の圧縮行程中での内燃機関の瞬時回転数と前記前回の燃料噴射時の爆発行程中での内燃機関の瞬時回転数との差をとりこれを回転変動量予測値として記憶する第3のメモリとを備え、
前記所定パルス位置は、機関が一定回転数で定常運転しているときに、前記爆発行程中での瞬時回数と前記圧縮行程中での瞬時回転数とが同等になるように設定され、更に、前記爆発行程中での瞬時回転数と前記圧縮行程中での瞬時回転数が、機関が一定回転数で定常運転しているときの平均瞬時回転数に近い所を検出するように設定され、前記回転変動量予測値に基づいて前記余り角部分の時間を補正する。
【0014】
【作用】
本発明の燃料噴射制御装置によれば、加減速時に、回転変動量予測値に対応する予測補正が前記余り角時間に施されることにより、予測補正が可能になり動的な噴射特性を静的特性に合わせ込むことができ、良好な過渡特性で噴射制御を行うことができ、これにより加速時のトルク不足、スモーク、HCの排出量低減や減速時のデトネーションを防止できる。さらに加減速時に、平均瞬時回転数に対する回転変動率をも補正することができ、良好な過渡特性で噴射制御を行うことができる。
【0015】
【実施例】
以下本発明の実施例について図面を参照して詳細に説明する。
図1は本発明の実施例に係るコモンレール式燃料噴射制御装置であって可変吐出量ポンプを備えるものの構成を説明する図である。本図に示すコモンレール式燃料噴射制御装置1は、6気筒のディーゼルエンジン2と、ディーゼルエンジン2の各気筒に燃料を噴射するインジェクタ3と、このインジェクタ3に供給する高圧燃料を蓄圧するコモンレール4と、コモンレール4に高圧燃料を圧送する可変吐出量ポンプ5と、これらを制御する電子制御装置(ECU)6とを備える。
【0016】
ECU6は、ディーゼルエンジン2の状態、例えば回転数センサ7の検出値やアクセルセンサ8の検出値等の運転条件を取り込み、ディーゼルエンジン2の燃焼状態が最適となるような燃料噴射圧を実現するための目標コモンレール圧PFINを算出し、コモンレール4に設けたコモンレール圧センサ9の検出値に基づいて実コモンレール圧PCを目標コモンレール圧PFINに維持するように可変吐出量高圧ポンプ5を駆動制御するコモンレール圧フィードバック制御を行う。
【0017】
可変吐出量高圧ポンプ5は、このECUからの制御指令に従って、燃料タンク10に蓄えられた燃料を低圧供給ポンプ11を経て吸入し、自身の内部にて高圧に加圧し、この加圧された高圧燃料を供給配管12を介してコモンレール4に圧送する。
各インジェクタ3は、配管13によって、高圧燃料を蓄圧したコモンレール4に連結さている。そして、各インジェクタ3に配設されたコントロール弁14を開閉動作することで、このコモンレール4にて蓄圧されて目標コモンレール圧PFINとなった高圧燃料が、ディーゼルエンジン2の各気筒の燃料室へ噴射される。このインジェクタ3のコントロール弁14の開閉動作は、ECU6からのインジェクタ制御指令に基づいて実行される。このインジェクタ制御指令は燃料噴射量や燃料噴射時期を調節するためのものであって、回転数センサ7やアクセルセンサ8等の運転条件検出手段からの検出値に基づいて算出され、クランク角センサ15や気筒判別センサ16等の検出値に基づいて、所定のタイミングでECU6から出力される。なお、可変吐出量高圧ポンプ5に対する制御指令もクランク角センサ15や可変吐出量高圧ポンプ5に搭載のカム角度センサ等からの検出値に基づいた所定のタイミングで出力されている。
【0018】
ここで、インジェクタへ指令を行うための燃料噴射量と燃料噴射時期の算出方法について説明する。まず、燃料噴射量QFINはクランク軸回転数センサ7の出力回転数とアクセルセンサ8の検出値から求められる噴射量QBASEとクランク軸回転数から一意的に求まる噴射量QFULLの内の小さい噴射量が選択される。ここで、QBASE算出に用いるクランク軸回転数は噴射直前の瞬時回転数を用いることが望ましい。そして、インジェクタへの実際の指令には、コモンレール4の燃料圧力PCとQFINから算出される通電時間TQFINが用いられる。
【0019】
図2は本発明の実施例に係る燃料噴射時期の算出を説明するフローチャートである。次に、燃料噴射時期の算出について記述するが、この部分は本発明に係る部分であるため、図2のフローチャートに従って説明する。
ステップ101において、まずエンジンの瞬時回転数Nと目標噴射量QFINを入力する。
【0020】
ステップ102において噴射時期TTFIN(°CA)を算出する。ここでTTFINはNとQFINの2次元マップで、基準クランク位置から噴射開始までの角度として算出される。
ステップ103において、次にTTFINを角度制御分としてNEパルスの整数倍の角度TANGi(°CA)とNEパルス1歯の角度(本実施例では15°CA)未満の余り角TREM(°CA)に分割する。
【0021】
この次のステップ104から110までが本発明の適用部分である。
ステップ104と105において、前回気筒爆発行程瞬時回転数NEi−1と今回気筒圧縮行程瞬時回転数Nciを入力し、それぞれをECU6の第1及び第2のメモリに記憶する。
ステップ106では、回転変動量予測値ΔN’(=NEi−1−Nci)を以下のように算出してECU6の第3のメモリに記憶する。
【0022】
図3は回転変動量予測値ΔN’を説明する図である。本図に示すように、前回気筒爆発行程と今回気筒圧縮行程の二つの瞬時回転数NEi−1、Nciを監視し、定常から過渡又は負荷ON時になった場合には
上記瞬時回転数の差ΔN’を回転変動量予測値として、加速時に対して、
ΔN’=NEi−1−Nci
を算出する。
【0023】
これにより前回噴射から1噴射間の瞬時回転数変動が予測可能となる。ここで、NEi−1とNciはNEパルスの1歯時間から算出するが、それぞれのNEパルス位置は、エンジンが一定回転数で定常運転している時に、NEi−1≒Nciとなるようにされる。また、その瞬時回転数が平均瞬時回転数に近い所を検出することが望ましい。
【0024】
ステップ107において、次に、回転変動量予測値ΔN’の絶対値|ΔN’|がある値以上(フローチャートではα以上)あれば過渡状態と判定する。
ステップ108において、ΔN’をパラメータとして予測補正係数KDTAがマップ状に第4のメモリに記憶されてあり、ΔN’に対応する予測補正係数KDTAがマップ検索される。
【0025】
ステップ9において、ステップ107にて「過渡状態でない(定常回転)」の場合には予測補正係数KDTAに1がセットされる。ここで、過渡状態を判定する係数αは、エンジンが定常回転している時の回転変動量を上回る量であればよい。
ステップ110において余り角TREM(i)(°CA)と1噴射前のNEパルス時間Tpi−1(μsec)、NEパルス1歯角度(本実施例では15°CA)、予測係数KDTAを用いて余り角を時間TTiに変換する。ここで、ステップ110の計算式は、従来の余り角の時間間隔変換式(1)に予測補正係数KDTAを乗じたものである。
【0026】
ステップ111において、最後にインジェクタに指令を行って、燃料噴射時期制御を終了する。
この実施例によれば、余り角の時間変換時に回転変動の影響を予測量で考慮することによって、加減速時や負荷ON、OFF時等の過渡的な回転変化時に噴射時期の動的遅れを解消し、加速時のトルク不足やスモーク悪化、減速初期のデトネーションを防止できる。
【0027】
以上、本発明の実施例を説明したが、本発明はこれに限定されない。例えば図2のステップ106では、回転変動量予測値ΔN’を2つの瞬時回転数の差分で求めていたが、ΔN’を2つの瞬時回転数の商(例えば、NEi−1/Nci等)で求めてもよい。
図4は予測補正係数マップを示す図である。また、図2のステップ107にて、過渡状態の判定を実施しているが、過渡状態判定の代わりに図4の予測補正係数マップに示すように不感帯を設けてもよい。
【0028】
さらに図4の予測補正係数マップは、ΔN’の1次元マップであるが、瞬時回転数の影響を考慮した平均瞬時回転数NとΔNの2次元マップとしてもよい。
【0029】
【発明の効果】
以上説明したように本発明によれば、加減速時に、回転変動量予測値に対応する予測補正が余り角時間に施されるので、予測補正が可能になり動的な噴射特性を静的特性に合わせ込むことができ、良好な過渡特性で噴射制御を行うことができ、これにより加速時のトルク不足、スモーク、HCの排出量低減や減速時のデトネーションを防止できる。さらに加減速時に、平均瞬時回転数に対する回転変動率をも補正することができ、良好な過渡特性で噴射制御を行うことができる。なお、本発明はディーゼルエンジンだけでなくガソリンエンジンに適用可能である。
【図面の簡単な説明】
【図1】本発明の実施例に係るコモンレール式燃料噴射制御装置であって可変吐出量高圧ポンプを備えるものの構成を説明する図である。
【図2】本発明の実施例に係る燃料噴射時期の算出を説明するフローチャートである。
【図3】回転変動量予測値ΔN’を説明する図である。
【図4】過渡時予測補正係数マップを示すグラフである。
【図5】従来の角度制御及び余り角制御を説明する図である。
【図6】加速時の前回の余り角を含むNEパルスの時間間隔を説明する図である。
【図7】平均瞬時回転数と回転変動量を説明する図である。
【図8】平均回転数と回転変動量の関係を説明する図である。
【図9】同一噴射時期での静的、動的噴射時期の特性を示す図である。
【符号の説明】
1…コモンレール式燃料噴射制御装置
2…ディーゼルエンジン
3…インジェクタ
4…コモンレール
5…可変吐出量高圧ポンプ
6…電子制御装置(ECU)
7…回転数センサ
8…アクセルセンサ
9…コモンレール圧センサ
10…燃料タンク
11…低圧供給ポンプ
12…供給配管
13…配管
14…コントロール弁
15…クランク角センサ
16…気筒判別センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention is a target fuel injection amount and target fuel injection timing of the fuel injection conditions calculated pressure fuel common rail fuel injection of an internal combustion engine that injects according to the above fuel injection condition example one担蓄the accumulator chamber in response to, for example, the operating conditions Relates to the device.
[0002]
[Prior art]
Conventionally, there is a technique described in Japanese Patent Application Laid-Open No. 59-82534 as a technology in such a field. In the fuel injection amount control method for an internal combustion engine described here, the variation in the fuel injection amount among the multiple cylinders is corrected for each cylinder based on the engine speed. Specifically, the variation in the fuel injection amount is the instantaneous rotation before and after the explosion. Deviations from the average number variation are detected and corrected. In the case of such a control method, there is a deviation in the correspondence relationship between the average instantaneous rotational speed and the instantaneous rotational speed of the engine at the start of injection when acceleration is performed or when a transient engine rotational change such as clutch meat occurs. Troubles such as torque fluctuation and hunting due to injection timing deviation have occurred.
[0003]
In order to avoid this problem, there is one described in Japanese Patent Application Laid-Open No. 61-118545, and this known technique uses angle control and remainder angle (time) control as electromagnetic valve control methods to improve transient characteristics. The following attempts have been made.
FIG. 5 is a diagram for explaining conventional angle control and remainder angle control. As shown in the figure, an injection pulse is formed as follows with respect to the instantaneous engine speed (N) obtained by processing the NE pulse signal from the crank angle sensor by frequency-voltage conversion or the like. Here, the angle between NE pulses is 15 ° CA. The target injection timing is expressed as TTFINi (° CA: Crank Angle) using the number of NE pulses from the reference crank position. Here, i is a measurement area of the crank angle sensor corresponding to the current cylinder, and i-1 is a suffix indicating the measurement area of the crank angle corresponding to the previous cylinder. Of the target injection timing, an angle control amount that is an integral multiple of an angle of 15 ° CA between NE pulses is represented as TANGi (° CA). Further, the remainder angle control is expressed as TREMi (° CA) (<15 ° CA). Here, TREMi is
It is obtained as TREMi = TTFINi-TANGi.
[0004]
Further, the time interval of the NE pulse including the previous remainder angle is set to Tpi-1 (μsec) (the interval between the NE pulses 2 to 3 in FIG. 5). In this case, the remainder angle time TTi obtained by converting the remainder angle control amount into time is
TTi = (TREMi / 15) × Tpi−1 (1) and is converted from a corner to a time interval.
[0005]
The reason for using Tpi-1 instead of Tpi for the calculation of TTi is that the current Tpi is not used in time. In this way, the target injection timing is set after being converted into time.
[0006]
[Problems to be solved by the invention]
However, the conventional angle control and remainder angle (time) control methods have the following problems.
FIG. 6 is a diagram for explaining the time interval of the NE pulse including the previous remainder angle during acceleration / deceleration. As shown in this figure, the NE pulse time interval including the remainder angle at constant speed is
Tpi-1≈Tpi≈Tpi + 1≈Tpi + 2≈Tpi + 3≈.
[0007]
The time interval of the NE pulse including the remainder angle during acceleration is
Tpi-1≈Tpi≈Tpi + 1> Tpi + 2> Tpi + 3>...
During deceleration, the NE pulse time interval including the remainder angle is
Tpi-1≈Tpi≈Tpi + 1 <Tpi + 2 <Tpi + 3 <.
At the time of acceleration, the dynamic injection pulse (solid line) obtained by using the time interval of the previous NE pulse for the remainder angle time TTi in the above equation (1 ) is virtually the current (or steady time) It is retarded from the static injection pulse (dotted line) obtained using the time interval of the previous NE pulse.
[0008]
Similarly, at the time of deceleration, the dynamic injection pulse (solid line) obtained by using the time interval of the previous NE pulse for the remainder angle time TTi in the above equation (1 ) is virtually ( Alternatively, the angle is advanced from the static injection pulse (dotted line) obtained using the time interval of the previous NE pulse in the steady state.
In this way, the injection timing cannot follow the rapid rotational change that occurs during one injection, and torque is insufficient due to retard, acceleration of HC and smoke during acceleration, and detonation due to advance occurs at the beginning of deceleration. There's a problem.
[0009]
Next, in addition to the above problem, a problem between the average instantaneous rotational speed and the rotational fluctuation amount during acceleration / deceleration will be described.
FIG. 7 is a diagram for explaining the average instantaneous rotational speed and the rotational fluctuation amount. As shown in this figure, the average instantaneous rotational speed N in a specific region of each crank angle sensor and the rotational speed fluctuation amount that is the difference between the average instantaneous rotational speed N and the minimum instantaneous rotational speed are averaged quasi-statically. It is assumed that when the instantaneous rotational speed changes, the rotational speed fluctuation amount changes to ΔN1 and ΔN2, and when the accelerator is applied stepwise, it changes to ΔN3 and ΔN4.
[0010]
FIG. 8 is a diagram for explaining the relationship between the average rotational speed and the rotational fluctuation amount. As shown in the figure, as indicated by the dotted line when a deceleration load is applied quasi-statically and constantly, ΔN1, ΔN2, etc. become smaller as the average instantaneous rotational speed increases. This is because ΔN1 and ΔN2 are related to the generated torque. However, with respect to the transient rotational change, the rotational fluctuation amount becomes smaller in the case of the deceleration load with respect to the average instantaneous rotational speed, and in the case of the acceleration load, the rotational fluctuation amount has the sign reversed. To do.
[0011]
FIG. 9 is a diagram showing characteristics of static and dynamic injection timings at the same injection timing. As shown in the figure, when the average instantaneous rotational speed suddenly increases by ΔN, the (quasi) static injection timing characteristic is dynamically retarded by ΔT, resulting in insufficient torque and smoke. On the other hand, when the average instantaneous rotational speed falls rapidly, there is a problem that the angle is dynamically advanced and detonation occurs.
[0012]
Accordingly, an object of the present invention is to provide a fuel injection control device that can prevent torque shortage, smoke generation, and detonation during acceleration / deceleration in view of the above problems.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention injects fuel accumulated in a common rail by an injector provided for each cylinder, and determines the fuel injection start timing from this injector as a remainder angle portion between crank angle pulses. In the common rail fuel injection control device that determines the fuel injection start time according to this time,
A first memory for storing an instantaneous rotational speed of the internal combustion engine at a predetermined pulse position during an explosion stroke at the time of previous fuel injection;
A second memory for storing the instantaneous rotational speed of the internal combustion engine at a predetermined pulse position during the compression stroke at the time of fuel injection;
The difference between the instantaneous rotational speed of the internal combustion engine during the compression stroke at the time of the fuel injection and the instantaneous rotational speed of the internal combustion engine during the explosion stroke at the time of the previous fuel injection is taken as a rotational fluctuation amount prediction value. A third memory for storing,
It said predetermined pulse positions, when the engine is steady operation at a constant rotational speed, the instantaneous Rotation number in the explosion stroke and the instantaneous rotational speed of in the compression stroke is set to be equal, Further, the instantaneous rotational speed during the explosion stroke and the instantaneous rotational speed during the compression stroke are set so as to detect a place close to the average instantaneous rotational speed when the engine is operating at a constant rotational speed. Then, the time of the remainder angle portion is corrected based on the predicted rotational fluctuation amount.
[0014]
[Action]
According to the fuel injection control device of the present invention, during the acceleration / deceleration, a prediction correction corresponding to the predicted rotation fluctuation amount is applied to the remainder angle time, thereby enabling the prediction correction and reducing the dynamic injection characteristics. Therefore, the injection control can be performed with a good transient characteristic, thereby preventing the torque shortage at the time of acceleration, the smoke, the reduction of HC emission amount, and the detonation at the time of deceleration. Further, at the time of acceleration / deceleration, the rotational fluctuation rate with respect to the average instantaneous rotational speed can also be corrected, and the injection control can be performed with good transient characteristics.
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining the configuration of a common rail fuel injection control device according to an embodiment of the present invention, which includes a variable discharge pump. A common rail fuel injection control device 1 shown in the figure includes a six-cylinder diesel engine 2, an injector 3 that injects fuel into each cylinder of the diesel engine 2, and a common rail 4 that accumulates high-pressure fuel supplied to the injector 3. A variable discharge pump 5 that pumps high-pressure fuel to the common rail 4 and an electronic control unit (ECU) 6 that controls them are provided.
[0016]
The ECU 6 takes in operating conditions such as the state of the diesel engine 2, for example, the detection value of the rotation speed sensor 7 and the detection value of the accelerator sensor 8, and realizes a fuel injection pressure that optimizes the combustion state of the diesel engine 2. Common rail pressure for driving and controlling the variable discharge high pressure pump 5 so as to maintain the actual common rail pressure PC at the target common rail pressure PFIN based on the detection value of the common rail pressure sensor 9 provided on the common rail 4. Perform feedback control.
[0017]
The variable discharge high-pressure pump 5 sucks the fuel stored in the fuel tank 10 through the low-pressure supply pump 11 in accordance with a control command from the ECU, pressurizes the fuel to a high pressure, and pressurizes the pressurized high-pressure pump 5. Fuel is pumped to the common rail 4 through the supply pipe 12.
Each injector 3 is connected to a common rail 4 accumulating high-pressure fuel by a pipe 13. Then, by opening and closing the control valve 14 disposed in each injector 3, the high pressure fuel accumulated in the common rail 4 to become the target common rail pressure PFIN is injected into the fuel chamber of each cylinder of the diesel engine 2. Is done. The opening / closing operation of the control valve 14 of the injector 3 is executed based on an injector control command from the ECU 6. This injector control command is for adjusting the fuel injection amount and the fuel injection timing, and is calculated based on the detected value from the operating condition detecting means such as the rotational speed sensor 7 and the accelerator sensor 8, and the crank angle sensor 15 And output from the ECU 6 at a predetermined timing based on detection values of the cylinder discrimination sensor 16 and the like. A control command for the variable discharge high-pressure pump 5 is also output at a predetermined timing based on detection values from the crank angle sensor 15 and a cam angle sensor mounted on the variable discharge high-pressure pump 5.
[0018]
Here, a method for calculating the fuel injection amount and the fuel injection timing for instructing the injector will be described. First, the fuel injection amount QFIN is a small injection amount within the injection amount QBASE obtained from the output rotational speed of the crankshaft rotational speed sensor 7 and the detection value of the accelerator sensor 8 and the injection quantity QFULL uniquely obtained from the crankshaft rotational speed. Selected. Here, it is desirable to use the instantaneous rotational speed immediately before injection as the crankshaft rotational speed used for QBASE calculation. Then, an energization time TQFIN calculated from the fuel pressure PC of the common rail 4 and QFIN is used for an actual command to the injector.
[0019]
FIG. 2 is a flowchart for explaining calculation of the fuel injection timing according to the embodiment of the present invention. Next, calculation of the fuel injection timing will be described. Since this part is a part according to the present invention, description will be given according to the flowchart of FIG.
In step 101, first, an instantaneous engine speed N and a target injection amount QFIN are input.
[0020]
In step 102, the injection timing TTFIN (° CA) is calculated. Here, TTFIN is a two-dimensional map of N and QFIN and is calculated as an angle from the reference crank position to the start of injection.
In Step 103, then the integral multiple of NE pulses TTFIN as an angle control component angle TANGi (° CA) and NE pulse one tooth angle remainder angle of less than (15 ° CA in this embodiment) TREM (° CA) Divide into
[0021]
The next steps 104 to 110 are the application part of the present invention.
In steps 104 and 105, the previous cylinder explosion stroke instantaneous rotational speed NEi-1 and the current cylinder compression stroke instantaneous rotational speed Nci are input and stored in the first and second memories of the ECU 6, respectively.
In step 106, the predicted rotation fluctuation amount ΔN ′ (= NEi−1−Nci) is calculated as follows and stored in the third memory of the ECU 6.
[0022]
FIG. 3 is a diagram for explaining the rotational fluctuation amount predicted value ΔN ′. As shown in the figure, the two instantaneous rotational speeds NEi−1 and Nci of the previous cylinder explosion stroke and the current cylinder compression stroke are monitored, and when the transient speed changes from the steady state or when the load is ON, the difference ΔN between the instantaneous rotational speeds. 'Is the predicted value of rotational fluctuation,
ΔN ′ = NEi−1−Nci
Is calculated.
[0023]
This makes it possible to predict the instantaneous rotational speed fluctuation between the previous injection and one injection. Here, NEi-1 and Nci are calculated from one tooth time of the NE pulse, but each NE pulse position is set to NEi-1≈Nci when the engine is operating at a constant speed. The It is also desirable to detect where the instantaneous rotational speed is close to the average instantaneous rotational speed.
[0024]
Next, in step 107, if the absolute value | ΔN '| of the rotation fluctuation amount predicted value ΔN ′ is a certain value or more (α or more in the flowchart), it is determined as a transient state.
In step 108, the prediction correction coefficient KDTA is stored in the fourth memory as a map using ΔN ′ as a parameter, and the prediction correction coefficient KDTA corresponding to ΔN ′ is searched for a map.
[0025]
In Step 9, when “not in a transient state (steady rotation)” in Step 107, 1 is set to the prediction correction coefficient KDTA. Here, the coefficient α for determining the transient state may be an amount that exceeds the rotational fluctuation amount when the engine is rotating at a steady state.
In step 110, the remainder angle TREM (i) (° CA), the NE pulse time Tpi-1 (μsec) before one injection, the NE pulse 1 tooth angle (15 ° CA in the present embodiment), and the prediction coefficient KDTA are used. Convert the corner to time TTi. Here, the calculation formula of step 110 is obtained by multiplying the conventional remainder angle time interval conversion formula (1) by the prediction correction coefficient KDTA.
[0026]
In step 111, a command is finally given to the injector, and the fuel injection timing control is terminated.
According to this embodiment, by considering the influence of the rotation fluctuation with the predicted amount at the time conversion of the remainder angle, the dynamic delay of the injection timing can be reduced at the time of transient rotation change such as acceleration / deceleration or load ON / OFF. This eliminates insufficient torque during acceleration, deterioration of smoke, and detonation at the beginning of deceleration.
[0027]
As mentioned above, although the Example of this invention was described, this invention is not limited to this. For example, in step 106 of FIG. 2, the predicted rotational fluctuation amount ΔN ′ is obtained as a difference between two instantaneous rotational speeds, but ΔN ′ is a quotient of the two instantaneous rotational speeds (for example, NEi−1 / Nci). You may ask for it.
FIG. 4 is a diagram showing a prediction correction coefficient map. Further, although the determination of the transient state is performed in step 107 of FIG. 2, a dead zone may be provided as shown in the prediction correction coefficient map of FIG. 4 instead of the transient state determination.
[0028]
Further, the prediction correction coefficient map of FIG. 4 is a one-dimensional map of ΔN ′, but may be a two-dimensional map of average instantaneous rotational speeds N and ΔN in consideration of the influence of the instantaneous rotational speed.
[0029]
【The invention's effect】
As described above, according to the present invention, during acceleration / deceleration, prediction correction corresponding to the predicted rotational fluctuation amount is performed in the extra angular time, so that prediction correction is possible, and dynamic injection characteristics are changed to static characteristics. Therefore, the injection control can be performed with a good transient characteristic, which can prevent insufficient torque during acceleration, smoke, reduction of HC emissions, and detonation during deceleration. Further, at the time of acceleration / deceleration, the rotational fluctuation rate with respect to the average instantaneous rotational speed can also be corrected, and the injection control can be performed with good transient characteristics. The present invention is applicable not only to diesel engines but also to gasoline engines.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a common rail fuel injection control apparatus according to an embodiment of the present invention, which includes a variable discharge high pressure pump.
FIG. 2 is a flowchart illustrating calculation of fuel injection timing according to an embodiment of the present invention.
FIG. 3 is a diagram for explaining a predicted rotation fluctuation amount ΔN ′.
FIG. 4 is a graph showing a transient prediction correction coefficient map;
FIG. 5 is a diagram for explaining conventional angle control and remainder angle control;
FIG. 6 is a diagram for explaining a time interval of NE pulses including a previous remainder angle during acceleration.
FIG. 7 is a diagram for explaining an average instantaneous rotational speed and a rotational fluctuation amount.
FIG. 8 is a diagram for explaining a relationship between an average rotational speed and a rotational fluctuation amount;
FIG. 9 is a diagram showing characteristics of static and dynamic injection timings at the same injection timing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Common rail type fuel injection control apparatus 2 ... Diesel engine 3 ... Injector 4 ... Common rail 5 ... Variable discharge high pressure pump 6 ... Electronic control unit (ECU)
7 ... Rotational speed sensor 8 ... Accelerator sensor 9 ... Common rail pressure sensor 10 ... Fuel tank 11 ... Low pressure supply pump 12 ... Supply pipe 13 ... Pipe 14 ... Control valve 15 ... Crank angle sensor 16 ... Cylinder discrimination sensor

Claims (4)

コモンレールに蓄圧した燃料を、気筒ごとに設けられたインジェクタにより噴射し、このインジェクタからの燃料噴射開始時期を、クランク角パルス間の余り角部分を時間に変換し、この時間に従って燃料噴射開始時期を決定するコモンレール式燃料噴射制御装置において、
前回燃料噴射時の爆発行程中での所定パルス位置における内燃機関の瞬時回転数を記憶する第1のメモリと、
今回燃料噴射時の圧縮行程中での所定パルス位置における内燃機関の瞬時回転数を記憶する第2のメモリと、
前記今回の燃料噴射時の圧縮行程中での内燃機関の瞬時回転数と前記前回の燃料噴射時の爆発行程中での内燃機関の瞬時回転数との差をとりこれを回転変動量予測値として記憶する第3のメモリとを備え、
前記所定パルス位置は、機関が一定回転数で定常運転しているときに、前記爆発行程中での瞬時回数と前記圧縮行程中での瞬時回転数とが同等になるように設定され、更に、前記爆発行程中での瞬時回転数と前記圧縮行程中での瞬時回転数が、機関が一定回転数で定常運転しているときの平均瞬時回転数に近い所を検出するように設定され、前記回転変動量予測値に基づいて前記余り角部分の時間を補正することを特徴とするコモンレール式燃料噴射制御装置。
The fuel accumulated in the common rail is injected by the injector provided for each cylinder, the fuel injection start timing from this injector is converted into the time of the remainder angle between the crank angle pulses, and the fuel injection start timing is changed according to this time. In the common rail fuel injection control device to be determined,
A first memory for storing an instantaneous rotational speed of the internal combustion engine at a predetermined pulse position during an explosion stroke at the time of previous fuel injection;
A second memory for storing the instantaneous rotational speed of the internal combustion engine at a predetermined pulse position during the compression stroke at the time of fuel injection;
The difference between the instantaneous rotational speed of the internal combustion engine during the compression stroke at the time of the fuel injection and the instantaneous rotational speed of the internal combustion engine during the explosion stroke at the time of the previous fuel injection is taken as a rotational fluctuation amount prediction value. A third memory for storing,
It said predetermined pulse positions, when the engine is steady operation at a constant rotational speed, the instantaneous Rotation number in the explosion stroke and the instantaneous rotational speed of in the compression stroke is set to be equal, Further, the instantaneous rotational speed during the explosion stroke and the instantaneous rotational speed during the compression stroke are set so as to detect a place close to the average instantaneous rotational speed when the engine is operating at a constant rotational speed. A common rail fuel injection control device, wherein the time of the remainder angle portion is corrected based on the rotation fluctuation amount prediction value.
前記今回燃料噴射時の圧縮行程での内燃機関の瞬時回転数と前記前回燃料噴射時の爆発行程での内燃機関の瞬時回転数との差をとる代わりに前記今回燃料噴射時の圧縮行程での内燃機関の瞬時回転数と前記前回燃料噴射時の爆発行程での内燃機関の瞬時回転数との比をとることを特徴とする請求項1に記載のコモンレール式燃料噴射制御装置。  Instead of taking the difference between the instantaneous rotational speed of the internal combustion engine in the compression stroke at the time of the current fuel injection and the instantaneous rotational speed of the internal combustion engine in the explosion stroke at the time of the previous fuel injection, 2. The common rail fuel injection control device according to claim 1, wherein a ratio between an instantaneous rotational speed of the internal combustion engine and an instantaneous rotational speed of the internal combustion engine in an explosion stroke at the time of the previous fuel injection is taken. 前記回転変動量予測値が所定値αを越える場合に前記余り角部分の時聞を補正することを特徴とする請求項1に記載のコモンレール式燃料噴射制御装置。  2. The common rail fuel injection control device according to claim 1, wherein when the predicted rotational fluctuation amount exceeds a predetermined value [alpha], the moment of the remainder angle portion is corrected. 内燃機関の平均瞬時回転数と、前記今回燃料噴射時の圧縮行程での内燃機関の瞬時回転数と前記前回燃料噴射時の爆発行程での内燃機関の瞬時回転数との差である回転変動量予測値とをマップ状に記憶することを特徴とする請求項1に記載のコモンレール式燃料噴射制御装置。  The amount of rotational fluctuation that is the difference between the average instantaneous rotational speed of the internal combustion engine and the instantaneous rotational speed of the internal combustion engine in the compression stroke at the time of the current fuel injection and the instantaneous rotational speed of the internal combustion engine in the explosion stroke at the time of the previous fuel injection 2. The common rail fuel injection control apparatus according to claim 1, wherein the predicted value is stored in a map.
JP21773193A 1993-09-01 1993-09-01 Fuel injection control device Expired - Fee Related JP3864424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21773193A JP3864424B2 (en) 1993-09-01 1993-09-01 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21773193A JP3864424B2 (en) 1993-09-01 1993-09-01 Fuel injection control device

Publications (2)

Publication Number Publication Date
JPH0771289A JPH0771289A (en) 1995-03-14
JP3864424B2 true JP3864424B2 (en) 2006-12-27

Family

ID=16708865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21773193A Expired - Fee Related JP3864424B2 (en) 1993-09-01 1993-09-01 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP3864424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747338A (en) * 2013-12-26 2015-07-01 联创汽车电子有限公司 Zero-oil quantity correcting method of high-pressure common rail oil sprayer and zero-oil quantity self-correcting control module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021581B3 (en) * 2008-04-30 2009-11-26 Continental Automotive Gmbh Method for determining the rail pressure in a common rail system and common rail injection system
JP5292262B2 (en) * 2009-11-24 2013-09-18 株式会社ケーヒン Engine acceleration / deceleration state discrimination device
JP6372551B2 (en) * 2016-11-30 2018-08-15 マツダ株式会社 ENGINE CONTROL METHOD AND CONTROL DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747338A (en) * 2013-12-26 2015-07-01 联创汽车电子有限公司 Zero-oil quantity correcting method of high-pressure common rail oil sprayer and zero-oil quantity self-correcting control module

Also Published As

Publication number Publication date
JPH0771289A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US8620561B2 (en) Control for internal combustion engine provided with cylinder halting mechanism
JP3966096B2 (en) Injection amount control device for internal combustion engine
US6105554A (en) Method and device for fuel injection for engines
US6981487B2 (en) Knocking determination apparatus for internal combustion engine
EP1164271B1 (en) Feedback control of two-stage injection for an auto-ignition gasoline engine
EP1741913B1 (en) Engine fuel control system
US6792912B2 (en) Direct fuel injection combustion control system
US20050045158A1 (en) Fuel supply control apparatus for internal combustion engine
JP3861550B2 (en) Abnormal cylinder detection device for multi-cylinder internal combustion engine
JP2005171931A (en) Fuel injection control device
JP2001207892A (en) Fuel pressure setting method of direct injection gasoline engine
US6571774B2 (en) Engine fuel-injection control device
JP3864424B2 (en) Fuel injection control device
JP3427683B2 (en) Fuel supply device for internal combustion engine
US6446596B1 (en) Method of operating an internal combustion engine
EP1108131A1 (en) Method of reduction of cold-start emissions from internal combustion engines
JP3695411B2 (en) Fuel injection control device for internal combustion engine
JP3358545B2 (en) Fuel injection device for internal combustion engine
JP3876766B2 (en) Injection rate control device for internal combustion engine
JP2004019539A (en) Fuel injection control device for internal-combustion engine
JP2001020796A (en) Fuel injection control system of common rail type
JP3282390B2 (en) Accumulation type fuel injection system controller
JP2002213287A (en) Accumulator fuel injection device
WO2006006301A1 (en) Engine speed controller of internal combustion engine, and internal combustion engine comprising it
JP3975559B2 (en) Accumulated fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees