JPH0770678A - High strength cemented carbide and high strength single crystal casting - Google Patents

High strength cemented carbide and high strength single crystal casting

Info

Publication number
JPH0770678A
JPH0770678A JP22161793A JP22161793A JPH0770678A JP H0770678 A JPH0770678 A JP H0770678A JP 22161793 A JP22161793 A JP 22161793A JP 22161793 A JP22161793 A JP 22161793A JP H0770678 A JPH0770678 A JP H0770678A
Authority
JP
Japan
Prior art keywords
single crystal
phase
strength
alloy
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22161793A
Other languages
Japanese (ja)
Inventor
Koji Sato
光司 佐藤
Takehiro Oono
丈博 大野
Hideki Tamaoki
英樹 玉置
Akira Yoshinari
明 吉成
Mitsuru Kobayashi
満 小林
Noriyuki Watabe
典行 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP22161793A priority Critical patent/JPH0770678A/en
Publication of JPH0770678A publication Critical patent/JPH0770678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a cemented carbide combining creep fracture strength more excellent than that of the existing single crystal alloys and oxidation resistance on a good class among the existing single crystal alloys and to provide single crystal cast parts for blades and nozzles using the same. CONSTITUTION:This high strength cemented carbide is the one contg., by weight, 4.5 to 10% Cr, 4.5 to 6.5% Al, 3 to 9% W, 3 to 9% Ta, >3 to 9% Mo, 0.1 to 3% Co, 0.1 to 4% Re, <=0.3% Hf, and the balance Ni with inevitable impurities, and the single crystal casting tar blades and nozzles using the same is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温の燃焼ガス雰囲気
で高いクリープ破断強度が必要とされる航空機用または
地上発電用ガスタービン等のブレード(動翼)やノズル
(静翼)に使用される新規の超合金と、該超合金を用い
ることによってできる単結晶鋳造物、および該単結晶鋳
造物を用いることによってできるガスタービン用単結晶
部品に関するもので、とりわけ高いクリープ破断強度と
耐酸化性が要求されるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for blades (moving blades) and nozzles (stating blades) of gas turbines for aircraft or ground power generation, which require high creep rupture strength in a high temperature combustion gas atmosphere. The present invention relates to a novel superalloy, a single crystal cast produced by using the superalloy, and a single crystal part for a gas turbine produced by using the single crystal, which has particularly high creep rupture strength and oxidation resistance. Regarding what is required.

【0002】[0002]

【従来の技術】ガスタービンエンジンの高出力・高効率
化にともなう燃焼温度の上昇に対し、もっとも厳しい使
用環境に曝されるタービンブレードは、多結晶の普通鋳
造合金から、応力負荷方向に結晶粒界をもたない一方向
柱状晶凝固合金に、さらに結晶粒界を全くもたない単結
晶合金へと変遷を遂げてきた。
2. Description of the Related Art Turbine blades that are exposed to the most severe operating environment against the increase in combustion temperature due to higher power output and higher efficiency of gas turbine engines are made of polycrystalline ordinary casting alloys, and have crystal grains in the stress loading direction. It has undergone a transition from a unidirectional columnar solidified alloy with no boundaries to a single crystal alloy with no grain boundaries.

【0003】これらの単結晶合金において、特に高いク
リープ破断強度を有する合金として、PWA1484
(米国特許第4,719,080号、特開昭61−28
4545号、"Second-generation Nickel-base Single
Crystal Superalloy";A.D.Cetel and D.N.Duhl;Supera
lloys 1988,The Metall. Soc.,(1988),pp235-244)、C
MSX−4(米国特許第4,643,782号、特開昭
60−211031号,"Process and Alloy Optimizati
on for CMSX-4 Superalloy Single Cristal Airfoils";
D.J.Fraisier,J.R.Whetstone, K.Harris,G.L.Erickso
n,R.E.Schwer;HighTemp. Mater. Power Eng. 1990 Pa
rt2,(1990),pp1281-1300)やSC−83K(米国特許第
4,976,791号、特開平2−138431号,"N
i基単結晶超耐熱合金の開発";大野丈博、渡辺力蔵;鉄
と鋼,vol.77,(1991),pp832-839)などが挙げられる。し
かし、これらの従来合金の高温強度をもってしても、近
年の目覚ましい発展を遂げつつあるガスタービンエンジ
ンの高出力、高効率化の要求を満足するのは困難であ
る。
Among these single crystal alloys, PWA1484 is an alloy having particularly high creep rupture strength.
(U.S. Pat. No. 4,719,080, JP-A-61-28
No. 4545, "Second-generation Nickel-base Single
Crystal Superalloy "; ADCetel and DNDuhl; Supera
lloys 1988, The Metall. Soc., (1988), pp235-244), C
MSX-4 (U.S. Pat. No. 4,643,782, JP-A-60-211031, "Process and Alloy Optimizati
on for CMSX-4 Superalloy Single Cristal Airfoils ";
DJ Fraisier, JR Whetstone, K. Harris, GLErickso
n, RESchwer; HighTemp. Mater. Power Eng. 1990 Pa
rt2, (1990), pp1281-1300) and SC-83K (US Pat. No. 4,976,791, JP-A-2-138431, "N").
Development of i-based single crystal super heat resistant alloys "; Takehiro Ohno, Rikizo Watanabe; Iron and Steel, vol.77, (1991), pp832-839), etc. However, the high temperature strength of these conventional alloys However, it is difficult to satisfy the demands for high output and high efficiency of the gas turbine engine, which has undergone remarkable development in recent years.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、従
来の単結晶合金並みの高い耐酸化性を有した上で、さら
に従来の単結晶合金を上回る高いクリープ破断強度を併
せもつ単結晶部品に適した高強度の超合金と、それから
なるマスターインゴットおよびその合金を用いることに
よってできる単結晶鋳造物、さらにこの単結晶鋳造物を
用いることによってできるガスタービンブレードおよび
ガスタービンノズルを提供することを目的とした。
SUMMARY OF THE INVENTION Therefore, the present invention is a single crystal component having high oxidation resistance comparable to that of a conventional single crystal alloy, and further having high creep rupture strength superior to that of the conventional single crystal alloy. To provide a high-strength superalloy suitable for, a master ingot made of the same, and a single crystal cast made by using the alloy, and a gas turbine blade and a gas turbine nozzle made by using the single crystal cast. Intended.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは鋭
意検討した結果、Ni−Cr−Al−W−Mo−Ta−
(Ti)−Co−Hf系において、Reの添加と従来合
金よりも高いMo量を併せ持たせることにより、組織安
定性を保ったままで、従来合金にない高い固溶強化度を
得ることができ、その結果従来合金を大幅に上回る高い
クリープ破断強度の合金を得ることができた。
Therefore, as a result of intensive investigations by the present inventors, Ni-Cr-Al-W-Mo-Ta-
In the (Ti) -Co-Hf system, by adding Re and having a higher amount of Mo than the conventional alloy, it is possible to obtain a high degree of solid solution strengthening that is not possible with the conventional alloy while maintaining the structural stability. As a result, it was possible to obtain an alloy with a high creep rupture strength, which was much higher than that of conventional alloys.

【0006】さらに本願発明の他の特徴とするところ
は、Coの最適な添加量を見い出したことである。従来
の合金では、Coは不純物程度としか見なされていなか
ったか、逆に強度向上の目的で5〜10%程度添加され
ていた。この過度のCoは、耐酸化性および強度面でも
本発明合金に対しては、不適当に多い量であることを明
らかにした。この注意深く制御された量のCoはHfの
少量添加と合わせ本発明合金の耐酸化性および高温強度
の向上に対し、いずれにも著しい効果を及ぼした。
Another feature of the present invention is to find the optimum amount of Co added. In conventional alloys, Co was regarded only as an impurity level, or conversely, about 5 to 10% was added for the purpose of improving strength. It has been clarified that this excessive Co is an undesirably large amount for the alloy of the present invention in terms of oxidation resistance and strength. This carefully controlled amount of Co, together with the addition of a small amount of Hf, had a remarkable effect on the improvement of the oxidation resistance and the high temperature strength of the alloy of the present invention.

【0007】本発明の高強度超合金は、一方向凝固鋳造
法により単結晶化できる。この単結晶超合金を用いて出
来るガスタービンのブレードやノズル等の単結晶部品は
高い耐酸化性と高温強度を有するため、これらの部品の
性能によって燃焼効率を律速されている現状のガスター
ビンは本発明の単結晶超合金のブレードやノズルを用い
ることで、従来にない高効率かつ高出力のガスタービン
の製造が可能となる。
The high strength superalloy of the present invention can be single crystallized by the unidirectional solidification casting method. Since single crystal parts such as blades and nozzles of gas turbines made using this single crystal superalloy have high oxidation resistance and high temperature strength, the current gas turbines whose combustion efficiency is limited by the performance of these parts are By using the blade and nozzle of the single crystal superalloy according to the present invention, it is possible to manufacture a gas turbine with high efficiency and high output which has never been achieved.

【0008】上述した検討の結果得られた本発明のうち
の第1発明は、重量%で、Cr4.5〜10%,Al
4.5〜6.5%,W3〜9%,Ta3〜9%,Mo3
%を超え9%以下,Co0.1〜3%,Re0.1〜4
%,Hf0.3%以下および残部不可避の不純物とNi
からなることを特徴とする高強度超合金である。さら
に、これらの組成の中で、W,Mo,Reの関係が、
0.40≦2Mo/(W+2Mo+Re)≦0.65
と、0.04≦Re/(W+2Mo+Re)≦0.20
をともに満足する範囲が望ましい。なかでも、好ましい
組成は、重量%で、Cr5.3〜8%,Al5〜6%,
W6.5〜8%,Ta6〜8.5%,Mo3.3〜6
%,Co0.5〜1.5%,Re1.0〜2.0%,H
f0.01〜0.2%および残部不可避の不純物とNi
からなることを特徴とする高強度超合金である。さら
に、これらの組成に1%未満のTiを添加することがで
きる。なお、高温強度のみを重視し、耐酸化性を重視し
ない場合は、CoおよびHfは故意に添加しなくてもよ
い。
The first invention of the present invention obtained as a result of the above-mentioned examination is, by weight%, Cr4.5 to 10%, Al.
4.5-6.5%, W3-9%, Ta3-9%, Mo3
% To 9% or less, Co 0.1 to 3%, Re 0.1 to 4
%, Hf 0.3% or less and balance unavoidable impurities and Ni
Is a high strength superalloy. Furthermore, among these compositions, the relationship between W, Mo and Re is
0.40 ≦ 2Mo / (W + 2Mo + Re) ≦ 0.65
And 0.04 ≦ Re / (W + 2Mo + Re) ≦ 0.20
It is desirable to have a range that satisfies both. Among them, the preferable composition is, by weight%, Cr 5.3 to 8%, Al 5 to 6%,
W 6.5-8%, Ta 6-8.5%, Mo 3.3-6
%, Co 0.5 to 1.5%, Re 1.0 to 2.0%, H
f 0.01-0.2% and balance unavoidable impurities and Ni
Is a high strength superalloy. In addition, less than 1% Ti can be added to these compositions. If only high temperature strength is important and oxidation resistance is not important, Co and Hf may not be intentionally added.

【0009】本発明のうちの第2発明は、上述の合金か
らなる棒状マスターインゴットである。本発明のうちの
第3発明は、上述の合金を一方向凝固させてできる、実
質的に結晶粒界を有しない高強度単結晶鋳造物である。
さらにこの高強度単結晶鋳造物は、固溶化処理後に存在
する未固溶の共晶γ’相の体積率が5%以下、固溶化+
時効後のγ’相の体積率が50〜70%、および固溶化
+時効処理後に析出するγ’相は一辺の長さが1μm以
下の立方体または直方体形状に調整されることで、優れ
た高温強度がえられる。また、この高強度単結晶鋳造物
は、1040℃、19kgf/mm2でのクリープ破断
時間が250時間以上を得ることができる。本発明のう
ちの第4発明は、第3発明の高強度単結晶鋳造物からな
ることを特徴とするガスタービンブレードおよびガスタ
ービンノズルである。
A second aspect of the present invention is a rod-shaped master ingot made of the above alloy. A third aspect of the present invention is a high-strength single crystal casting that is formed by unidirectionally solidifying the above alloy and that has substantially no grain boundaries.
Furthermore, this high-strength single crystal cast product had a volume ratio of undissolved eutectic γ'phase existing after the solid solution treatment of 5% or less, solid solution +
The volume ratio of the γ'phase after aging is 50 to 70%, and the γ'phase precipitated after solid solution + aging treatment is adjusted to a cubic or rectangular parallelepiped shape with a side length of 1 μm or less, resulting in excellent high temperature. Strength can be obtained. Further, this high-strength single crystal cast product can obtain a creep rupture time at 1040 ° C. and 19 kgf / mm 2 of 250 hours or more. A fourth invention of the present invention is a gas turbine blade and a gas turbine nozzle, which are made of the high-strength single crystal casting of the third invention.

【0010】[0010]

【作用】以下、本発明合金の成分限定理由について述べ
る。Crは合金の耐酸化性、耐食性を向上させる作用を
もつため、最低4.5%を必要とするが、過度の添加は
σ相などの有害析出相を生じ、クリープ破断強度と延性
を低下させるため、4.5〜10%に限定する。好適に
は5.3〜8%である。
The reason for limiting the components of the alloy of the present invention will be described below. Since Cr has the effect of improving the oxidation resistance and corrosion resistance of the alloy, a minimum of 4.5% is required, but excessive addition causes harmful precipitation phases such as the σ phase and reduces creep rupture strength and ductility. Therefore, it is limited to 4.5 to 10%. It is preferably 5.3 to 8%.

【0011】AlはNi基超耐熱合金の高温酸化特性の
改善に最も寄与するAl23の皮膜を形成するために重
要な元素であり、この点に関しては、Al量は多い方が
望ましい。また、同時にAlはNi基超耐熱合金を析出
強化する金属間化合物であるγ’相を形成する主要強化
元素でもある。γ’相は基本組成はNi3Alで表され
るが、Al以外のTi,Ta,W,Moなどの元素を固
溶することによりさらに強化される。これらの元素の作
用は以下に詳しく述べる。単結晶合金は通常体積率で5
0%以上もの多量のγ’相を含むが、凝固終了時には最
終凝固部に、共晶γ’相と呼ばれる粗大γ’相が存在す
るので、これを母相(γ相)中へ一旦固溶させるために
高温で固溶化処理を行なう。固溶化処理で固溶したγ’
相は、冷却中およびその後の時効処理により、均一微細
に析出することにより、合金を強化する。
Al is an important element for forming a film of Al 2 O 3 which contributes most to the improvement of the high temperature oxidation characteristics of the Ni-base superalloy, and in this respect, it is desirable that the amount of Al is large. At the same time, Al is also a main strengthening element that forms a γ'phase, which is an intermetallic compound that precipitation strengthens the Ni-base superalloy. Although the basic composition of the γ'phase is represented by Ni 3 Al, it is further strengthened by solid-solving elements other than Al, such as Ti, Ta, W and Mo. The action of these elements will be described in detail below. Single crystal alloy is usually 5 in volume ratio
Although it contains a large amount of 0% or more γ'phase, a coarse γ'phase called eutectic γ'phase exists in the final solidification part at the end of solidification, so this is once dissolved in the parent phase (γ phase). In order to do so, the solution treatment is performed at a high temperature. Γ'dissolved by solution treatment
The phases strengthen the alloy by uniformly and finely precipitating during aging and during cooling.

【0012】そのために、Alは最低4.5%を必要と
するが、6.5%を超える過度の添加はγ’相が多過ぎ
て、共晶γ’相を固溶化処理で完全に固溶することが出
来ないので、強度が逆に低下するようになる。また、A
l量が上記のTa,W,Mo,Tiなどのγ’相の固溶
強化元素に対して相対的に高くなることは、十分にγ’
相が固溶強化されていないことも意味する。よって、本
発明において、Alは4.5〜6.5%の範囲に限定す
る。さらに好ましくは5〜6%である。
Therefore, Al needs to be at least 4.5%, but excessive addition of more than 6.5% causes too much γ'phase, and the eutectic γ'phase is completely solidified by solution treatment. Since it cannot be melted, the strength decreases. Also, A
The amount of 1 is relatively high with respect to the solid solution strengthening elements of the γ'phase such as Ta, W, Mo, and Ti described above.
It also means that the phases are not solution strengthened. Therefore, in the present invention, Al is limited to the range of 4.5 to 6.5%. It is more preferably 5 to 6%.

【0013】Wはγ相およびγ’相に固溶して両相を強
化する元素であり最低3%を必要とする。しかしなが
ら、過度の添加はα−W相やRe−W相を析出して強度
を低下させ、さらに高温の耐食性の低下や比重の増大を
招く。従って、Wは3〜9%の範囲に限定する。好適に
は6.5〜8%の範囲である。MoもWと同様の元素
で、γ相およびγ’相に固溶して両相を強化する元素で
あり必須の添加元素である。特に、MoはWに比べて、
基地であるNiのオーステナイト相への固溶度が大きい
ために、Wを添加するよりも異相を析出しにくい。さら
にγ相とγ’相への分配比に関して、Wよりもγ相側に
多く固溶することからγ相の固溶強化に対して、より有
効に働く。また、Moは比重の点でもWより有利であ
る。以上の点から本発明において、MoはWよりも重要
な元素であり、最低3%を超える添加を必要とする。
W is an element that forms a solid solution in the γ phase and γ'phase to strengthen both phases, and requires at least 3%. However, excessive addition causes precipitation of the α-W phase and the Re-W phase and lowers the strength, and further lowers the corrosion resistance at high temperatures and increases the specific gravity. Therefore, W is limited to the range of 3 to 9%. It is preferably in the range of 6.5 to 8%. Mo is also an element similar to W, is an element that forms a solid solution in the γ phase and the γ ′ phase and strengthens both phases, and is an essential additional element. In particular, Mo is
Since Ni, which is the base, has a high solid solubility in the austenite phase, it is more difficult to precipitate a different phase than when W is added. Further, regarding the distribution ratio between the γ phase and the γ ′ phase, since it is more solid-solved on the γ-phase side than W, it works more effectively for solid solution strengthening of the γ-phase. Mo is also more advantageous than W in terms of specific gravity. From the above points, in the present invention, Mo is a more important element than W, and it is necessary to add at least more than 3%.

【0014】しかしながら、9%を超える過度の添加は
α−Mo相やRe−Mo相を析出して高温強度を低下さ
せる。従って、Moは3%を超え9%以下の範囲に限定
する。より好適には、3.3〜6%の範囲である。Re
は、Wはおろか、Moに比べてもはるかにγ’相よりも
γ相に高濃度に分配される元素であり、γ相の固溶強化
に対して最も有効に働く元素である。γ相を優先的に固
溶強化するMoを3%を超える範囲で含有させた上に、
さらにこのReを適量添加させた組合せは、これまでの
文献に発表された前述の高強度のNi基単結晶合金には
見られなかった全く新しい発想である。そのために、必
要なReは最低0.1%である。一方、Reは非常に高
価な元素であり、4%を超える過度の添加は、いたずら
に合金の価格を高めるばかりで、Re−W,Re−M
o,Re−Taなどの有害相の析出も招くため、Reは
0.1〜4.0%の範囲とする。より好ましくは1.0
〜2.0%の範囲である。
However, excessive addition of more than 9% causes precipitation of α-Mo phase and Re-Mo phase and lowers high temperature strength. Therefore, Mo is limited to the range of more than 3% and 9% or less. More preferably, it is in the range of 3.3 to 6%. Re
Is an element that is distributed at a higher concentration in the γ phase than in the γ ′ phase, much more than W, let alone W, and is the most effective element for solid solution strengthening of the γ phase. In addition to the Mo content that preferentially solid-solution strengthens the γ phase in the range of more than 3%,
Furthermore, this combination of adding Re in an appropriate amount is a completely new idea that has not been found in the above-mentioned high-strength Ni-based single crystal alloys disclosed in the literatures so far. Therefore, the required Re is at least 0.1%. On the other hand, Re is a very expensive element, and excessive addition of more than 4% unnecessarily raises the price of the alloy, and Re-W, Re-M
Re causes the precipitation of harmful phases such as o and Re-Ta, and therefore Re is set to the range of 0.1 to 4.0%. More preferably 1.0
The range is up to 2.0%.

【0015】Ni基単結晶超合金の高強度化には、γ相
とγ’相の整合性を保った上で、それぞれの相を最大限
固溶強化する必要があるが、このような高いMo含有量
とさらに適量のReを添加して十分に固溶強化されたγ
相を得ることで、析出強化元素であるNi3Alを基本
組成とするγ’相をTaさらにはTiでそれに見合う分
だけ十分に固溶強化することと併せ、γ相とγ’相の整
合性が高く、なおかつ両相の固溶強化度が高い高強度の
単結晶超合金が得られる。これらγ相に主に分配される
W,Mo,Reのうち、MoとReがこれらの3元素の
原子量の和に対する比において、如何に新規の割合で含
有されるかを図1に示す。図1は、横軸にRe/(W+
2Mo+Re)をとり、縦軸に2Mo/(W+2Mo+
Re)をとって、本発明における請求項1〜3の範囲
と、実施例中の合金の位置を示している。
In order to increase the strength of the Ni-based single crystal superalloy, it is necessary to maintain the consistency of the γ phase and the γ'phase and to strengthen each phase to the maximum extent by solid solution strengthening. Γ was sufficiently solid-solution strengthened by adding Mo content and an appropriate amount of Re
By obtaining the phase, the γ'phase having a basic composition of Ni 3 Al, which is a precipitation strengthening element, is sufficiently solid-solution strengthened by Ta and Ti to the extent commensurate with it, and the γ phase and the γ'phase are matched. It is possible to obtain a high-strength single crystal superalloy having high properties and high solid solution strengthening degree of both phases. FIG. 1 shows how Mo and Re among W, Mo, and Re mainly distributed to the γ phase are contained in novel proportions in the ratio with respect to the sum of atomic weights of these three elements. In Fig. 1, the horizontal axis is Re / (W +
2Mo + Re) and the vertical axis is 2Mo / (W + 2Mo +
Re) is taken to indicate the scope of claims 1 to 3 in the present invention and the position of the alloy in the examples.

【0016】請求項1のW,MoよびRe量から導かれ
るRe/(W+2Mo+Re)と2Mo/(W+2Mo
+Re)の範囲は(0.0066,0.397),
(0.211,0.316),(0.308,0.46
2),(0.16,0.72),(0.0047,0.
853)および(0.0037,0.664)の6点で
囲まれた実線内の領域である。従来合金No.31(S
C−83K),No.32(PWA1484)およびN
o.33(CMSX−4)に対し、本発明合金がいかに
Reを含有した上でさらに高Moの組成となっているか
が明らかである。
Re / (W + 2Mo + Re) and 2Mo / (W + 2Mo) derived from the W and Mo and Re amounts of claim 1.
The range of + Re is (0.0066, 0.397),
(0.211, 0.316), (0.308, 0.46
2), (0.16, 0.72), (0.0047, 0.
853) and (0.0037, 0.664) are the areas within the solid line surrounded by 6 points. Conventional alloy No. 31 (S
C-83K), No. 32 (PWA1484) and N
o. 33 (CMSX-4), it is clear how the alloy of the present invention contains Re and has a higher Mo composition.

【0017】請求項1において、請求項2で示した0.
40≦2Mo/(W+2Mo+Re)≦0.65と、
0.04≦Re/(W+2Mo+Re)≦0.20を両
立する図1の(0.04,0.40),(0.20,
0.40),(0.20,0.65)および(0.0
4,0.65)の4点で囲まれた点線内の領域は、固溶
化処理の容易性、高温強度および合金価格の点でより望
ましい範囲である。より好適なRe/(W+2Mo+R
e)と2Mo/(W+2Mo+Re)の範囲は、請求項
3のW,MoおよびRe量から導かれる(0.064,
0.42),(0.12,0.40),(0.13,
0.44),(0.0975,0.59),(0.05
1,0.62)および(0.0497,0.57)の6
点で囲まれた破線内の領域である。
In the first aspect of the invention, the 0.
40 ≦ 2Mo / (W + 2Mo + Re) ≦ 0.65,
In order to satisfy 0.04 ≦ Re / (W + 2Mo + Re) ≦ 0.20, (0.04, 0.40), (0.20,
0.40), (0.20, 0.65) and (0.0
4, 0.65) is a more desirable range in terms of easiness of solution treatment, high temperature strength and alloy price. More suitable Re / (W + 2Mo + R
The ranges of e) and 2Mo / (W + 2Mo + Re) are derived from the amounts of W, Mo and Re of claim 3 (0.064,
0.42), (0.12, 0.40), (0.13,
0.44), (0.0975, 0.59), (0.05
1, 0.62) and 6 of (0.0497, 0.57)
This is the area within the broken line surrounded by dots.

【0018】Coは本発明合金において、重要な役割を
果たす元素であり、本発明合金への添加に対し、耐酸化
性をあきらかに向上させる最適な添加量が存在する。強
度面では、Coの添加は合金の積層欠陥エネルギーを低
下させて、比較的低温域のクリープ強度を向上させる作
用と、高温域では逆にγ’相の固溶度を増加させて、析
出強化を弱め、高温域でのクリープ強度を不十分にする
作用をもつ。両者の相反する作用のために、Coには強
度面でも最適な添加量が存在する。このような効果のた
めに、Coは最低0.1%の添加を必要とする。しか
し、3%を超える添加は、耐酸化性に対してもはや有効
でなくなり、高温強度も低下するようになる。また、T
CP相(topologically close-packed phase)と呼ばれる
有害相の生成を生じやすくなるのでCoは0.1〜3.
0%に限定する。望ましくは、0.5〜1.5%であ
る。
Co is an element that plays an important role in the alloy of the present invention, and there is an optimum amount of addition that clearly improves the oxidation resistance with respect to the alloy of the present invention. In terms of strength, the addition of Co lowers the stacking fault energy of the alloy and improves the creep strength in a relatively low temperature range, while it also increases the solid solubility of the γ'phase in a high temperature range, resulting in precipitation strengthening. And weakens the creep strength in the high temperature range. Due to their contradictory effects, Co has an optimum addition amount in terms of strength. Due to such effects, Co requires a minimum addition of 0.1%. However, the addition of more than 3% is no longer effective for the oxidation resistance, and the high temperature strength also decreases. Also, T
Since it is easy to generate a harmful phase called CP phase (topologically close-packed phase), Co is 0.1 to 3.
Limited to 0%. Desirably, it is 0.5 to 1.5%.

【0019】Taは主にγ’相を固溶強化し、前述の
W,Mo,Reで固溶強化されたγ相と整合性を有する
γ’相を構成するのに必須の強化元素である。したがっ
て、Taは最低3%を必要とするが、9%を超える過度
の添加は、共晶γ’相の固溶温度の上昇やRe−Ta相
の析出を招き、高温強度を逆に低下させる。したがっ
て、Taは3〜9%の範囲に限定する。好適な範囲は6
〜8.5%である。
Ta is an essential strengthening element mainly for solid-solution strengthening the γ'phase and constituting a γ'phase having a consistency with the γ phase solid-solution strengthened with W, Mo, and Re described above. . Therefore, Ta needs to be at least 3%, but excessive addition exceeding 9% causes an increase in the solid solution temperature of the eutectic γ'phase and precipitation of the Re-Ta phase, and conversely decreases the high temperature strength. . Therefore, Ta is limited to the range of 3 to 9%. The preferred range is 6
~ 8.5%.

【0020】Hfは合金の耐酸化性および高温強度を改
善するための重要な元素であり、必須の添加元素であ
る。その効果はごく微量の添加量から現れる。しかし、
Hfの過度の添加は合金の融点を下げるために固溶化処
理温度を低下させ、共晶γ’相を十分に固溶できなくな
るため、できるだけ添加量は少ない方がよい。したがっ
て、Hfは0.3%以下の添加とするが、より、好適な
範囲は0.01〜0.2%である。
Hf is an important element for improving the oxidation resistance and high temperature strength of the alloy, and is an essential additional element. The effect appears from a very small amount of addition. But,
Excessive addition of Hf lowers the melting point of the alloy, lowers the solution treatment temperature, and the eutectic γ'phase cannot be sufficiently dissolved. Therefore, the addition amount should be as small as possible. Therefore, Hf is added at 0.3% or less, but a more preferable range is 0.01 to 0.2%.

【0021】Tiはγ’相に固溶し、γ’相の固溶強化
に役立つため、本発明合金においても選択元素として添
加することができる。しかし、1%を超える過度の添加
は、共晶γ’相をつくりやすく、かつ合金の融点を下げ
るので、初期溶融温度とγ′相の完全固溶温度との差、
すなわち熱処理ウィンドウを狭めて、固溶化処理による
γ’相の固溶が不十分となる。したがって、本発明合金
において、Tiは1%以下の範囲で添加することができ
る。尚、上記以外の元素のうち、C,Si,Mn,P,
S,B,Zr,Y,REM,Cuは下記に示す範囲内な
らば、特性上特に問題とはならないが、極力低い方が望
ましい。 C ≦0.015% Si≦0.05% Mn
≦0.5% P ≦0.005% S ≦0.003% B
≦0.003% Zr≦0.02% Y ≦0.2% REM
≦0.2% Cu≦0.1%
Since Ti forms a solid solution in the γ'phase and serves to strengthen the solid solution of the γ'phase, Ti can be added as a selective element also in the alloy of the present invention. However, excessive addition of more than 1% easily forms a eutectic γ'phase and lowers the melting point of the alloy, so that the difference between the initial melting temperature and the complete solution temperature of the γ'phase,
That is, the heat treatment window is narrowed, and the solid solution of the γ'phase by the solution treatment becomes insufficient. Therefore, in the alloy of the present invention, Ti can be added within the range of 1% or less. Among the elements other than the above, C, Si, Mn, P,
If S, B, Zr, Y, REM, and Cu are within the ranges shown below, there is no particular problem in terms of characteristics, but it is desirable that they are as low as possible. C ≦ 0.015% Si ≦ 0.05% Mn
≤0.5% P ≤0.005% S ≤0.003% B
≤0.003% Zr≤0.02% Y ≤0.2% REM
≤0.2% Cu ≤0.1%

【0022】上記の合金組成群は、以下に述べる手法
で、マスターインゴット化され、さらに単結晶鋳造物と
なる。ここで、母相のγ相(オーステナイト相)とγ’
相とは異なった相ではあるが、結晶方位の等しい整合な
相であるので、通常単結晶と呼ばれる。まず、上述の合
金組成のマスターインゴットは事前に個々の合金元素、
または以下に述べる単結晶鋳造物のスクラップを精錬し
再利用可能なレベルまで、不純物レベルをさげたリター
ン材を用いて、真空溶解でマスターインゴットとしたの
ちに、真空中で再溶解後、一方向凝固させて単結晶鋳造
物を得ることができる。このとき、マスターインゴット
はできるだけ、純度の高いものが、単結晶鋳造物の製造
に適する。
The above alloy composition group is formed into a master ingot by the method described below, and further becomes a single crystal cast product. Here, the matrix γ phase (austenite phase) and γ '
Although it is a phase different from the phase, it is usually called a single crystal because it is a matched phase with the same crystal orientation. First of all, the master ingot of the above alloy composition has individual alloy elements in advance,
Or, after refining the scrap of the single crystal casting described below and using a return material with a reduced impurity level to a level where it can be reused, it is vacuum melted into a master ingot, then remelted in vacuum and then unidirectional. It can be solidified to obtain a single crystal casting. At this time, a master ingot having a purity as high as possible is suitable for manufacturing a single crystal cast.

【0023】この単結晶鋳造物は、固溶化処理、時効処
理および表面のコーティング処理等の熱処理を受けるこ
とで、工業的に使用可能となる。この単結晶鋳造物は、
以下に示す組織を有するように、熱処理と合金組成を調
整することが好ましい。まず第1に、凝固時に生成する
共晶γ’相が固溶化処理で十分に固溶できないと、この
未固溶共晶γ’相の部分がクリープ破壊の起点となる。
したがって、固溶化処理後に存在する未固溶の共晶γ’
相の体積率は5%以下が望ましい。第2に、固溶化+時
効処理後に存在するγ’相の量も鋳造物の強度と延性に
大きく影響する。このγ’相の体積率が50%を下回る
と十分な高温強度が得られず、逆に70%を超えると固
溶化処理で未固溶の共晶γ’相が過度に残存するように
なる。従って、固溶化+時効処理後のγ’相の体積率は
50〜70%に限定する。より、好適なγ’相の体積率
は55〜65%である。
The single crystal cast product can be industrially used by being subjected to heat treatment such as solution treatment, aging treatment and surface coating treatment. This single crystal casting is
The heat treatment and the alloy composition are preferably adjusted so as to have the structure shown below. First of all, if the eutectic γ'phase generated during solidification cannot be sufficiently dissolved by the solution treatment, this undissolved eutectic γ'phase portion becomes the starting point of creep fracture.
Therefore, the undissolved eutectic γ ′ existing after the solution treatment
The phase volume ratio is preferably 5% or less. Secondly, the amount of γ'phase present after solid solution + aging treatment also has a great influence on the strength and ductility of the casting. If the volume ratio of the γ'phase is less than 50%, sufficient high temperature strength cannot be obtained. On the contrary, if it exceeds 70%, undissolved eutectic γ'phase becomes excessively left in the solution treatment. . Therefore, the volume ratio of the γ ′ phase after solid solution + aging treatment is limited to 50 to 70%. Therefore, a more preferable volume ratio of the γ'phase is 55 to 65%.

【0024】第3に、この時効処理時に析出するγ’相
は、基地であるオーステナイト相と十分に整合な格子定
数をもち、規則正しい立方体あるいは直方体形状の微細
析出をすることが望ましい。オーステナイト相とγ’相
が十分に整合でないと、一辺の長さが1μmを超えた
り、立方体または直方体の角がくずれたり、球状の析出
をするようになり、その結果として、十分な高温強度が
得られなくなる。したがって、時効処理時に析出する
γ’相は、一辺の長さが1μm以下で、立方体または直
方体形状を有することが必要である。より、望ましい
γ’相の一辺の長さは0.02〜0.7μmである。ま
た、この単結晶鋳造物は、特性として、1040℃、1
9kgf/mm2でのクリープ破断時間が250時間以
上であることが望ましい。
Thirdly, it is desirable that the γ'phase precipitated during this aging treatment has a lattice constant that is sufficiently matched with the austenite phase that is the matrix, and that it is finely precipitated in a regular cubic or rectangular parallelepiped shape. If the austenite phase and the γ'phase are not sufficiently matched, the length of one side exceeds 1 μm, the corners of a cube or a rectangular parallelepiped are deformed, and spherical precipitation occurs, resulting in sufficient high temperature strength. You won't get it. Therefore, it is necessary that the γ'phase precipitated during the aging treatment has a cubic shape or a rectangular parallelepiped shape with a side length of 1 μm or less. Therefore, the desirable side length of the γ ′ phase is 0.02 to 0.7 μm. Further, this single crystal cast product has characteristics of 1040 ° C., 1
It is desirable that the creep rupture time at 9 kgf / mm 2 is 250 hours or more.

【0025】上述の新規な材料を一方向凝固させた高強
度単結晶鋳造物は、高いクリープ破断強度と優れた耐酸
化性の要求される、過酷な環境下で用いられる物品に好
適である。上述の高強度単結晶鋳造物からなるガスター
ビンブレードおよびガスタービンノズルは、高いクリー
プ破断強度と優れた耐酸化性を有しているため、ガスタ
ービンの燃焼ガス温度を現在以上に高くすることが可能
となり、結果としてガスタービンの熱効率が大幅に向上
する。
The high-strength single crystal casting obtained by unidirectionally solidifying the above-mentioned novel material is suitable for an article used in a harsh environment where high creep rupture strength and excellent oxidation resistance are required. Since the gas turbine blade and the gas turbine nozzle made of the above-mentioned high-strength single crystal casting have high creep rupture strength and excellent oxidation resistance, it is possible to raise the combustion gas temperature of the gas turbine higher than at present. It becomes possible, and as a result, the thermal efficiency of the gas turbine is significantly improved.

【0026】[0026]

【実施例】【Example】

(実施例1)表1に本発明合金、比較合金および従来合
金の特性を比較するために用いた試料の化学組成、2M
o/(W+2Mo+Re)値、およびRe/(W+2M
o+Re)値を示す。本発明合金No.1〜10、比較
合金 No.21〜22および従来合金No.31〜3
3については、いずれも真空誘導溶解により5kgのマ
スターインゴットを作成した。従来合金については、い
ずれも公表されている組成と同一の組成を狙って溶解し
た。従来合金のうち、No.31はSC−83K、N
o.32はPWA1484、No.33はCMSX−4
を示す。
(Example 1) Table 1 shows the chemical compositions of the samples used for comparing the properties of the alloy of the present invention, the comparative alloy and the conventional alloy, and 2M.
o / (W + 2Mo + Re) value and Re / (W + 2M
o + Re) value is shown. Inventive alloy No. 1-10, comparative alloy No. 21-22 and conventional alloy No. 31-3
As for No. 3, a 5 kg master ingot was prepared by vacuum induction melting. All conventional alloys were melted aiming at the same composition as the published composition. Of the conventional alloys, No. 31 is SC-83K, N
o. 32 is PWA 1484, No. 32. 33 is CMSX-4
Indicates.

【0027】[0027]

【表1】 [Table 1]

【0028】表2は、各合金のるつぼ中での1100℃
で16時間加熱後、空冷の熱サイクルを10回繰り返し
た後の酸化減量値、合金の組織安定性、および1040
℃−19kgf/mm2におけるクリープ破断時間とその時
の伸びを示す。また、合金の組織安定性については、各
熱処理後のミクロ組織から、γ相とγ’相のみから構成
される合金については、特性欄に○印を記載した。
Table 2 shows 1100 ° C. for each alloy in the crucible.
Oxidation weight loss after 10 cycles of air-cooling heat cycle after heating for 16 hours, alloy structural stability, and 1040
The creep rupture time at −19 kgf / mm 2 and the elongation at that time are shown. Further, regarding the structural stability of the alloy, from the microstructure after each heat treatment, for the alloy composed of only the γ phase and the γ ′ phase, a mark “◯” is described in the property column.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示す各種試験はすべて前記のマスタ
ーインゴットを引下げ式一方向凝固炉で単結晶化した
後、以下に示す熱処理を実施した。クリープ破断試験に
ついては、従来合金No.31と33を除いた他の合金
すべてについて、平行部直径6.35mm、評点間距離2
5.4mmの試験片に加工して、ASTM法に基づき上記
の条件で試験を実施した。なお、従来合金のうち、ラー
ソンミラーパラメーターで整理されたクリープ破断曲線
が公知となっている合金No.31と33については、
クリープ破断曲線から1040℃−19kgf/mm2に相
当する破断時間を読み取り表2に併記した。さらに、る
つぼ耐酸化試験片は直径7mm、厚さ4mmの円盤状の試験
片に加工したものを使用した。
In each of the various tests shown in Table 2, the above master ingot was single-crystallized in a pull-down type directional solidification furnace, and then the following heat treatment was carried out. Regarding the creep rupture test, the conventional alloy No. For all other alloys except 31 and 33, the parallel part diameter is 6.35 mm and the distance between the scores is 2
The test piece was processed into a 5.4 mm test piece, and the test was carried out under the above conditions based on the ASTM method. Among the conventional alloys, alloy No. 1 whose creep rupture curve organized by Larson Miller parameters is publicly known. For 31 and 33,
The rupture time corresponding to 1040 ° C.-19 kgf / mm 2 was read from the creep rupture curve and is also shown in Table 2. Further, the crucible oxidation-resistant test piece used was a disk-shaped test piece having a diameter of 7 mm and a thickness of 4 mm.

【0031】熱処理条件は本発明合金および比較合金に
ついては、1250〜1350℃の範囲で4時間加熱後
空冷した組織を事前に検討し、いずれの合金も基本的に
γ’相が完全に固溶する温度を固溶化処理温度に選び、
その温度で4時間保持後空冷の固溶化処理を実施した。
固溶化処理後の時効条件については、1080℃で4時
間加熱後空冷とそれに続く870℃で20時間加熱後空
冷の2段時効処理を行なった。従来合金に関しては、N
o.31(SC−83K)は1320℃で4時間加熱後
空冷、1080℃で5時間加熱後空冷および870℃で
20h加熱後空冷の熱処理を行なった。No.32(P
WA1484)は1316℃で4時間加熱後空冷した
後、1080℃で4時間加熱後空冷、さらに870℃で
20時間加熱後空冷の熱処理を行なった。
Regarding the heat treatment conditions, with respect to the alloys of the present invention and the comparative alloys, the structures which were heated in the range of 1250 to 1350 ° C. for 4 hours and then air-cooled were examined in advance. Select the temperature to be used as the solution treatment temperature,
After holding at that temperature for 4 hours, an air-cooled solution treatment was performed.
Regarding the aging conditions after the solution treatment, a two-stage aging treatment of heating at 1080 ° C. for 4 hours and then air cooling followed by heating at 870 ° C. for 20 hours and air cooling was performed. For conventional alloys, N
o. 31 (SC-83K) was heated at 1320 ° C. for 4 hours and then air-cooled, heated at 1080 ° C. for 5 hours and then air-cooled, and heated at 870 ° C. for 20 hours and then air-cooled. No. 32 (P
WA1484) was heated at 1316 ° C. for 4 hours, air-cooled, heated at 1080 ° C. for 4 hours and air-cooled, and further heated at 870 ° C. for 20 hours and air-cooled.

【0032】No.33(CMSX−4)は、Cannon-M
uskegon社の推奨 熱処理条件(出典;“最新ニッケル基
超合金の単結晶化とその高温強度特性”,太田芳雄
他;鉄と鋼,vol.76,(1990),pp940-947)に合わせ、12
72℃で2時間保持後昇温、1288℃で2時間保持後
昇温、1296℃で3時間保持後昇温、1304℃で3
時間保持後昇温、1313℃で3時間保持後昇温、さら
に1316℃で2時間保持後空冷の6段の連続固溶化処
理を実施後、1080℃で4時間保持後空冷と871℃
で20時間保持後空冷の時効処理を実施した。
No. 33 (CMSX-4) is Cannon-M
Recommended heat treatment conditions by uskegon (Source: “Single crystallization of latest nickel-base superalloy and its high temperature strength characteristics”, Yoshio Ota)
Others; 12 according to iron and steel, vol.76, (1990), pp940-947)
Hold at 72 ° C for 2 hours, raise temperature at 1288 ° C for 2 hours, raise temperature at 1296 ° C for 3 hours, raise temperature at 1304 ° C for 3 hours
After 6 hours of continuous solution treatment of temperature rise after holding for 3 hours, hold at 1313 ° C. for 3 hours, hold at 1316 ° C. for 2 hours and air cooling, hold for 4 hours at 1080 ° C. and air cooling and 871 ° C.
After maintaining at 20 ° C. for 20 hours, air cooling aging treatment was performed.

【0033】表1および図1より、本発明合金のReと
Moの含有量が比較合金や従来合金に比べてともに高い
範囲で含有されていることがわかる。表2より、本発明
合金No.1〜10はいずれも良好な耐酸化性、クリー
プ破断寿命、クリープ破断伸びおよび組織安定性を有し
ていることがわかる。特に本発明合金のクリープ破断寿
命は、従来合金中、最も高強度と考えられるNo.31
(SC−83K)を上回る寿命が得られ、高効率、高出
力ガスタービンエンジン用ブレード材料やノズル材料と
して、最適な合金であることがわかる。一方、比較合金
No.21,22は、Ti添加の有無にかかわらず、ク
リープ破断寿命が本発明合金に劣る。これは、本発明合
金に比べて、低いMo量と2Mo/(W+2Mo+R
e)量を有することによるものである。
From Table 1 and FIG. 1, it can be seen that the Re and Mo contents of the alloy of the present invention are both higher than those of the comparative alloy and the conventional alloy. From Table 2, the alloy No. of the present invention. It can be seen that all of 1 to 10 have good oxidation resistance, creep rupture life, creep rupture elongation and microstructure stability. In particular, the creep rupture life of the alloy of the present invention is No. 1, which is considered to have the highest strength among conventional alloys. 31
It can be seen that a life longer than (SC-83K) is obtained, and that it is an optimal alloy as a blade material and a nozzle material for a high efficiency and high output gas turbine engine. On the other hand, comparative alloy No. Nos. 21 and 22 are inferior to the alloys of the present invention in creep rupture life regardless of whether or not Ti is added. Compared with the alloys of the present invention, this is due to the low Mo content and 2Mo / (W + 2Mo + R
e) by having a quantity.

【0034】従来合金のうち、No.31(SC−83
K)は少量のCoとHfを含むために耐酸化性は良い
が、Reを含まないために本発明合金に比べてクリープ
破断寿命が劣る。No.32(PWA1484)やN
o.33(CMSX−4)はReを含むが、Mo量およ
び2Mo/(W+2Mo+Re)量が低いためにクリー
プ破断寿命が本発明合金に劣る。
Of the conventional alloys, No. 31 (SC-83
K) has a good oxidation resistance because it contains a small amount of Co and Hf, but since it does not contain Re, the creep rupture life is inferior to that of the alloy of the present invention. No. 32 (PWA1484) and N
o. Although 33 (CMSX-4) contains Re, its creep rupture life is inferior to that of the alloy of the present invention because the amount of Mo and the amount of 2Mo / (W + 2Mo + Re) are low.

【0035】(実施例2)実施例1中の本発明合金N
o.1を用い、図2に示すガスタービンブレードおよび
図3に示すガスタービンノズルをそれぞれ中子のあるも
のとないものの2種類について製造した。図4にガスタ
ービンブレード用、図5にガスタービンノズル用の中子
の正面図を示す。近年のガスタービンは燃焼ガスの高温
化に伴い、金属表面および内部の温度を低下させるため
に、ブレードおよびノズルの内部に複雑な形状の冷却孔
を設けることが一般的である。このような中空構造のブ
レードおよびノズルを製造するために、図4および図5
の形状のシリカを主成分とする耐火物で形成された中子
を用いた。この中子のまわりにワックス模型を作製し、
さらにその外側にアルミナ、ジルコンおよびイットリア
等の耐火物でセラミックスシェルを形成し、脱ろうおよ
び焼成したものを鋳型とした。
(Example 2) The alloy N of the present invention in Example 1
o. 2 was used to manufacture the gas turbine blade shown in FIG. 2 and the gas turbine nozzle shown in FIG. 3 with and without a core. FIG. 4 shows a front view of a core for a gas turbine blade, and FIG. 5 shows a front view of a core for a gas turbine nozzle. In gas turbines of recent years, it is common to provide cooling holes of complicated shapes inside the blades and nozzles in order to lower the temperature on the metal surface and inside as the combustion gas temperature rises. In order to manufacture such a hollow structure blade and nozzle, FIG. 4 and FIG.
A core made of a refractory containing silica as the main component was used. Create a wax model around this core,
Further, a ceramic shell was formed on the outside with a refractory material such as alumina, zircon, and yttria, which was dewaxed and fired to obtain a mold.

【0036】図6はガスタービンブレード用、図7はガ
スタービンノズル用の鋳型の断面図である。図6および
図7のいずれの場合においても、鋳型10は水冷銅チル
11の上に固定し、鋳型加熱ヒーター13の中にセット
した。次に、高周波加熱で溶解した本発明合金No.1
の組成のマスターインゴットを、合金の融点以上に加熱
した鋳型10の中に鋳込み、引き下げ速度 30cm/h
で鋳型加熱ヒーター13から引き出し、スターター部1
4より順次一方向凝固させた。スターター部14内では
いくつもの柱状晶が成長するが、セレクター部15を用
いてその中の一つの結晶のみを成長させ、セレクター部
15より上の部分を単結晶鋳造物とした。
FIG. 6 is a sectional view of a mold for a gas turbine blade, and FIG. 7 is a sectional view of a mold for a gas turbine nozzle. In both cases of FIG. 6 and FIG. 7, the mold 10 was fixed on the water-cooled copper chill 11 and set in the mold heater 13. Next, the alloy No. of the present invention melted by high frequency heating. 1
The master ingot having the composition of No. 1 is cast into the mold 10 heated above the melting point of the alloy, and the pulling speed is 30 cm / h.
Withdraw from the mold heater 13 and starter part 1
One-way solidification was sequentially carried out from No. 4. Although many columnar crystals grow in the starter portion 14, only one crystal in the columnar crystal was grown using the selector portion 15, and the portion above the selector portion 15 was a single crystal cast.

【0037】鋳型加熱ヒーター13は鋳型10が完全に
引き出され、鋳造物が完全に凝固するまで合金の融点以
上の温度とした。以上の工程のうち水冷銅チル11に鋳
型10をセットする工程より後は真空中で行なった。冷
却後鋳型10を取り出し、中子をアルカリで除去し、ス
ターター部、セレクター部および押し湯部等を切断し、
図2に示す形状のガスタービンブレードおよび図3に示
す形状のガスタービンノズルを得た。ガスタービンブレ
ードは全長約220mmで、そのうち翼部が約130mm、
ガスタービンノズルは二つのサイドウォール間が約13
0mmである。ここで、バイパス部12は張出し部である
シールフィン3およびサイドウォール8等の結晶成長方
向に対して急激に断面積が変化する部分を単結晶化する
ために用いるもので、最終的には押湯部等と同様、切断
し除去する。これを用いることで、大型単結晶鋳造物の
張出し部における異結晶の発生を抑制し、歩留が向上し
た。
The mold heater 13 was kept at a temperature not lower than the melting point of the alloy until the mold 10 was completely drawn out and the casting was completely solidified. After the steps of setting the mold 10 in the water-cooled copper chill 11 among the above steps, the steps were performed in vacuum. After cooling, the mold 10 is taken out, the core is removed with an alkali, and the starter part, the selector part, the riser part, etc. are cut,
A gas turbine blade having the shape shown in FIG. 2 and a gas turbine nozzle having the shape shown in FIG. 3 were obtained. The gas turbine blade has a total length of about 220 mm, of which the blade part is about 130 mm,
The gas turbine nozzle has approximately 13 between the two sidewalls.
It is 0 mm. Here, the bypass portion 12 is used to single-crystallize a portion of the overhang portion, such as the seal fin 3 and the sidewall 8 where the cross-sectional area changes abruptly with respect to the crystal growth direction. Cut and remove like hot water. By using this, generation of foreign crystals in the overhang portion of the large single crystal cast was suppressed, and the yield was improved.

【0038】結晶は、ブレードにおいては〈001〉方
向が翼部長手方向(拡大部16からダブテール部5の方
向)に、つまり〈001〉方向が遠心力のかかる方向に
なる用に成長させることが望ましく、またノズルにおい
ては〈001〉方向が翼部横手方向(サイドウォール7
からサイドウォール8の方向)に、つまり〈001〉方
向がガスタービンの起動停止に伴う熱サイクルから生じ
る熱応力のかかる方向になるように成長させることが望
ましい。本実施例においてはいずれも〈001〉方向か
らの結晶成長方位のずれが5度以内の単結晶鋳造物が得
られた。ガスタービンブレードおよびガスタービンノズ
ルとも、真空中で1300℃4時間加熱後空冷の固溶化
処理の後、翼部に厚さ100μmのCoNiCrAlY
合金層をプラズマ溶射法で形成し、この合金層を基材に
なじませるために1080℃4時間後空冷の拡散処理を
行なった。次にその外層に厚さ300μmのZrO2
6wt%Y23膜をプラズマ溶射法でコーティングし
た。さらにその後、γ′層の形状を整える目的で870
℃20時間加熱後空冷の時効処理を行なった。
The crystal can be grown in the blade so that the <001> direction is the longitudinal direction of the blade (the direction from the enlarged portion 16 to the dovetail portion 5), that is, the <001> direction is the direction to which the centrifugal force is applied. Desirably, in the nozzle, the <001> direction is the lateral direction of the wing (sidewall 7
To the side wall 8), that is, the <001> direction is preferably the direction in which the thermal stress generated from the thermal cycle accompanying the start and stop of the gas turbine is applied. In each of the examples, single crystal castings were obtained in which the deviation of the crystal growth orientation from the <001> direction was within 5 degrees. Both the gas turbine blade and the gas turbine nozzle were heated at 1300 ° C. for 4 hours in a vacuum, and after air-cooled solution treatment, a blade of CoNiCrAlY having a thickness of 100 μm was formed.
An alloy layer was formed by the plasma spraying method, and in order to adapt this alloy layer to the substrate, air-cooling diffusion treatment was performed after 1080 ° C. for 4 hours. Next, ZrO 2 − with a thickness of 300 μm was formed on the outer layer.
A 6 wt% Y 2 O 3 film was coated by the plasma spraying method. After that, 870 for the purpose of adjusting the shape of the γ'layer.
After heating at 20 ° C. for 20 hours, an aging treatment of air cooling was performed.

【0039】これらのガスタービンブレードおよびガス
タービンノズルのうち中子なしで中実の状態の熱処理済
の素材から〈001〉方向にクリープ破断試験片を割り
出し、実施例1と同じ条件でクリープ破断試験を実施し
た。その結果ブレード、ノズルのクリープ破断寿命はそ
れぞれ、268hと274hで、伸びはそれぞれ12.4%と11.4%が
得られ、実施例1と同等の性能を有することが確認でき
た。
Among these gas turbine blades and gas turbine nozzles, a creep rupture test piece was indexed in the <001> direction from a heat-treated material in a solid state without a core, and the creep rupture test was conducted under the same conditions as in Example 1. Was carried out. As a result, the creep rupture lives of the blade and the nozzle were 268 h and 274 h, respectively, and the elongations were 12.4% and 11.4%, respectively, and it was confirmed that they had the same performance as that of Example 1.

【0040】[0040]

【発明の効果】以上のように、本発明合金は既存単結晶
合金よりも優れたクリープ破断強度と、既存単結晶合金
のなかでも良好な部類の耐酸化性を兼備している。その
結果、従来適応が困難であった航空機用等の高出力・高
効率ガスタービンのブレードやノズル用等の単結晶鋳造
物として、厳しい酸化環境と高いクリープ応力下での操
業が可能となり、従来達成できなかった高出力・高効率
のガスタービンが得られる。
INDUSTRIAL APPLICABILITY As described above, the alloy of the present invention has a creep rupture strength superior to that of existing single crystal alloys and a good class of oxidation resistance among existing single crystal alloys. As a result, it has become possible to operate as a single crystal cast for blades and nozzles of high-power and high-efficiency gas turbines for aircraft etc., which was difficult to apply in the past, under severe oxidizing environment and high creep stress. A gas turbine with high output and high efficiency that could not be achieved can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】縦軸に2Mo/(W+2Mo+Re)の値をと
り、横軸にRe/(W+2Mo+Re)の値をとった時
の本発明の高強度超合金の領域を示す図である。
FIG. 1 is a diagram showing a region of a high-strength superalloy according to the present invention in which the vertical axis represents the value of 2Mo / (W + 2Mo + Re) and the horizontal axis represents the value of Re / (W + 2Mo + Re).

【図2】本発明に係るガスタービンブレードの斜視図で
ある。
FIG. 2 is a perspective view of a gas turbine blade according to the present invention.

【図3】本発明に係るガスタービンノズルの斜視図であ
る。
FIG. 3 is a perspective view of a gas turbine nozzle according to the present invention.

【図4】本発明に係るガスタービンブレードの製造に用
いた中子の正面図である。
FIG. 4 is a front view of a core used for manufacturing a gas turbine blade according to the present invention.

【図5】本発明に係るガスタービンノズルの製造に用い
た中子の正面図である。
FIG. 5 is a front view of a core used for manufacturing the gas turbine nozzle according to the present invention.

【図6】本発明に係るガスタービンブレードの製造方法
を示す、ガスタービンブレード用の鋳型の縦断面図であ
る。
FIG. 6 is a vertical cross-sectional view of a gas turbine blade mold showing a method for manufacturing a gas turbine blade according to the present invention.

【図7】本発明に係るガスタービンノズルの製造方法を
示す、ガスタービンノズル用の鋳型の縦断面図である。
FIG. 7 is a vertical cross-sectional view of a gas turbine nozzle mold showing a method for manufacturing a gas turbine nozzle according to the present invention.

【符号の説明】[Explanation of symbols]

1 翼部 2 プラットフォーム部 3 シールフィン 4 シャンク部 5 ダブテール部 6 翼部 7,8 サイドウォール 10 鋳型 11 水冷銅チル 12 バイパス部 13 鋳型加熱ヒーター 14 スターター部 15 セレクター部 16 拡大部 1 Wing Part 2 Platform Part 3 Seal Fin 4 Shank Part 5 Dovetail Part 6 Wing Part 7, 8 Sidewall 10 Mold 11 Water-cooled Copper Chill 12 Bypass Part 13 Mold Heating Heater 14 Starter Part 15 Selector Part 16 Expanding Part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉置 英樹 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 吉成 明 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小林 満 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 渡部 典行 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideki Tamaki, Inventor Hideki Tamaki 7-1, Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. (72) Inventor Akira Yoshinari 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Mitsuru Kobayashi 7-1, 1-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Noriyuki Watanabe Hitachi City, Ibaraki Prefecture 7-1-1 Omika-cho, Hitachi, Ltd. Hitachi Research Laboratory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Cr4.5〜10%,Al
4.5〜6.5%,W3〜9%,Ta3〜9%,Mo3
%を超え9%以下,Co0.1〜3%,Re0.1〜4
%,Hf0.3%以下および残部不可避の不純物とNi
からなることを特徴とする高強度超合金。
1. By weight%, Cr 4.5-10%, Al
4.5-6.5%, W3-9%, Ta3-9%, Mo3
% To 9% or less, Co 0.1 to 3%, Re 0.1 to 4
%, Hf 0.3% or less and balance unavoidable impurities and Ni
A high strength superalloy.
【請求項2】 重量%で表されるW,MoおよびReが
次式を満足することを特徴とする請求項1または2に記
載の高強度超合金。 0.40≦2Mo/(W+2Mo+Re)≦0.65 0.04≦Re/(W+2Mo+Re)≦0.20
2. The high-strength superalloy according to claim 1, wherein W, Mo and Re represented by weight% satisfy the following formula. 0.40 ≦ 2Mo / (W + 2Mo + Re) ≦ 0.65 0.04 ≦ Re / (W + 2Mo + Re) ≦ 0.20
【請求項3】 重量%で、Cr5.3〜8%,Al5〜
6%,W6.5〜8%,Ta6〜8.5%,Mo3.3
〜6%,Co0.5〜1.5%,Re1.0〜2.0
%,Hf0.01〜0.2%および残部不可避の不純物
とNiからなることを特徴とする高強度超合金。
3. By weight%, Cr 5.3 to 8%, Al 5 to
6%, W 6.5-8%, Ta 6-8.5%, Mo 3.3
~ 6%, Co 0.5-1.5%, Re 1.0-2.0
%, Hf 0.01 to 0.2%, and the balance unavoidable impurities and Ni, a high strength superalloy.
【請求項4】 重量%で、1%未満のTiを含むことを
特徴とする請求項1または3に記載の高強度超合金。
4. High strength superalloy according to claim 1 or 3, characterized in that it comprises less than 1% Ti by weight.
【請求項5】 請求項1〜4に記載の合金からなる多結
晶マスターインゴット。
5. A polycrystalline master ingot made of the alloy according to claim 1.
【請求項6】 請求項1〜4に記載の合金を一方向凝固
させてできる、実質的に結晶粒界を有しない高強度単結
晶鋳造物。
6. A high-strength single crystal cast product having substantially no grain boundaries, which is obtained by unidirectionally solidifying the alloy according to any one of claims 1 to 4.
【請求項7】 固溶化処理後に存在する未固溶の共晶
γ’相の体積率が5%以下、固溶化+時効後のγ’相の
体積率が50〜70%、および固溶化+時効処理で析出
するγ’相は一辺の長さが1μm以下の立方体または直
方体形状を有することを特徴とする請求項6に記載の高
強度単結晶鋳造物。
7. The volume ratio of the undissolved eutectic γ ′ phase present after the solution treatment is 5% or less, the volume ratio of the γ ′ phase after solution + aging is 50 to 70%, and the solution + The high-strength single crystal cast product according to claim 6, wherein the γ'phase precipitated by the aging treatment has a cubic or rectangular parallelepiped shape with a side length of 1 µm or less.
【請求項8】 1040℃、19kgf/mm2でのク
リープ破断時間が250時間以上であることを特徴とす
る請求項6に記載の高強度単結晶鋳造物。
8. The high strength single crystal cast product according to claim 6, wherein the creep rupture time at 1040 ° C. and 19 kgf / mm 2 is 250 hours or more.
【請求項9】 請求項6〜8の高強度単結晶鋳造物から
なることを特徴とするガスタービンブレード。
9. A gas turbine blade comprising the high-strength single crystal cast product according to claim 6.
【請求項10】 請求項6〜8の高強度単結晶鋳造物か
らなることを特徴とするガスタービンノズル。
10. A gas turbine nozzle comprising the high-strength single crystal cast product according to claim 6.
JP22161793A 1993-09-07 1993-09-07 High strength cemented carbide and high strength single crystal casting Pending JPH0770678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22161793A JPH0770678A (en) 1993-09-07 1993-09-07 High strength cemented carbide and high strength single crystal casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22161793A JPH0770678A (en) 1993-09-07 1993-09-07 High strength cemented carbide and high strength single crystal casting

Publications (1)

Publication Number Publication Date
JPH0770678A true JPH0770678A (en) 1995-03-14

Family

ID=16769568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22161793A Pending JPH0770678A (en) 1993-09-07 1993-09-07 High strength cemented carbide and high strength single crystal casting

Country Status (1)

Country Link
JP (1) JPH0770678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066089A1 (en) * 1998-06-15 1999-12-23 Mitsubishi Heavy Industries, Ltd. Ni-BASED SINGLE CRYSTAL ALLOY HAVING COATING FILM FOR PREVENTING RECRYSTALLIZATION FRACTURE
US9359658B2 (en) 2009-07-29 2016-06-07 Nuovo Pignone S.P.A Nickel-based superalloy, mechanical component made of the above mentioned super alloy, piece of turbomachinery which includes the above mentioned component and related methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066089A1 (en) * 1998-06-15 1999-12-23 Mitsubishi Heavy Industries, Ltd. Ni-BASED SINGLE CRYSTAL ALLOY HAVING COATING FILM FOR PREVENTING RECRYSTALLIZATION FRACTURE
US9359658B2 (en) 2009-07-29 2016-06-07 Nuovo Pignone S.P.A Nickel-based superalloy, mechanical component made of the above mentioned super alloy, piece of turbomachinery which includes the above mentioned component and related methods

Similar Documents

Publication Publication Date Title
JP3184882B2 (en) Ni-based single crystal alloy and method for producing the same
JP2782340B2 (en) Single crystal alloy and method for producing the same
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
US5173255A (en) Cast columnar grain hollow nickel base alloy articles and alloy and heat treatment for making
JP5235383B2 (en) Ni-based single crystal alloy and casting
JP4719583B2 (en) Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy
JP3559670B2 (en) High-strength Ni-base superalloy for directional solidification
JP3820430B2 (en) Ni-based single crystal superalloy, manufacturing method thereof, and gas turbine component
JP4222540B2 (en) Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component
JP2707520B2 (en) Ti-Al heat resistant parts
EP0362661B1 (en) Cast columnar grain hollow nickel base alloy article and alloy and heat treatment for making
US6383448B1 (en) Nickel-based superalloy
JP2843476B2 (en) High corrosion resistant high strength superalloy, high corrosion resistant high strength single crystal casting, gas turbine and combined cycle power generation system
JP2000312964A (en) Casting method of single crystal superalloy product casting
JP3012652B2 (en) Improved, balanced nickel-based superalloys for producing single crystal products
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
US4830679A (en) Heat-resistant Ni-base single crystal alloy
US20050000603A1 (en) Nickel base superalloy and single crystal castings
JP4184648B2 (en) Ni-based single crystal alloy excellent in strength and corrosion resistance and its manufacturing method
JPH0770678A (en) High strength cemented carbide and high strength single crystal casting
US8241560B2 (en) Nickel base superalloy and single crystal castings
KR20180081313A (en) Directional solidification ni base superalloy and manufacturing method therefor
JPH0770679A (en) High corrosion resistant and high strength cemented carbide, high corrosion resistant and high strength single crystal casting, gas turbine and combined cycle generating system
JPH0828297A (en) High temperature gas turbine and combined generating plant
WO2004038056A1 (en) Heat treatment of alloys having elements for improving grain boundary strength