JPH0770605B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0770605B2
JPH0770605B2 JP60194511A JP19451185A JPH0770605B2 JP H0770605 B2 JPH0770605 B2 JP H0770605B2 JP 60194511 A JP60194511 A JP 60194511A JP 19451185 A JP19451185 A JP 19451185A JP H0770605 B2 JPH0770605 B2 JP H0770605B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
type
opposite conductivity
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60194511A
Other languages
Japanese (ja)
Other versions
JPS6254460A (en
Inventor
猛英 白土
孝章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60194511A priority Critical patent/JPH0770605B2/en
Publication of JPS6254460A publication Critical patent/JPS6254460A/en
Publication of JPH0770605B2 publication Critical patent/JPH0770605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概 要〕 トランジスタの形成される反対導電型ウエルの不純物濃
度を通常より高濃度に形成してラッチアップ耐性を増
し、該ウエルの上層部に該ウエル内に全体が包含された
低濃度領域を一導電型不純物のカウンタドープによって
形成し、その中にソース及びドレインを形成することに
よってソース及びドレインの接合容量を減少させ、且つ
チャネル形成領域に反対導電型不純物をイオン注入して
閾値電圧を調整するCMOS半導体装置の製造方法。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The impurity concentration of a well of opposite conductivity type in which a transistor is formed is set to be higher than usual to increase latch-up resistance, and an upper layer portion of the well is entirely covered in the well. The included low-concentration region is formed by counter-doping one conductivity type impurity, and the source and drain are formed therein to reduce the junction capacitance of the source and drain, and the channel formation region is ion-implanted with the opposite conductivity type impurity. A method for manufacturing a CMOS semiconductor device in which a threshold voltage is adjusted by injection.

〔産業上の利用分野〕[Industrial application field]

本発明はCMOS半導体装置の製造方法の改良に係り、特に
ラッチアップ耐性を高め且つ高速化を図るCMOS半導体装
置の製造方法に関する。
The present invention relates to an improvement in a method for manufacturing a CMOS semiconductor device, and more particularly to a method for manufacturing a CMOS semiconductor device for improving latch-up resistance and speeding up.

LSI等高集積化される半導体ICにおいては高集積化に伴
って、寄生容量や配線抵抗の増大等に起因して動作速度
が低下する傾向があり、高速化に対する要望が高まって
いる。
In a highly integrated semiconductor IC such as an LSI, the operating speed tends to decrease due to an increase in parasitic capacitance and wiring resistance, etc., as the integration becomes higher, and there is an increasing demand for higher speed.

一方CMOSICにおいては、インバータ回路を構成するnMOS
トランジスタとpMOSトランジスタ間に基板の内部を介し
て寄生するサイリスタが、外部回路から該インバータ回
路に流入する大電流ノイズによって〔ON〕することによ
って生ずるラッチアップ現象によって素子が破壊される
という問題があり、ラッチアップ耐性が大きく且つ高速
動作速度を要するCMOS半導体装置が要望されている。
On the other hand, in CMOS ICs, the nMOS that constitutes the inverter circuit
There is a problem that the thyristor, which is parasitic between the transistor and the pMOS transistor via the inside of the substrate, is turned on by the large current noise flowing from the external circuit to the inverter circuit, causing the element to be destroyed by the latch-up phenomenon. There is a demand for a CMOS semiconductor device that has high latch-up resistance and requires a high operating speed.

〔従来の技術〕[Conventional technology]

第4図はCMOSインバータの構成を示す等価回路を含む模
式側断面図で、図中、nsubはn-型半導体基板、pwellはp
-型ウエル、p−TrはpMOSトランジスタ、n−TrはnMOS
トランジスタ、Sp,Dp,Gpはp−Trのソース,ドレイン,
ゲート、Sn,Dn,Gnはn−Trのソース,ドレイン,ゲー
ト、+VDDは電源端子、Vssは接地端子、OUTは出力端子
である。
FIG. 4 is a schematic side sectional view including the equivalent circuit showing the configuration of the CMOS inverter, in which n sub is an n type semiconductor substrate and p well is p
- type well, p-Tr is pMOS transistor, n-Tr is nMOS
Transistor, S p , D p , G p are source and drain of p-Tr
Gate, S n , D n , and G n are n-Tr source, drain, and gate, + V DD is a power supply terminal, V ss is a ground terminal, and OUT is an output terminal.

CMOS回路においてはこのようなインバータが多く形成さ
れるが、この場合、Spとnsubとpwellによって寄生pnpト
ランジスタ(pnpTr)が、またSnとpwellとnsubによって
寄生npnトランジスタ(npnTr)が構成され、またその端
子間には寄生抵抗R1,R2,R3が存在する。
Many such inverters are formed in a CMOS circuit. In this case, S p , n sub, and p well form a parasitic pnp transistor (pnpTr), and S n , p well, and n sub form a parasitic npn transistor (npnTr ) Is formed, and parasitic resistances R 1 , R 2 , and R 3 exist between the terminals.

そして同図に示す電源パスから明らかなように前記寄生
素子はサイリスタを構成し、ラッチアップと称する異常
現象はこのサイリスタ動作によって生ずる。
As is clear from the power supply path shown in the figure, the parasitic element constitutes a thyristor, and an abnormal phenomenon called latch-up is caused by this thyristor operation.

即ち、例えば外部回路に接続されたDnから雑音電流が流
入し、この電流が大きいと、npnTrは〔ON〕状態とな
り、+VDD端子からR2,R3を介してVss端子に電流が流れ
る。ここでR2両端の電圧がpnpTrのベース電圧より高く
なると、pnpTrは〔ON〕状態になる。
That is, for example, a noise current flows from D n connected to an external circuit, and when this current is large, the npnTr is in the [ON] state and a current flows from the + V DD terminal to the V ss terminal via R 2 and R 3. Flowing. Here, if the voltage across R 2 becomes higher than the base voltage of pnpTr, pnpTr will be in the [ON] state.

そしてこの時、pnpTrを介してnpnTrのベースに電流が流
れpnpTrをより〔ON〕状態にし、この結果npnTrとpnpTr
よりなるループに正帰還がかかり、サイリスタが抵抗状
態になる。
Then, at this time, a current flows through the base of the npnTr through the pnpTr to turn the pnpTr into the [ON] state, and as a result, the npnTr and pnpTr
Positive feedback is applied to the loop consisting of, and the thyristor enters a resistance state.

従って一度大きな雑音電流が注入されると、この雑音電
流がなくなっても電源端子間に定常的な大電流が流れ、
電源を遮断せずに放置すれば配線の断線,素子破壊等を
起こす。
Therefore, once a large noise current is injected, a steady large current flows between the power terminals even if this noise current disappears.
If the power is left uninterrupted, the wiring may be broken or the device may be destroyed.

このような現象をラッチアップと称するが、これ対して
はnpnTrのベース抵抗即ちR1の値が大きい程不利にな
る。
Such a phenomenon is referred to as latch-up, which is disadvantageous as the base resistance of npnTr, that is, the value of R 1 increases.

そこで従来ラッチアップ耐性の高いCMOS半導体装置を形
成する手段として、ウエルの不純物濃度を高め、且つカ
ウンタードーズを行ってウエル内トランジスタのチャネ
ル領域のキャリア濃度を選択的に低めてその閾値電圧を
制御する製造方法が提案されている。
Therefore, as a means for forming a CMOS semiconductor device having a high latch-up resistance, the well concentration is increased and counter-dose is performed to selectively lower the carrier concentration in the channel region of the transistor in the well to control its threshold voltage. Manufacturing methods have been proposed.

第5図は、上記従来方法で形成したCMOS半導体装置の模
式側断面図である。
FIG. 5 is a schematic side sectional view of a CMOS semiconductor device formed by the above conventional method.

同図において、1はn-型シリコン基板、2はp型ウエ
ル、3は閾値調整用p-型カウンタドーズ領域、4はゲー
トSiO2膜、5はゲート電極、6はn+型ソース領域、7は
n+型ドレイン領域、8はp+型ソース領域、7はp+型ドレ
イン領域、10はn+型基板コンタクト領域、11はp+型ウエ
ル・コンタクト領域、12はフィールドSiO2膜、13はn型
チャネルストッパ、14はp型チャネルストッパ、n−Tr
はnMOSトランジスタ、 p−TrはpMOSトランジスタを示す。
In the figure, 1 is an n - type silicon substrate, 2 is a p-type well, 3 is a threshold adjusting p - type counter dose region, 4 is a gate SiO 2 film, 5 is a gate electrode, 6 is an n + type source region, 7 is
n + type drain region, 8 p + type source region, 7 p + type drain region, 10 n + type substrate contact region, 11 p + type well contact region, 12 field SiO 2 film, 13 n-type channel stopper, 14 is p-type channel stopper, n-Tr
Is an nMOS transistor, and p-Tr is a pMOS transistor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしかかる従来の製造方法によるCMOS半導体装置にお
いては、nMOSトランジスタn−Trのソース,ドレイン領
域6,7と接合を形成するp型ウエル2のキャリア濃度が
従来に比べて2倍近くに増加せしめられるので、その接
合容量が増大し、該nMOSトランジスタn−Trの動作速度
が低下するという問題があった。
However, in such a CMOS semiconductor device manufactured by the conventional manufacturing method, the carrier concentration of the p-type well 2 that forms a junction with the source / drain regions 6 and 7 of the nMOS transistor n-Tr can be increased to nearly double that of the conventional method. Therefore, there is a problem that the junction capacitance increases and the operating speed of the nMOS transistor n-Tr decreases.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の方法により製造されたCMOS半導体装置
の一実施例を示す模式側断面図である。
FIG. 1 is a schematic side sectional view showing an embodiment of a CMOS semiconductor device manufactured by the method of the present invention.

上記問題点は同図に示す構造を形成するに際して、一導
電型半導体基板(1)に反対導電型ウエル(15)を形成
する工程、該反対導電型ウエル(15)内に一導電型不純
物をイオン注入手段を用い選択的にカウンタドープして
該反対導電型ウエル(15)よりも低キャリア濃度の第1
の反対導電型領域(16)を形成する工程、反対導電型不
純物をイオン注入して該第1の反対導電型領域(16)の
表面部に該第1の反対導電型領域(16)より高キャリア
濃度で且つ該反対導電型ウエル(15)よりも低キャリア
濃度の第2の反対導電型領域(17)を形成する工程、該
第2の反対導電型領域17を表面部に有する該第1の反対
導電型領域(16)上にゲート絶縁膜(4)を介してゲー
ト電極(5)を形成する工程、該ゲート電極(5)をマ
スクにして一導電型不純物をイオン注入し該第2の反対
導電型領域(17)を表面部に有する該第1の反対導電型
領域(16)内に対向する第1、第2の一導電型領域(6
n)、(7n)を形成する工程を有する本発明による半導
体装置の製造方法によって解決される。
The above-mentioned problem is that in forming the structure shown in the same figure, the step of forming the opposite conductivity type well (15) in the one conductivity type semiconductor substrate (1), and the impurity of one conductivity type in the opposite conductivity type well (15). A first carrier having a carrier concentration lower than that of the well (15) of the opposite conductivity type is formed by selectively counter-doping using ion implantation means.
Forming the opposite conductivity type region (16) of the first opposite conductivity type region (16) by ion-implanting the opposite conductivity type impurity to the surface portion of the first opposite conductivity type region (16) higher than the first opposite conductivity type region (16). Forming a second opposite conductivity type region (17) having a carrier concentration and a carrier concentration lower than that of the opposite conductivity type well (15), the first opposite surface region having the second opposite conductivity type region (17); Forming a gate electrode (5) on the opposite conductivity type region (16) through the gate insulating film (4), and using the gate electrode (5) as a mask, one conductivity type impurity is ion-implanted. Of the first and second conductivity type regions (6) facing each other in the first opposite conductivity type region (16) having the opposite conductivity type region (17) of
This is solved by the method for manufacturing a semiconductor device according to the present invention, which includes the steps of forming n) and (7n).

〔作 用〕[Work]

即ち本発明においては、ウエルを高キャリア濃度にしそ
の抵抗を下げることによってラッチアップに対する耐性
を高め、且つウエルの上層部にイオン注入手段によるカ
ウンタドープによってソース,ドレイン領域よりも深い
第1の低キャリア濃度領域を形成してソース,ドレイン
領域の接合容量を減少せしめ、更にチャネル形成部に第
1の低キャリア濃度領域よりも高濃度で且つウエルより
も低濃度の第2の低キャリア濃度領域をイオン注入手段
により形成して閾値電圧の調整を行うものであり、これ
によって、外部ノイズに強く且つ高速で動作するCMOS半
導体装置が形成される。
That is, in the present invention, the well is made to have a high carrier concentration to reduce its resistance to enhance the resistance to latch-up, and the upper layer of the well is counter-doped by the ion implantation means so that the first low carrier which is deeper than the source and drain regions is formed. A concentration region is formed to reduce the junction capacitance between the source and drain regions, and a second low carrier concentration region having a higher concentration than the first low carrier concentration region and a lower concentration than the well is formed in the channel forming portion. It is formed by injection means to adjust the threshold voltage, whereby a CMOS semiconductor device that is resistant to external noise and operates at high speed is formed.

〔実施例〕〔Example〕

以下本発明を図示実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to illustrated embodiments.

第1図は本発明の方法を用いて形成したCMOS半導体装置
の第1の実施例の模式側断面図、第2図は第1の実施例
におけるウエル内キャリア濃度のプロファイル図、第3
図は本発明の方法を用いて形成したCMOS半導体装置の第
2の実施例の模式側断面図である。
FIG. 1 is a schematic side sectional view of a first embodiment of a CMOS semiconductor device formed by using the method of the present invention, FIG. 2 is a profile diagram of carrier concentration in a well in the first embodiment, and FIG.
The drawing is a schematic side sectional view of a second embodiment of a CMOS semiconductor device formed by using the method of the present invention.

全図を通じ同一対象物は同一符号で示す。The same object is denoted by the same symbol throughout the drawings.

本発明に係る半導体装置の製造方法においては、例えば
CMOSインバータにおける一実施例を示す第1図のよう
に、例えば5×1014cm-3程度のキャリア濃度を有するn-
型シリコン基板1の主面に、ラッチアップ耐性を増すた
め従来より2倍程度高い、例えば1×1017cm-3程度のキ
ャリア濃度を有せしめられた深さ5μm程度のp型ウエ
ル15をイオン注入手段を用いて形成し、 該p型ウエル15の上層部に、ソース,ドレイン領域の深
さ近傍で、ラッチアップ耐性を考慮しない従来の6×10
16cm-3程度のウエル濃度よりも更に低いキャリア濃度を
有し、ソース,ドレイン領域の接合容量の減少に寄与す
る、深さ0.7〜1μm程度のp--型の第1の不純物導入領
域16をイオン注入手段による逆導電型不純物のカウンタ
ドープにより形成する。
In the method of manufacturing a semiconductor device according to the present invention, for example,
As shown in FIG. 1 showing an embodiment in a CMOS inverter, for example, n having a carrier concentration of about 5 × 10 14 cm −3.
In order to increase the latch-up resistance, a p-type well 15 having a carrier concentration of about 1 × 10 17 cm −3 and a depth of about 5 μm is formed on the main surface of the type silicon substrate 1. It is formed by using an implanting means, and is formed in the upper layer portion of the p-type well 15 in the vicinity of the depths of the source and drain regions without considering the latch-up resistance.
A p -- type first impurity introduction region having a depth of 0.7 to 1 μm, which has a carrier concentration lower than the well concentration of about 16 cm −3 and contributes to the reduction of the junction capacitance between the source and drain regions. Are formed by counter doping with impurities of opposite conductivity type by ion implantation means.

そして該p--型第1の不純物導入領域16の表面部に通常
通り1020cm-3程度のキャリア濃度を有する深さ3000Å程
度のn+型ソース領域6とn+型ドレイン領域7がをイオン
注入手段を用いて形成し、 チャネル形成領域即ちn+型ソース領域6とn+型ドレイン
領域7の離間領域の表層部に、閾値電圧を調整するため
の例えば6×1016cm-3程度のキャリア濃度を有する深さ
1000Å程度のp-型第2の不純物導入領域17をイオン注入
手段を用いて形成する。
The n + type source region 6 and the n + type drain region 7 having a carrier concentration of about 10 20 cm -3 and a depth of about 3000 Å are formed on the surface of the p type first impurity introduction region 16 as usual. For example, about 6 × 10 16 cm −3 for adjusting the threshold voltage is formed on the surface layer portion of the channel formation region, that is, the separation region between the n + type source region 6 and the n + type drain region 7 by using the ion implantation means. Depth with carrier concentration of
A p -type second impurity introduction region 17 of about 1000 Å is formed by using an ion implantation means.

なお上記ソース領域6にウエル15と同電位が印加される
場合には、該ソース領域6に接合容量が生じないので、
ソース領域6の一部即ちドレイン領域7に近い一部の領
域が閾値調整のために該p--型第1の不純物導入領域16
内に包含されていればよい。
When the same potential as the well 15 is applied to the source region 6, no junction capacitance is generated in the source region 6,
A part of the source region 6, that is, a part of the region close to the drain region 7 is the p -- type first impurity introduction region 16 for adjusting the threshold value.
It has only to be included in.

上記以外の製造方法及び構造は通常のCMOSインバータと
同様で、図中、4はゲートSiO2膜、5は例えば多結晶シ
リコンよりなるゲート電極、8はp+型ソース領域、9は
p+型ドレイン領域、10はn+型基板コンタクト領域、11は
p+型ウエル・コンタクト領域、12はフィールドSiO2膜、
13は1017cm-3程度のキャリア濃度を有するn型チャネル
ストッパ、14は1017cm-3程度のキャリア濃度を有するp
型チャネルストッパ、18は不純物ブローク用SiO2膜、19
はPSG層間絶縁膜、20a〜20fは例えばアルミニウム等よ
りなる電極配線、n−TrはnMOSトランジスタ、p−Trは
pMOSトランジスタを示す。
The manufacturing method and structure other than the above are the same as those of a normal CMOS inverter. In the figure, 4 is a gate SiO 2 film, 5 is a gate electrode made of, for example, polycrystalline silicon, 8 is a p + -type source region, and 9 is
p + type drain region, 10 is n + type substrate contact region, 11 is
p + type well contact region, 12 is field SiO 2 film,
13 is an n-type channel stopper having a carrier concentration of about 10 17 cm -3 , and 14 is p having a carrier concentration of about 10 17 cm -3.
Mold channel stopper, 18 is SiO 2 film for impurity broking, 19
Is a PSG interlayer insulating film, 20a to 20f are electrode wirings made of, for example, aluminum, n-Tr is an nMOS transistor, and p-Tr is
7 shows a pMOS transistor.

前記のように本発明の方法によりCMOS半導体装置を形成
するに際して、nMOSトランジスタn−Tr領域における上
記p型ウエル15は、基板1面にマスク接合によって硼素
(B)を例えばドーズ量2.0×1013cm-2,加速エネルギー
160KeV程度の条件で選択的にイオン注入し、窒素(N2
中において1200℃程度で180分程度熱処理することによ
って形成する。
As described above, when the CMOS semiconductor device is formed by the method of the present invention, the p-type well 15 in the nMOS transistor n-Tr region is mask-bonded to the surface of the substrate 1 with boron (B), for example, at a dose of 2.0 × 10 13. cm -2 , acceleration energy
Nitrogen (N 2 ) is selectively ion-implanted under the conditions of about 160 KeV.
It is formed by heat-treating at about 1200 ° C. for about 180 minutes.

またp--型第1の不純物導入領域16は、チャネルストッ
パ13,14及びフィールドSiO2膜12形成後、pMOSトランジ
スタp−Tr形成領域上をマスクで覆い、p型ウエル15面
にp型キャリアをコンペンセートするためのn型不純物
である燐(P)を、例えばドーズ量1.5×1012cm-2,加速
エネルギー180KeV程度で選択的にイオン注入することに
よりカウンタドープし、N2中1100℃において60分程度熱
処理することによって形成される。
In addition, the p -- type first impurity introduction region 16 covers the pMOS transistor p-Tr formation region with a mask after forming the channel stoppers 13 and 14 and the field SiO 2 film 12, and the p-type carrier 15 surface is covered with the p-type carrier. Counter-doping is carried out by selectively ion-implanting phosphorus (P), which is an n-type impurity for compensating C., with a dose amount of 1.5 × 10 12 cm -2 and an acceleration energy of about 180 KeV, and the temperature is 1100 ° C. in N 2. It is formed by heat-treating for about 60 minutes.

そしてまた、閾値電圧調整のためp-型第2の不純物導入
領域17を形成する不純物イオン注入上記第1の不純物導
入領域16が完成した直後に、上記p--型第1の不純物導
入領域16の表面に更に硼素(B)をイオン注入すること
によって形成する。
And also, p for the threshold voltage adjustment - immediately after the type second impurity ion implantation in the first impurity regions 16 to form the impurity introducing region 17 is completed, the p - type first impurity regions 16 It is formed by further ion-implanting boron (B) on the surface of the.

この際、注入エネルギーは30KeV程度で、ドーズ量は、
例えばゲートSiO2膜4の厚さ300Å,閾値電圧を0.7Vと
する場合、5×1011cm-2程度である。
At this time, the implantation energy is about 30 KeV and the dose is
For example, when the thickness of the gate SiO 2 film 4 is 300 Å and the threshold voltage is 0.7 V, it is about 5 × 10 11 cm -2 .

なお該B注入領域の活性化は、後にソース,ドレイン領
域の活性化と同時に行われる。
The activation of the B-implanted region is performed later simultaneously with the activation of the source / drain regions.

以上の方法でウエルを形成した場合第2図に示すキャリ
ア濃度のプロファイル図に示すように、当初p型ウエル
15の濃度プロファイルはカーブ(ロ)のようになり、ラ
ッチアップ耐性を考慮しない通常のウエルのプロファイ
ル(イ)に比べて濃度はかなり高い方向に移動してい
る。
When the well is formed by the above method, as shown in the carrier concentration profile diagram in FIG.
The concentration profile of 15 shows a curve (b), and the concentration is moving in a considerably higher direction than the profile (a) of a normal well in which latch-up resistance is not considered.

次いでp--型第1の不純物導入領域16の形成によって、
カーブ(ハ)に示すように表層部の濃度は低下し、ソー
ス,ドレイン6,7の底部近傍深さS/Dの濃度は、(a)点
と(b)点で比較すれば判るように通常に比べ低下す
る。
Then, by the formation of the p -- type first impurity introduction region 16,
As shown in the curve (c), the concentration of the surface layer decreases, and the concentration of the depth S / D near the bottom of the source and drain 6, 7 can be understood by comparing points (a) and (b). Lower than usual.

しかし、ラッチアップ耐性に貢献する1μm以上の深さ
のバルク領域BUの濃度は余り低下せず、(c)点と
(d)点を比較すれば明瞭なように通常構造に比べ大幅
に高濃度となる。
However, the concentration of the bulk region BU with a depth of 1 μm or more, which contributes to the latch-up resistance, does not decrease so much, and it is clear that comparing the points (c) and (d), the concentration is significantly higher than that of the normal structure. Becomes

以上のことは、ラッチアップ耐性が増大し、且つソー
ス,ドレイン6,7の接合容量が減少することを示してい
る。
The above shows that the latch-up resistance increases and the junction capacitance between the source and drain 6 and 7 decreases.

なお、図中に点線で示した(ニ)のカーブは、p--型第
1の不純物導入領域16の表面部にp型不純物をイオン注
入しp-型第2の不純物導入領域17を形成して閾値調整を
行った後の前記実施例の最終的な濃度プロファイルであ
る。
The curve (d) indicated by the dotted line in the figure shows that the p -type second impurity introduction region 17 is formed by ion-implanting p-type impurities into the surface of the p -type first impurity introduction region 16. 3 is a final density profile of the above-described embodiment after the threshold adjustment is performed.

次ぎにショートチャネル且されるCMOS半導体装置に本発
明を適用する場合について述べる。
Next, a case where the present invention is applied to a short-channel CMOS semiconductor device will be described.

ショートチャネル化されソース領域6とドレイン領域7
との間隔が極度に狭められるCMOS半導体装置において
は、前記第1の実施例のように第2の不純物導入領域17
を浅く形成した際には、該第2の不純物導入領域17の下
部のキャリア濃度の低い第1の不純物導入領域16内で、
ドレイン領域7から伸びる空乏層がソース領域6に達し
てパンチスルーを起こし、素子が機能しなくなるという
現象を生ずる。
Source channel 6 and drain channel 7 are formed into short channels
In the CMOS semiconductor device in which the interval between the second impurity introduction region 17 and the second impurity introduction region 17 is extremely narrow as in the first embodiment.
Is formed shallowly, in the first impurity introduction region 16 having a low carrier concentration below the second impurity introduction region 17,
A depletion layer extending from the drain region 7 reaches the source region 6 to cause punch-through, resulting in a phenomenon that the device does not function.

かかるショートチャネル効果を防止する構造が、第3図
に示す第2の実施例である。
The structure for preventing such short channel effect is the second embodiment shown in FIG.

この構造においては同図に示すように、ソース領域6と
ドレイン領域7の間に選択的に、少なくともソース,ド
レイン領域6,7より深く形成され、且つ閾値電圧調整用
を兼ねるp-型の第2の不純物導入領域117を形成する。
In this structure, as shown in the figure, the p -type first layer is selectively formed between the source region 6 and the drain region 7 at least deeper than the source and drain regions 6 and 7, and also serves to adjust the threshold voltage. The second impurity introduction region 117 is formed.

このようにすることにより、チャネル領域の下部のキャ
リア濃度は前記実施例より高まり、ショートチャネル化
された際にもパンチスルーは防止される。
By doing so, the carrier concentration in the lower part of the channel region is higher than that in the above-mentioned embodiment, and punch-through is prevented even when the channel is made short.

なお、該実施例における第2の不純物導入領域117は、
チャネル形成領域即ちソース領域6とドレイン領域7と
の間隔部に当たる領域に、選択的に、深くBをイオン注
入することにより形成する。
The second impurity introduction region 117 in this embodiment is
It is formed by selectively and deeply ion-implanting B into a channel forming region, that is, a region corresponding to a space between the source region 6 and the drain region 7.

この際ドーズ量は、前記同様の閾値電圧を希望する場
合、第1の実施例よりもやや多くする必要があり、加速
エネルギーはソース,ドレイン領域6,7の深さが3000Å
程度の場合、100〜120KeV程度が適当である。
At this time, when the same threshold voltage as that described above is desired, the dose amount needs to be slightly higher than that in the first embodiment, and the acceleration energy is 3000 Å when the depth of the source / drain regions 6 and 7 is 3000.
In the case of about 100 to 120 KeV is suitable.

以上本発明をp型ウエルについて説明したが、本発明は
ツインタブ構造におけるn型ウエルに対しても適用され
るのは勿論である。但し、この場合第1,第2の不純物導
入領域は、上記実施例と反対の導電型になる。
Although the present invention has been described with respect to the p-type well, it goes without saying that the present invention is also applied to the n-type well in the twin tub structure. However, in this case, the conductivity types of the first and second impurity introduction regions are opposite to those in the above embodiment.

〔発明の効果〕〔The invention's effect〕

以上説明のように本発明によれば、ラッチアップ耐性が
高く、且つソース,ドレインの接合容量の小さい、所定
の閾値電圧を有するCMOS半導体装置が形成されるので、
外部ノイズに強い高速のCMOSICが提供される。
As described above, according to the present invention, a CMOS semiconductor device having a high threshold voltage, a small junction capacitance between the source and drain, and a predetermined threshold voltage is formed.
A high-speed CMOS IC that is resistant to external noise is provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るCMOS半導体装置の第1の実施例の
模式側断面図、 第2図は第1の実施例におけるウエル内キャリア濃度の
プロファイル図、 第3図は本発明の第2の実施例の模式側断面図、 第4図はCMOSインバータの構成を示す等価回路を含む模
式側断面図、 第5図は従来方法で形成したCMOS半導体装置の模式側断
面図である。 図において、 1はn-型シリコン基板、 2はp型ウエル、 3は閾値調整用p-型カウンタドーズ領域、 4はゲートSiO2膜、 5はゲート電極、 6はn+型ソース領域、 7はn+型ドレイン領域、 8はp+型ソース領域、 9はp+型ドレイン領域、 10はn+型基板コンタクト領域、 11はp+型ウエル・コンタクト領域、 12はフィールドSiO2膜、 13はn型チャネルストッパ、 14はp型チャネルストッパ、 15はp型ウエル、 16はp--型第1の不純物導入領域、 17,117はp-型第2の不純物導入領域、 18は不純物ブロック用SiO2膜、 19はPSG層間絶縁膜、 20a,20b,20c,20d,20e,20fは電極配線 を示す。
FIG. 1 is a schematic side sectional view of a first embodiment of a CMOS semiconductor device according to the present invention, FIG. 2 is a profile diagram of carrier concentration in well in the first embodiment, and FIG. 3 is a second view of the present invention. FIG. 4 is a schematic side sectional view including an equivalent circuit showing a configuration of a CMOS inverter, and FIG. 5 is a schematic side sectional view of a CMOS semiconductor device formed by a conventional method. In the figure, 1 is an n - type silicon substrate, 2 is a p-type well, 3 is a threshold adjustment p - type counter dose region, 4 is a gate SiO 2 film, 5 is a gate electrode, 6 is an n + type source region, 7 Is an n + type drain region, 8 is a p + type source region, 9 is a p + type drain region, 10 is an n + type substrate contact region, 11 is a p + type well contact region, 12 is a field SiO 2 film, 13 Is an n-type channel stopper, 14 is a p-type channel stopper, 15 is a p-type well, 16 is a p -- type first impurity introduction region, 17,117 is a p -- type second impurity introduction region, and 18 is an impurity block SiO. Two films, 19 is a PSG interlayer insulating film, and 20a, 20b, 20c, 20d, 20e, 20f are electrode wirings.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板(1)に反対導電型ウ
エル(15)を形成する工程、 該反対導電型ウエル(15)内に一導電型不純物をイオン
注入手段を用い選択的にカウンタドープして該反対導電
型ウエル(15)よりも低キャリア濃度の第1の反対導電
型領域(16)を形成する工程、 反対導電型不純物をイオン注入して該第1の反対導電型
領域(16)の表面部に該第1の反対導電型領域(16)よ
り高キャリア濃度で且つ該反対導電型ウエル(15)より
も低キャリア濃度の第2の反対導電型領域(17)を形成
する工程、 該第2の反対導電型領域17を表面部に有する該第1の反
対導電型領域(16)上にゲート絶縁膜(4)を介してゲ
ート電極(5)を形成する工程、 該ゲート電極(5)をマスクにして一導電型不純物をイ
オン注入し該第2の反対導電型領域(17)を表面部に有
する該第1の反対導電型領域(16)内に対向する第1、
第2の一導電型領域(6n)、(7n)を形成する工程を有
することを特徴とする半導体装置の製造方法。
1. A step of forming an opposite conductivity type well (15) in a semiconductor substrate (1) of one conductivity type, wherein a impurity of one conductivity type is selectively countered in the opposite conductivity type well (15) by using ion implantation means. A step of doping to form a first opposite conductivity type region (16) having a carrier concentration lower than that of the opposite conductivity type well (15), ion-implanting opposite conductivity type impurities to form the first opposite conductivity type region ( A second opposite conductivity type region (17) having a higher carrier concentration than the first opposite conductivity type region (16) and a lower carrier concentration than the opposite conductivity type well (15) is formed on the surface portion of 16). Forming a gate electrode (5) via a gate insulating film (4) on the first opposite conductivity type region (16) having the second opposite conductivity type region 17 on the surface thereof; Using the electrode (5) as a mask, impurities of one conductivity type are ion-implanted and the second opposite conductivity is obtained. First opposite the first opposite conductivity type region (16) in having a region (17) in the surface portion,
A method of manufacturing a semiconductor device, comprising the step of forming second one-conductivity type regions (6n) and (7n).
JP60194511A 1985-09-03 1985-09-03 Method for manufacturing semiconductor device Expired - Fee Related JPH0770605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60194511A JPH0770605B2 (en) 1985-09-03 1985-09-03 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194511A JPH0770605B2 (en) 1985-09-03 1985-09-03 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6254460A JPS6254460A (en) 1987-03-10
JPH0770605B2 true JPH0770605B2 (en) 1995-07-31

Family

ID=16325743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194511A Expired - Fee Related JPH0770605B2 (en) 1985-09-03 1985-09-03 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0770605B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732093B2 (en) * 1988-11-09 1998-03-25 セイコーインスツルメンツ株式会社 Semiconductor device and manufacturing method thereof
JP2837821B2 (en) * 1994-04-15 1998-12-16 インターナショナル・ビジネス・マシーンズ・コーポレイション Semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117587A (en) * 1976-03-30 1977-10-03 Nec Corp Insulating gate type field effect semiconductor device
DE2813566A1 (en) * 1977-04-01 1978-10-05 Nat Semiconductor Corp MOSFET combining integrated circuit - has substrate of given specific resistance and impurity zones for MOSFETs of concentration and depletion type
JPS58124269A (en) * 1982-01-21 1983-07-23 Nec Corp Complementary type insulated gate field effect semiconductor device
JPS59200459A (en) * 1983-04-28 1984-11-13 Toshiba Corp Complementary type semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPS6254460A (en) 1987-03-10

Similar Documents

Publication Publication Date Title
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
JP2619872B2 (en) Lateral transistor and method of manufacturing semiconductor integrated circuit having lateral transistor
US3821781A (en) Complementary field effect transistors having p doped silicon gates
US4737471A (en) Method for fabricating an insulated-gate FET having a narrow channel width
US4799098A (en) MOS/bipolar device with stepped buried layer under active regions
US6700144B2 (en) Semiconductor device and method for manufacturing the same
US4484211A (en) Oxide walled emitter
EP0481153A1 (en) Process for the accomplishment of power MOS transistors with vertical current flow
US3865654A (en) Complementary field effect transistor having p doped silicon gates and process for making the same
US3883372A (en) Method of making a planar graded channel MOS transistor
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
US5128739A (en) MIS type semiconductor device formed in a semiconductor substrate having a well region
KR920008422B1 (en) Semiconductor device
JPH0770605B2 (en) Method for manufacturing semiconductor device
JPS6255309B2 (en)
JPH04179160A (en) Semiconductor device
JPS638623B2 (en)
JPH0441502B2 (en)
US5008724A (en) Semiconductor device
JP2886186B2 (en) Semiconductor device
JP3424146B2 (en) Semiconductor device and manufacturing method thereof
JP2776891B2 (en) Semiconductor integrated circuit device
JP2572658B2 (en) Manufacturing method of intelligent power semiconductor device
JP3272596B2 (en) Semiconductor device and manufacturing method thereof
JPS5864064A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees