JPH0770440B2 - Chip solid electrolytic capacitor - Google Patents

Chip solid electrolytic capacitor

Info

Publication number
JPH0770440B2
JPH0770440B2 JP31216386A JP31216386A JPH0770440B2 JP H0770440 B2 JPH0770440 B2 JP H0770440B2 JP 31216386 A JP31216386 A JP 31216386A JP 31216386 A JP31216386 A JP 31216386A JP H0770440 B2 JPH0770440 B2 JP H0770440B2
Authority
JP
Japan
Prior art keywords
lead wire
anode lead
capacitor
solid electrolytic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31216386A
Other languages
Japanese (ja)
Other versions
JPS63164421A (en
Inventor
功 入蔵
康博 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31216386A priority Critical patent/JPH0770440B2/en
Publication of JPS63164421A publication Critical patent/JPS63164421A/en
Publication of JPH0770440B2 publication Critical patent/JPH0770440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Thermistors And Varistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 タンタル固体電解コンデンサは小型,大容量であるとい
う特徴を有しており、最近の電子機器の小型化の動向に
は非常に適したコンデンサであり最近は特にチップタイ
プの需要が旺盛であり、民生機器は勿論のこと自動車,
コンピュータへと需要は拡大しつつある。本発明は、こ
の民生用及び産業用電子機器用に使用される小型のチッ
プ状固体電解コンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field Tantalum solid electrolytic capacitors are characterized by their small size and large capacity, and are very suitable for the recent trend toward miniaturization of electronic devices. In particular, there is a strong demand for chip-type products, and not only consumer equipment but also automobiles,
Demand for computers is expanding. The present invention relates to a small chip-shaped solid electrolytic capacitor used for consumer and industrial electronic devices.

従来の技術 これまでの、タンタルチップ状固体電解コンデンサは第
4図に示す様に、断面が円形状の陽極導出線1を具備し
たタンタルアルミニウムなどの弁作用金属を多孔質電極
体2として陽極導出線1には何の加工も加えずに、陽極
導出線1を含め電極体2の表面に誘電体性の酸化皮膜3
を形成させ、さらにこの表面に二酸化マンガンなどの電
解質層4を形成させ、順次カーボン層5、陰極層6など
を形成させてコンデンサ素子とし、このコンデンサ素子
の陰極導出線1に溶接などの手段により第4図のような
形状の板状陰極端子7を接続し、続いてハンダ又は導電
性接着剤8等で第4図のような形状の陰極端子9を接続
し、その後、外装樹脂10によりモールドして互いに反対
方向に両端子を引き出すと共に、端子をコンデンサ本体
の下方向に向かって端面及び底面に沿って内側に折り曲
げ加工してチップ状固体電解コンデンサとしていた。
2. Description of the Related Art As shown in FIG. 4, the conventional tantalum chip solid electrolytic capacitor has a porous metal electrode body 2 and a valve action metal such as tantalum aluminum having a circular cross section. No processing was applied to the wire 1, and the dielectric oxide film 3 was formed on the surface of the electrode body 2 including the anode lead wire 1.
And an electrolyte layer 4 of manganese dioxide or the like is further formed on the surface thereof to form a carbon layer 5, a cathode layer 6 and the like to form a capacitor element, and the cathode lead wire 1 of the capacitor element is welded to the capacitor element by means such as welding. A plate-shaped cathode terminal 7 having a shape as shown in FIG. 4 is connected, and then a cathode terminal 9 having a shape as shown in FIG. Then, both terminals are pulled out in opposite directions, and the terminals are bent inward toward the lower side of the capacitor body along the end face and the bottom face to form a chip solid electrolytic capacitor.

発明が解決しようとする問題点 然しながら、このような従来の構成では、陽極導出線を
陽極端子に溶接によって接続したとき、コンデンサ素子
が上下に頭を振り、陽極端子と必ずしも並行にならずに
素子が上側又は下側に傾くことが多いため、即ち陽極,
陰極の両端子の水平面が同一水平面に精度よく出ていな
いため、両端子を金型にはさみこんでセットしてトラン
スファーモールド方式により樹脂外装を行なうとき、コ
ンデンサ素子の陽極導出線の引だし根本部に機械的スト
レスが加わり、コンデンサの漏れ電流を増大させ、製造
歩留りを悪くする問題点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in such a conventional configuration, when the anode lead wire is connected to the anode terminal by welding, the capacitor element shakes its head up and down and is not necessarily parallel to the anode terminal. Often tilts upwards or downwards, that is, the anode,
Since the horizontal surfaces of both terminals of the cathode are not accurately projected on the same horizontal surface, when setting both terminals by sandwiching them in the mold and applying resin molding by the transfer molding method, the lead-out root of the capacitor element anode lead wire There was a problem that mechanical stress was applied to the capacitor, the leakage current of the capacitor was increased, and the manufacturing yield was deteriorated.

本発明はこのような問題点を解決するもので、コンデン
サ素子にストレスの加わるのを防止する構成にし、製造
歩留りの高いチップ状固体電解コンデンサを得ることを
目的とする。
The present invention solves such a problem, and an object of the present invention is to provide a chip-shaped solid electrolytic capacitor having a structure that prevents stress from being applied to a capacitor element and having a high manufacturing yield.

問題点を解決するための手段 この問題点を解決するために本発明は、コンデンサ素子
と陽極端子の間の陽極導出線の一部に凹部を設けて厚さ
の薄い、抗張力の小さい弱い部分をコンデンサ本体の上
下方向面に対して並行に形成するものである。そしてこ
の凹部の厚さを線径の1/2以下にするものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a recess in a part of an anode lead wire between a capacitor element and an anode terminal to form a weak portion having a small thickness and a small tensile strength. It is formed in parallel with the vertical surface of the capacitor body. Then, the thickness of the recess is set to be 1/2 or less of the wire diameter.

作 用 このような構成にすることにより、陽極導出線を陽極端
子に溶接によって接続したとき、コンデンサ素子と該陽
極端子とが並行にならずに上側又は下側に傾くことがあ
っても、即ち両端子の水平面が同一水平面に精度よく出
ていなくても、上下方向に容易に曲る抗張力の小さい凹
部が上下方向から加わる物理的歪みを吸収し陽極導出線
の根本部に加わるストレスを防止してコンデンサ素子の
損傷を防止することができる。
Operation With such a structure, when the anode lead wire is connected to the anode terminal by welding, even if the capacitor element and the anode terminal are not parallel to each other and may tilt upward or downward, that is, Even if the horizontal planes of both terminals do not appear accurately on the same horizontal plane, the concave portion with small tensile strength that bends easily in the vertical direction absorbs physical strain applied from the vertical direction and prevents stress applied to the root of the anode lead wire. Therefore, damage to the capacitor element can be prevented.

実施例 以下、本発明の一実施例を示す第1図〜第3図の図面を
用いて説明する。なお、第1図〜第3図において、第4
図に示す部分と同一箇所については同一番号を付してい
る。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings of FIGS. In addition, in FIG. 1 to FIG.
The same parts as those shown in the figure are designated by the same reference numerals.

第1図に示すように、タンタル金属粉末100mgに断面が
円形の線径0.3mmのタンタル線を埋設しプレスし、その
後一般的なほうほうで焼結してタンタルの陽極導出線1
を具備した6V 47uF用の多孔質の電極体2を得、陽極導
出線1の引だし根本部11から約1.0mmの上下側の位置
に、プレスにより上下にほぼ同形の凹部を形成するよう
に圧延幅0.3mm,圧延厚さが0.1mmの圧延部12を形成し
た。その後、陽極酸化により圧延部12も含めて電極体2
の表面に一般的な方法により誘電体性の酸化皮膜3を形
成させ、さらにこの上面に二酸化マンガンなどの電解質
層4を形成させ、順次カーボン層5、陰極層6などを形
成して、コンデンサ素子とした。次に陽極端子7の溶接
部13とコンデンサ素子との間に陽極導出線1の圧延部12
を配置させかつ凹部がコンデンサ本体の上面,下面と並
行関係に位置するよう陽極端子7と陽極導出線1を接続
し、続いて陰極端子9にコンデンサ素子の陰極部をハン
ダ又は導電性接着剤8等で接続し、その後、互いに反対
方向の両端に両端子が引出されるようにトランスファー
モールド金型にセットして外装樹脂10によりモールド外
装し、端子をコンデンサ本体の下方向に向かって端面及
び底面に沿って内側に折り曲げ加工してチップ状固体電
解コンデンサを得た。
As shown in FIG. 1, a tantalum wire having a circular cross section with a diameter of 0.3 mm is embedded in 100 mg of tantalum metal powder, pressed, and then sintered by a general method to obtain a tantalum anode lead wire 1.
A porous electrode body 2 for 6V 47uF having 6V is obtained, and at the upper and lower positions of about 1.0 mm from the lead-out base portion 11 of the anode lead-out wire 1, press-shaped recesses of substantially the same shape are formed. A rolling part 12 having a rolling width of 0.3 mm and a rolling thickness of 0.1 mm was formed. After that, the electrode body 2 including the rolling part 12 is anodized.
A dielectric oxide film 3 is formed on the surface of the capacitor by a general method, an electrolyte layer 4 of manganese dioxide or the like is further formed on the upper surface thereof, and a carbon layer 5, a cathode layer 6 and the like are sequentially formed to form a capacitor element. And Next, between the welded portion 13 of the anode terminal 7 and the capacitor element, the rolled portion 12 of the anode lead wire 1 is provided.
The anode terminal 7 and the anode lead-out wire 1 so that the recess is located in parallel with the upper and lower surfaces of the capacitor body, and then the cathode portion of the capacitor element is connected to the cathode terminal 9 with solder or conductive adhesive 8 Etc., and then set them in a transfer mold so that both terminals are pulled out at opposite ends, and mold-encapsulate with the exterior resin 10. Was bent inward to obtain a chip solid electrolytic capacitor.

この陽極導出線の抗張力の小さい部分の形成は陽極酸化
を行なう前に圧延加工などにより行なわなければならな
い。陽極酸化により誘電体性酸化被膜を形成した後や、
二酸化マンガンなどの電解質層を形成した後の、即ちコ
ンデンサ素子にしてから圧延加工を行なうと加工時の衝
撃やストレスが根本部に加わり漏れ電流を増大させるか
らである。
The formation of the portion of the anode lead wire having a small tensile strength must be performed by rolling or the like before anodizing. After forming a dielectric oxide film by anodic oxidation,
This is because when rolling is performed after forming the electrolyte layer of manganese dioxide or the like, that is, after forming the capacitor element, impact and stress at the time of working are applied to the root portion to increase the leakage current.

この圧延部12の厚さは各製造工程で支障の無いかぎり薄
くして上下方向に対して抗張力を小さくするのが望まし
いが、陽極導出線1の引出し根本部11から陽極端子7の
溶接点迄の距離が4mm以内において圧延幅0.15〜1.0mmの
範囲では圧延部12の厚さは陽極導出線1の直径の1/2以
下であれば上下方向より加わる歪みを十分吸収できる。
このことについて、実験的に確認をした結果を第3図に
示す。これは6V 47uFのコンデンサ素子と溶接部の間の
陽極導出線を90度折り曲げたときの漏れ電流の変化を測
定したもので、図から理解できるように圧延部の厚さが
薄くなるに従い漏れ電流の増加が少なくなり、0.15mm
〔線径の1/2〕以下から漏れ電流の増加は全く無くな
る。即ち外部からの上下方向に加わる機械的ストレスを
この圧延部が吸収してコンデンサ素子根本部に加わる力
を防止していることになる。
It is desirable that the thickness of the rolled portion 12 is as thin as possible in each manufacturing process so as not to hinder the tensile strength in the vertical direction. However, from the drawing root 11 of the anode lead wire 1 to the welding point of the anode terminal 7. When the rolling distance is within 4 mm and the rolling width is in the range of 0.15 to 1.0 mm, the strain applied in the vertical direction can be sufficiently absorbed if the thickness of the rolled portion 12 is 1/2 or less of the diameter of the anode lead wire 1.
About this, the result confirmed experimentally is shown in FIG. This is a measurement of the change in leakage current when the anode lead wire between the 6V 47uF capacitor element and the weld is bent 90 degrees.As you can see from the figure, the leakage current decreases as the rolled part becomes thinner. Increase of 0.15mm
From [1/2 of wire diameter] or less, there is no increase in leakage current. That is, this rolling part absorbs the mechanical stress applied from the outside in the vertical direction and prevents the force applied to the root part of the capacitor element.

又、この0.1mmの圧延部を設けた6V 47uFのコンデンサ素
子をエポキシ樹脂にてモールド外装したものは、従来の
構造のものが不良率10%であったのに比べて、1.2%の
不良率に改善できた。
In addition, the 6V 47uF capacitor element with the 0.1 mm rolled part molded with epoxy resin has a defective rate of 1.2% compared to the conventional structure with a defective rate of 10%. I was able to improve.

発明の効果 以上のように本発明によれば、次のような効果が得られ
る。
EFFECTS OF THE INVENTION As described above, according to the present invention, the following effects can be obtained.

1 製造工程で加わるストレスを吸収すると同時に、ト
ランスファーモールド成形時の上下方向から加わる機械
的ストレスを吸収し歩留りを大幅に向上させることがで
きる。
1 At the same time as absorbing the stress applied in the manufacturing process, the mechanical stress applied in the vertical direction during transfer molding can be absorbed, and the yield can be greatly improved.

2 熱衝撃に強い安定なチップコンデンサを得ることが
できる。
2 It is possible to obtain a stable chip capacitor that is resistant to thermal shock.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例によるチップ状固体電解コン
デンサの断面図、第2図は同コンデンサの要部の拡大斜
視図、第3図は同コンデンサの効果を説明するための特
性図、第4図は従来のチップ状固体電解コンデンサの断
面図である。 1……陽極導出線、2……電極体、3……酸化皮膜、4
……電解質層、5……カーボン層、6……導電体層、7
……陽極端子、9……陰極端子、10……外装樹脂、11…
…根本部、12……圧延部、13……溶接部。
FIG. 1 is a sectional view of a chip solid electrolytic capacitor according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of a main part of the capacitor, and FIG. 3 is a characteristic diagram for explaining the effect of the capacitor. FIG. 4 is a sectional view of a conventional chip solid electrolytic capacitor. 1 ... Anode lead wire, 2 ... Electrode body, 3 ... Oxide film, 4
...... Electrolyte layer, 5 ...... Carbon layer, 6 ...... Conductor layer, 7
…… Anode terminal, 9 …… Cathode terminal, 10 …… Exterior resin, 11…
… Root part, 12 …… Rolling part, 13 …… Welding part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陽極導出線を有する電極体の表面に誘電体
性の酸化皮膜を形成すると共に、この酸化皮膜上に電解
質層,陰極層を形成してコンデンサ素子とし、このコン
デンサ素子を外装樹脂によりモールド外装してコンデン
サ本体とすると共に、前記陽極導出線及び陰極層に接続
した陽極端子及び陰極端子を外装樹脂より外部に引出し
てコンデンサ本体の外面に沿って折曲することにより構
成され、かつ前記陽極導出線の根本部から4.0mm以内の
位置に、陽極導出線の直径のほぼ1/2以下の厚さになる
ような凹部を形成し、この凹部を含めて電極体の表面に
誘電体性の酸化皮膜を形成すると共に、前記陽極導出線
に陽極端子をこれらの溶接部とコンデンサ素子との間に
陽極導出線の凹部が配置されかつ凹部がコンデンサ本体
の上側面又は下側面と並行関係に位置するように溶接に
より接続したチップ状固体電解コンデンサ。
Claim: What is claimed is: 1. A dielectric oxide film is formed on the surface of an electrode body having an anode lead wire, and an electrolyte layer and a cathode layer are formed on the oxide film to form a capacitor element. And molded into a capacitor main body by means of, and the anode lead wire and the cathode terminal connected to the cathode layer and the cathode terminal are drawn out from the exterior resin and bent along the outer surface of the capacitor main body, and A recess is formed at a position within 4.0 mm from the root of the anode lead wire so that the thickness thereof is approximately 1/2 or less of the diameter of the anode lead wire, and a dielectric is formed on the surface of the electrode body including the recess. A positive oxide wire is formed, and the anode lead wire is provided with an anode terminal, and a concave portion of the anode lead wire is arranged between the welded portion and the capacitor element, and the concave portion forms an upper surface or a lower surface of the capacitor body. Chip solid electrolytic capacitor connected by welding so as to be positioned in line relationship.
JP31216386A 1986-12-26 1986-12-26 Chip solid electrolytic capacitor Expired - Lifetime JPH0770440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31216386A JPH0770440B2 (en) 1986-12-26 1986-12-26 Chip solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31216386A JPH0770440B2 (en) 1986-12-26 1986-12-26 Chip solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS63164421A JPS63164421A (en) 1988-07-07
JPH0770440B2 true JPH0770440B2 (en) 1995-07-31

Family

ID=18025995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31216386A Expired - Lifetime JPH0770440B2 (en) 1986-12-26 1986-12-26 Chip solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0770440B2 (en)

Also Published As

Publication number Publication date
JPS63164421A (en) 1988-07-07

Similar Documents

Publication Publication Date Title
JP3920670B2 (en) Solid electrolytic capacitor
US20050162816A1 (en) Solid electrolytic capacitor and method for manufacturing the same
US10256046B2 (en) Solid electrolytic capacitor and method for making the same
US20090237865A1 (en) Solid electrolytic capacitor and method for manufacturing same
US6791822B2 (en) Solid electrolytic capacitor
US20060126273A1 (en) Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP4588630B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP3557564B2 (en) Multilayer solid electrolytic capacitors
JP2615654B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
US8753409B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0770440B2 (en) Chip solid electrolytic capacitor
CN100521011C (en) Capacitor element, method for manufacturing the same and solid electrolytic capacitor
JPH05234828A (en) Manufacture of solid electrolytic capacitor
US8570712B2 (en) Solid electrolytic capacitor
US20220270828A1 (en) Solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
US11062852B2 (en) Solid electrolytic capacitor having an anode terminal and a cathode terminal formed from a single metal plate and method for manufacturing same
US8503166B2 (en) Solid electrolytic capacitor
JPS607472Y2 (en) solid electrolytic capacitor
JPS61278124A (en) Manufacture of solid electrolytic capacitor
JPS5910746Y2 (en) Chip type solid electrolytic capacitor
JPS5812436Y2 (en) Denkai capacitor
JP2549702B2 (en) Solid electrolytic capacitor
JPH0220822Y2 (en)
JP2004207686A (en) Chip-type solid-state electrolytic capacitor and manufacturing method therefor