JPH0769613B2 - Cation type electrodeposition coating method for printed wiring photoresist - Google Patents

Cation type electrodeposition coating method for printed wiring photoresist

Info

Publication number
JPH0769613B2
JPH0769613B2 JP63109482A JP10948288A JPH0769613B2 JP H0769613 B2 JPH0769613 B2 JP H0769613B2 JP 63109482 A JP63109482 A JP 63109482A JP 10948288 A JP10948288 A JP 10948288A JP H0769613 B2 JPH0769613 B2 JP H0769613B2
Authority
JP
Japan
Prior art keywords
resin
weight
electrodeposition coating
parts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63109482A
Other languages
Japanese (ja)
Other versions
JPH01279251A (en
Inventor
功 小林
健治 瀬古
直純 岩沢
雄 赤木
寿夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Mitsubishi Electric Corp
Original Assignee
Kansai Paint Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd, Mitsubishi Electric Corp filed Critical Kansai Paint Co Ltd
Priority to JP63109482A priority Critical patent/JPH0769613B2/en
Priority to KR1019890003940A priority patent/KR940008381B1/en
Priority to EP19890105457 priority patent/EP0335330B1/en
Priority to DE89105457T priority patent/DE68907101T2/en
Priority to AU31735/89A priority patent/AU613463B2/en
Priority to US07/329,636 priority patent/US4898656A/en
Priority to CA 594851 priority patent/CA1337864C/en
Publication of JPH01279251A publication Critical patent/JPH01279251A/en
Publication of JPH0769613B2 publication Critical patent/JPH0769613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Circuit Boards (AREA)
  • Materials For Photolithography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプリント配線フオトレジスト用カチオン型電着
塗装方法に関し、さらに詳しくは銅張積層板に電着塗装
して表面粘着性のない平滑な塗膜を形成し、且つネガ又
はポジフイルムを通して紫外線等の活性光線で容易に硬
化する塗膜を形成することが可能なプリント配線フオト
レジスト用2コートカチオン型電着塗装方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a cationic electrodeposition coating method for printed wiring photoresists, and more particularly, to a copper-clad laminate coated by electrodeposition to obtain a smooth surface without surface tackiness. The present invention relates to a two-coat cationic electrodeposition coating method for a printed wiring photoresist, which can form a coating film and can be easily cured by an actinic ray such as ultraviolet ray through a negative or positive film.

[従来の技術] 従来から電着塗装によつて得られる光硬化性塗膜を利用
して、銅張積層板の表面に現像可能でかつ紫外線硬化性
に優れた均一な塗膜を形成することができるプリント配
線フオトレジストが得られている。しかし、このフオト
レジストの場合1コート電着塗装によつて得られるの
で、塗膜とネガ又はポジフイルムと密着露光する際両者
がくつつかないようにするためフオトレジストを構成す
る樹脂のガラス転移温度を高くする必要がある。
[Prior Art] To form a uniform film that is developable and excellent in UV curability on the surface of a copper clad laminate by using a photocurable film that has been conventionally obtained by electrodeposition coating. A printed wiring photoresist that can be used is obtained. However, in the case of this photoresist, since it can be obtained by 1-coat electrodeposition coating, the glass transition temperature of the resin constituting the photoresist is set so as to prevent the coating film and the negative or positive film from being caught in contact during exposure. It needs to be high.

[発明が解決しようとする問題] 前記したように光硬化性塗膜を1コート電着塗装方法で
形成する場合、使用する樹脂のガラス転移温度を高くし
ているが他方電着時に塗膜抵抗が大きくなり塗膜を厚く
することができなかったり、露光時に連鎖移動が起こり
にくく紫外線による塗膜の硬化性が悪くなったりする問
題がある。また、密着露光する際、塗膜とフイルムがく
っつくようなガラス転移温度の低い樹脂を用いてフオト
レジストを電着塗装によって形成した後、ポリビニルア
ルコール水溶液や水溶性アクリル樹脂水溶液をその上に
塗装して表面を粘着性のない塗膜(カバーコート)で覆
う方法がある。しかし、この方法においてもスルーホー
ルのある銅張積層板を用いる場合、スルーホール内に溜
まりができ紫外線の透過が悪くなってスルーホール内の
塗膜が硬化しない、また基板のエツヂ部にカバーコート
の溜りができ、乾燥不良を起こす等の問題がある。これ
らの問題点を解決するための技術手段の出現が望まれて
いるのが実情である。
[Problems to be Solved by the Invention] As described above, when the photocurable coating film is formed by the one-coat electrodeposition coating method, the glass transition temperature of the resin used is increased, while the film resistance during electrodeposition is increased. However, there is a problem in that the coating film cannot be thickened, and chain transfer does not easily occur during exposure, and the curability of the coating film due to ultraviolet rays deteriorates. In addition, when contact exposure is performed, a photoresist is formed by electrodeposition coating using a resin having a low glass transition temperature such that the coating film and the film stick to each other, and then a polyvinyl alcohol aqueous solution or a water-soluble acrylic resin aqueous solution is applied on it. There is a method of covering the surface with a non-adhesive coating film (cover coat). However, even in this method, when a copper clad laminate with through holes is used, the coating film inside the through holes does not cure due to the accumulation of ultraviolet rays in the through holes and the deterioration of the ultraviolet light transmission. However, there is a problem that the water is accumulated and poor drying occurs. In reality, the advent of technical means for solving these problems is desired.

[問題点を解決するための手段] 本発明者は、前記の問題点を解決するための技術手段を
見い出すべく鋭意研究を重ねた結果、前記の問題点を解
決する新規の電着塗装方法をみい出し本発明を完成する
に至った。
[Means for Solving Problems] The inventors of the present invention have conducted extensive studies to find a technical means for solving the above problems, and as a result, have found a new electrodeposition coating method for solving the above problems. The present invention has been completed.

かくして、本発明に従えば、銅張積層板上に、光硬化性
カチオン電着塗料組成物(A)を電着塗装した後、さら
にその塗膜上に、ガラス転移温度20℃以上のカチオン型
水溶性または水分散性樹脂を主成分とするカチオン電着
塗料組成物(B)を電着塗装することを特徴とするプリ
ント配線フオトレジスト用カチオン型電着塗装方法が提
供される。
Thus, according to the present invention, after the photocurable cationic electrodeposition coating composition (A) is electrodeposited on a copper clad laminate, the coating film is further coated with a cationic type resin having a glass transition temperature of 20 ° C. or higher. Provided is a cationic electrodeposition coating method for a printed wiring photoresist, which comprises electrodepositing a cationic electrodeposition coating composition (B) containing a water-soluble or water-dispersible resin as a main component.

本発明の方法における光硬化性カチオン電着塗料組成物
(A)は、基本的にはカチオン型水溶性又は水分散性の
重合性不飽和樹脂及び光重合開始剤を主成分として含有
する組成物である。該組成物に使用される重合性不飽和
樹脂は、カチオン性基を含む水溶性又は水分散性樹脂で
あれば特に制限されることがなく、その代表例を例示す
れば下記(1)〜(5)のものを挙げることができる。
The photocurable cationic electrodeposition coating composition (A) in the method of the present invention is basically a composition containing a cationic water-soluble or water-dispersible polymerizable unsaturated resin and a photopolymerization initiator as main components. Is. The polymerizable unsaturated resin used in the composition is not particularly limited as long as it is a water-soluble or water-dispersible resin containing a cationic group, and typical examples thereof will be shown in the following (1) to ( 5) can be mentioned.

(1) 一分子中に重合性不飽和結合および水酸基を有
する化合物とジイソシアネート系化合物との反応物を、
樹脂骨格中に水酸基及び3級アミノ基を有するアクリル
樹脂に付加させてなる重合性不飽和樹脂: 一分子中に重合性不飽和結合および水酸基を有する化合
物としては、たとえば2−ヒドロキシエチルアクリレー
ト、2−ヒドロキシエチルメタクリレート、2−ヒドロ
キシプロピルアクリレート、N−メチロールアクリルア
ミド、アリルアルコール、メタアリルアルコールなどが
包含され、ジイソシアネート系化合物としてはたとえば
トリレンジイソシアネート、キシレンジイソシアネー
ト、ヘキサメチレンジイソシアネート、リジンジイソシ
アネートなど挙げられる。
(1) A reaction product of a compound having a polymerizable unsaturated bond and a hydroxyl group in one molecule with a diisocyanate compound,
Polymerizable unsaturated resin obtained by adding to an acrylic resin having a hydroxyl group and a tertiary amino group in the resin skeleton: Examples of compounds having a polymerizable unsaturated bond and a hydroxyl group in one molecule include 2-hydroxyethyl acrylate and 2 -Hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, N-methylol acrylamide, allyl alcohol, methallyl alcohol and the like are included, and examples of the diisocyanate compound include tolylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate and lysine diisocyanate.

アクリル樹脂骨格への水酸基の導入は上記した一分子中
に重合性不飽和結合および水酸基を有する化合物を共重
合成分として用いることによって付与される。また、ア
クリル樹脂骨格への3級アミノ基の導入は、共重合成分
として下記一般式 式中、R1は水素原子またはメチル基を表わし、R2はC
1〜8のアルキレン基を表わし、R3及びR4はそれぞれC
1〜4のアルキル基を表わす、 で示されるジアルキルアミノアルキル(メタ)アクリレ
ート(例えば、ジメチルアミノエチル(メタ)アクリレ
ート、ジエチルアミノエチル(メタ)アクリレート、ジ
メチルアミノプロピル(メタ)アクリレートなど)など
の3級アミノ基を有する重合性不飽和単量体を用いるこ
とによって行なわれる。
The introduction of a hydroxyl group into the acrylic resin skeleton is imparted by using the above-mentioned compound having a polymerizable unsaturated bond and a hydroxyl group in one molecule as a copolymerization component. Further, the introduction of a tertiary amino group into the acrylic resin skeleton can be achieved by using the following general formula as a copolymerization component. In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents C
1 to 8 represents an alkylene group, and R 3 and R 4 are each C
A tertiary alkyl group having 1 to 4 alkyl groups such as dialkylaminoalkyl (meth) acrylates (for example, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, etc.) It is carried out by using a polymerizable unsaturated monomer having an amino group.

(2) 一分子中に2個以上のエポキシ基を有するエポ
キシ樹脂のエポキシ基を部分的に2級アミノ基を含む化
合物と反応させたのち、残余のエポキシ基を(メタ)ア
クリル酸などの重合性不飽和モノカルボン酸または前記
(1)で例示した一分子中に重合性不飽和基と水酸基を
有する化合物と反応させてなる3級アミノ基含有不飽和
樹脂: エポキシ樹脂としては例えば、一分子中に重合性不飽和
基とグリシジル基を持つ化合物と他の重合性不飽和モノ
マーとの共重合体;ビスフエノールA、ビスフエノール
Fなどポリフエノールのジグリシジルエーテルまたはそ
れらとポリフエノール、ポリエステル、ポリエーテルポ
リオールなどとの反応物;ノボラツクフエノール、ノボ
ラツククレソール型エポキシ樹脂、脂肪族ポリエポキシ
樹脂、脂環式ポリエポキシ樹脂またはそれらのポリエス
テル、ポリエーテルポリオールなどによる変成体または
それらの混合物;などが挙げられる。
(2) After reacting an epoxy group of an epoxy resin having two or more epoxy groups in one molecule with a compound partially containing a secondary amino group, the remaining epoxy group is polymerized with (meth) acrylic acid or the like. Unsaturated monocarboxylic acid or a tertiary amino group-containing unsaturated resin obtained by reacting with a compound having a polymerizable unsaturated group and a hydroxyl group in one molecule exemplified in (1) above: As an epoxy resin, for example, one molecule A copolymer of a compound having a polymerizable unsaturated group and a glycidyl group with another polymerizable unsaturated monomer; a diglycidyl ether of polyphenol such as bisphenol A and bisphenol F, or a polyphenol, polyester, poly Reaction products with ether polyols, etc .; novolak phenol, novolak cresol type epoxy resin, aliphatic polyepoxy resin, alicyclic Polyepoxy resins or their polyester, such as by modified product polyether polyol or mixtures thereof; and the like.

上記2級アミノ基を含む化合物としては、下記一般式 式中、R1及びR2はそれぞC1〜18のアルキル基又は芳香
族基を表わす、 で示されるアルキルアミン若しくは芳香族アミン(例え
ばジメチルアミン、ジエチルアミン、ジ−n−プロピル
アミン、ジフエニルアミンなど);また、下記一般式 式中、R1は前記の意味を表わし、nは1〜18の整数を表
わし、mは0〜20の整数を表わす、 で示されるアミン(例えばn−メチルエタノールアミ
ン、ジエタノールアミン、ジイソプロパノールアミンな
ど);などを挙げることができる。
The compound containing a secondary amino group is represented by the following general formula: In the formula, each of R 1 and R 2 represents a C 1-18 alkyl group or an aromatic group, or an alkylamine or an aromatic amine represented by: (for example, dimethylamine, diethylamine, di-n-propylamine, diphenylamine, etc.) ); Also, the following general formula In the formula, R 1 represents the above meaning, n represents an integer of 1 to 18 and m represents an integer of 0 to 20 (eg, n-methylethanolamine, diethanolamine, diisopropanolamine, etc.) ); And the like.

(3) 一分子中に重合性不飽和基とグリシジル基とを
持つ化合物(例えばグリシジル(メタ)アクリレート)
と、一分子中に重合性不飽和基と3級アミノ基とを持つ
化合物(例えば、N,N−ジメチルアミノエチル(メタ)
アクリレート、N,N−ジエチルアミノエチル(メタ)ア
クリレート、N,N−ジメチルアミノプロピル(メタ)ア
クリレートなど)を他の重合性モノマーと共重合して得
られる樹脂に(メタ)アクリル酸などの重合性不飽和基
を持つモノカルボン酸または前記(1)で例示した一分
子中に重合性不飽和基と水酸基をもつ化合物とを反応さ
せてなる3級アミノ基含有不飽和樹脂; (4) 前記(2)で例示したエポキシ樹脂のエポキシ
基を部分的に前記(1)及び(2)で例示した一分子中
に重合性不飽和とカルボキシル基または水酸基を有する
化合物と反応させ、次いで残余のエポキシ基を3級アミ
ノ化合物、チオエーテル、ホスフインなどとカルボン酸
とによりオニウム塩化することにより得られるオニウム
塩基含有不飽和樹脂; (5) 前記(4)に於いてエポキシ基を部分的にエス
テル化した後にオニウム塩化する代わりに、一分子中に
重合性不飽和基とカルボキシル基又は水酸基を有する化
合物を前記した3級アミノ基含有化合物などのオニウム
塩形成化合物または要すればカルボン酸とをエポキシ樹
脂に同時に反応せしめて得られるオニウム塩基含有不飽
和樹脂;など。
(3) A compound having a polymerizable unsaturated group and a glycidyl group in one molecule (for example, glycidyl (meth) acrylate)
And a compound having a polymerizable unsaturated group and a tertiary amino group in one molecule (for example, N, N-dimethylaminoethyl (meth))
Acrylic, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, etc.) are copolymerized with other polymerizable monomers to obtain resins that are polymerized with (meth) acrylic acid, etc. A tertiary amino group-containing unsaturated resin obtained by reacting a monocarboxylic acid having an unsaturated group or a compound having a polymerizable unsaturated group and a hydroxyl group in one molecule exemplified in (1) above; The epoxy group of the epoxy resin exemplified in 2) is partially reacted with a compound having a polymerizable unsaturated group and a carboxyl group or a hydroxyl group in one molecule exemplified in the above (1) and (2), and then the remaining epoxy group An onium base-containing unsaturated resin obtained by onium chloride with a tertiary amino compound, thioether, phosphine and the like and a carboxylic acid; ), A compound having a polymerizable unsaturated group and a carboxyl group or a hydroxyl group in one molecule is used instead of onium chloride after partially esterifying the epoxy group, such as a tertiary amino group-containing compound described above. An onium base-containing unsaturated resin obtained by simultaneously reacting a forming compound or, if necessary, a carboxylic acid with an epoxy resin;

これらの樹脂はそれぞれ単独で使用することがてき、ま
たは2種以上混合して使用してもよい。
These resins may be used alone or in combination of two or more.

前記(1)〜(5)に代表される如きカチオン型重合性
不飽和樹脂は、3級アミノ基及び/又はオニウム塩基含
有量が樹脂1kg当り0.2〜5モル、好ましくは0.3〜2.0モ
ル、不飽和当量が150〜3,000、好ましくは150〜1,000、
及び数平均分子量が300以上、好ましくは1,000〜30,000
であることが有利である。
The cationic type polymerizable unsaturated resin represented by the above (1) to (5) has a tertiary amino group and / or onium base content of 0.2 to 5 mol, preferably 0.3 to 2.0 mol, per 1 kg of resin. Saturation equivalent is 150 to 3,000, preferably 150 to 1,000,
And a number average molecular weight of 300 or more, preferably 1,000 to 30,000
Is advantageous.

このような不飽和樹脂において、3級アミノ基及び/又
はオニウム塩基含有量が0.2モル/kg樹脂より少なくなる
と水分散性が劣り、他方5モル/kg樹脂より多くなると
電着効率が低下し、所望の膜厚が得られなくなる傾向が
ある。また、不飽和当量が150より小さくなると塗膜形
成能が低下し、他方3,000より大きくなると硬化性が低
下する傾向があり、さらに数平均分子量約300より小さ
くなると塗膜形成能が低下するので実用上好ましくな
い。
In such an unsaturated resin, if the tertiary amino group and / or onium base content is less than 0.2 mol / kg resin, the water dispersibility is poor, and if it is more than 5 mol / kg resin, the electrodeposition efficiency is lowered, There is a tendency that a desired film thickness cannot be obtained. Further, if the unsaturated equivalent is less than 150, the coating film forming ability decreases, while if it is more than 3,000, the curability tends to decrease, and if the number average molecular weight is less than about 300, the coating film forming ability decreases. It is not preferable.

本発明の光硬化性カチオン電着塗料組成物(A)に用い
られるカチオン型重合性不飽和樹脂の未露光時のガラス
転移温度(以下、Tgという)は−50〜60℃(好ましくは
−20〜40℃)の範囲であることが有利である。Tgが−50
℃以下だと電着時の塗膜が軟かすぎて膜抵抗が小さくな
り均一な塗膜が得難く、他方、Tgが60℃以上だと逆に膜
抵抗が大きくなり厚い膜厚が得られにくいことや露光時
に連鎖移動が起りにくく感光性が悪くなる等の傾向がみ
られる。1コート目の電着塗料組成物(A)の塗布膜厚
は4〜70μm(好ましくは5〜50μm)の範囲であるこ
とが好ましい。膜厚が4μm以下にすると樹脂中の溶存
酸素や表面酸素の影響をうけやすく感光性が劣り、他
方、膜厚が70μm以上になると電着塗膜が凹凸になりや
すくなり表面の平滑性が劣るようになる。
The cationic type polymerizable unsaturated resin used in the photocurable cationic electrodeposition coating composition (A) of the present invention has an unexposed glass transition temperature (hereinafter referred to as Tg) of −50 to 60 ° C. (preferably −20). -40 ° C) is advantageous. Tg is -50
If the temperature is lower than ℃, the coating film will be too soft during electrodeposition and the film resistance will be small, making it difficult to obtain a uniform coating film. There is a tendency that it is difficult and chain transfer does not easily occur during exposure, resulting in poor photosensitivity. The coating thickness of the first coat electrodeposition coating composition (A) is preferably in the range of 4 to 70 μm (preferably 5 to 50 μm). When the film thickness is 4 μm or less, it is easily affected by dissolved oxygen and surface oxygen in the resin and the photosensitivity is poor. On the other hand, when the film thickness is 70 μm or more, the electrodeposition coating film tends to be uneven and the surface smoothness is poor. Like

他方、本発明の2コート目のカチオン電着塗料組成物
(B)に用いられる樹脂成分はカチオン型樹脂であれば
重合性不飽和樹脂または飽和樹脂のいずれでもよく、未
露光時のTgが20℃以上(好ましくは40〜120℃)である
ことが必要である。好ましくは、Tgがカチオン電着塗料
組成物(A)に用いられる不飽和樹脂のTgより少なくと
も5℃高くなるように設計するのが望ましい。電着塗料
組成物(B)に用いられる樹脂成分のTgが20℃以下にな
ると密着露光後、塗膜とフイルムがくっついてしまう欠
点があり、特に作業場の温度が高いとこの傾向が著し
い。2コート目のカチオン電着塗料組成物(B)の塗布
膜厚は0.5〜30μm(好ましくは1〜10μm)の範囲で
ある。膜厚が0.5μm以下だと1コート目の影響が表面
に出て1コート目のTgが低いと表面が粘着し、他方、30
μmをこえると膜抵抗が大きくなり塗面状態が悪くなる
傾向がある。2コートの合計膜厚としては5〜70μm
(好ましくは5〜50μm)の範囲であることが好まし
い。膜厚が5μm以下だと銅エツチング時に耐エツチン
グ性が悪くなり、70μm以上だと表面の平滑性が得られ
ない傾向がある。膜厚は感光性などを考慮して1コート
目を厚く2コート目を薄く塗布するほうが好ましい。
On the other hand, the resin component used in the second coat cationic electrodeposition coating composition (B) of the present invention may be either a polymerizable unsaturated resin or a saturated resin as long as it is a cationic type resin, and has a Tg of 20 when unexposed. It is necessary that the temperature is not lower than 0 ° C (preferably 40 to 120 ° C). Preferably, it is desirable to design the Tg to be at least 5 ° C. higher than the Tg of the unsaturated resin used in the cationic electrodeposition coating composition (A). When the Tg of the resin component used in the electrodeposition coating composition (B) is 20 ° C. or less, there is a drawback that the coating film and the film stick to each other after the contact exposure, and this tendency is remarkable especially when the temperature in the workplace is high. The coating thickness of the second coat of the cationic electrodeposition coating composition (B) is in the range of 0.5 to 30 μm (preferably 1 to 10 μm). When the film thickness is 0.5 μm or less, the influence of the first coat appears on the surface, and when the Tg of the first coat is low, the surface sticks, while on the other hand, 30
If it exceeds μm, the film resistance tends to be high and the coated surface tends to be poor. The total film thickness of 2 coats is 5 to 70 μm
It is preferably in the range of (preferably 5 to 50 μm). If the film thickness is 5 μm or less, the etching resistance during copper etching tends to be poor, and if it is 70 μm or more, the smoothness of the surface tends to be unobtainable. It is preferable that the first coat is thick and the second coat is thin in consideration of photosensitivity.

本発明の2コート目のカチオン電着塗料組成物(B)に
使用されるカチオン型水溶性又は水分散性樹脂は、カチ
オン性基を含み且つガラス転移温度が20℃以上であれば
飽和樹脂、不飽和樹脂のいずれに限定されるものでもな
く、より好ましくはアミノ基及び/又はオニウム塩基含
有量0.2〜5.0モル/kg樹脂、好ましくは0.3〜2.0モル/kg
樹脂及び数平均分子量300以上、好ましくは1,000〜30,0
00を有する樹脂である。
The cationic water-soluble or water-dispersible resin used in the second coat cationic electrodeposition coating composition (B) of the present invention is a saturated resin as long as it contains a cationic group and has a glass transition temperature of 20 ° C. or higher. It is not limited to any of unsaturated resins, more preferably an amino group and / or onium base content 0.2 to 5.0 mol / kg resin, preferably 0.3 to 2.0 mol / kg
Resin and number average molecular weight of 300 or more, preferably 1,000 to 30,0
It is a resin having 00.

カチオン型水溶性又は水分散性樹脂における不飽和樹脂
としては、例えば、電着塗料組成物(A)において述べ
た前記(1)〜(5)の樹脂から選択され、また飽和樹
脂は例えば前記(1)〜(5)の樹脂中の重合性不飽和
基すなわちエチレン性不飽和基を除いた樹脂であること
ができる。本発明においては、カチオン電着塗料組成物
(B)に用いる樹脂は不飽和樹脂であることが1コート
目の塗膜の感光性を低下させないのでより好ましい。
The unsaturated resin in the cationic water-soluble or water-dispersible resin is, for example, selected from the resins (1) to (5) described in the electrodeposition coating composition (A), and the saturated resin is, for example, It can be a resin in which the polymerizable unsaturated group, that is, the ethylenic unsaturated group, in the resin of 1) to (5) is removed. In the present invention, the resin used in the cationic electrodeposition coating composition (B) is preferably an unsaturated resin because it does not reduce the photosensitivity of the first coating film.

本発明において用いられるカチオン電着塗料組成物
(A)及び(B)には、樹脂結合剤として前記した樹脂
以外に重合性不飽和基含有樹脂(例えばエチレン性不飽
和基を含有したポリエステルアクリレート、ポリウレタ
ン樹脂、エポキシ樹脂、アクリル樹脂など)、飽和樹脂
(例えばポリエステル樹脂、ポリウレタン樹脂、エポキ
シ樹脂、アクリル樹脂など)、オリゴマー(例えばジエ
チレングリコールジ(メタ)アクリレートなど)、エチ
レン性不飽和基を1個以上含有する不飽和化合物(例え
ば、(メタ)アクリル酸エステル、エチレングリコール
ジ(メタ)アクリレート、ジビニルベンゼンなど)など
を樹脂100重量部に対して100重量部以下、好適には50重
量部以下の範囲で配合して塗膜性能を適宜調節すること
も可能である。
In the cationic electrodeposition coating compositions (A) and (B) used in the present invention, a polymerizable unsaturated group-containing resin (for example, a polyester acrylate containing an ethylenically unsaturated group, in addition to the resin described above as a resin binder, Polyurethane resin, epoxy resin, acrylic resin etc.), saturated resin (eg polyester resin, polyurethane resin, epoxy resin, acrylic resin etc.), oligomer (eg diethylene glycol di (meth) acrylate etc.), one or more ethylenically unsaturated groups Unsaturated compounds (eg, (meth) acrylic acid ester, ethylene glycol di (meth) acrylate, divinylbenzene, etc.) contained are 100 parts by weight or less, preferably 50 parts by weight or less, based on 100 parts by weight of the resin. It is also possible to properly adjust the coating performance by blending with.

本発明において重合性不飽和もしくは飽和樹脂の水分散
化または水溶化は樹脂骨格中にアミノ基が導入されてい
る場合にはアミノ基を酸(中和剤)で中和することによ
って行なわれる。中和剤としてはたとえばギ酸、酢酸、
乳酸、ヒドロキシ酢酸、酪酸等のモノカルボン酸などが
挙げられ、これらは単独または混合物として使用でき
る。中和剤の使用量は骨格中に含まれるアミノ基1モル
に対して0.2〜1.0当量の範囲が好ましく、0.2当量より
少くなると水分散性及び貯蔵安定性が低下し、1.0当量
より多くなると一般に電着効率が低下し所望の膜厚を得
るのが困難となる。
In the present invention, the polymerizable unsaturated or saturated resin is water-dispersed or water-solubilized by neutralizing the amino group with an acid (neutralizing agent) when an amino group is introduced into the resin skeleton. Examples of the neutralizing agent include formic acid, acetic acid,
Examples include monocarboxylic acids such as lactic acid, hydroxyacetic acid, and butyric acid, and these can be used alone or as a mixture. The amount of the neutralizing agent used is preferably in the range of 0.2 to 1.0 equivalent with respect to 1 mol of the amino group contained in the skeleton. When the amount is less than 0.2 equivalent, the water dispersibility and storage stability decrease, and when it exceeds 1.0 equivalent, it is generally The electrodeposition efficiency is lowered and it becomes difficult to obtain a desired film thickness.

また、オニウム塩基含有樹脂の場合には、そのまま水で
希釈することによつて水分散化または水溶化される。
In the case of an onium base-containing resin, it is water-dispersed or water-solubilized by diluting it with water as it is.

水溶化または水分散化した樹脂成分の流動性をさらに向
上させるために親水性溶剤、例えばイソプロパノール、
n−ブタノール、t−ブタノール、メトキシエタノー
ル、エトキシエタノール、ブトキシエタノール、ジエチ
レングリコール、メチルエーテル、ジオキサン、テトラ
ヒドロフランなどを加えることができる。親水性溶剤の
使用量はビヒクル成分100重量部に対し300重量部以下の
範囲が望ましい。
In order to further improve the fluidity of the water-solubilized or water-dispersed resin component, a hydrophilic solvent such as isopropanol,
It is possible to add n-butanol, t-butanol, methoxyethanol, ethoxyethanol, butoxyethanol, diethylene glycol, methyl ether, dioxane, tetrahydrofuran and the like. The hydrophilic solvent is preferably used in an amount of 300 parts by weight or less based on 100 parts by weight of the vehicle component.

被塗物への塗布量を多くするために、疎水性溶剤、たと
えばトルエン、キシレン等の石油系溶剤;メチルエチル
ケトン、メチルイソブチルケトン等のケトン類;酢酸エ
チル、酢酸ブチル等のエステル類;2−エチルヘキシルア
ルコール等のアルコール類;などを加えることもでき
る。疎水性溶剤の使用量は樹脂成分100重量部に対し200
重量部以下の範囲が望ましい。
Hydrophobic solvents, for example, petroleum-based solvents such as toluene and xylene; ketones such as methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate and butyl acetate; 2-ethylhexyl in order to increase the coating amount on the object to be coated. Alcohols such as alcohol; and the like can also be added. The amount of hydrophobic solvent used is 200 per 100 parts by weight of the resin component.
A range of less than or equal to parts by weight is desirable.

本発明において不飽和樹脂と組合せて用いられる光重合
開始剤は紫外線等の活性光線によりラジカル重合を開始
できるものであれば、特に制限されるものではなく、代
表的なものを例示すればベンゾイン、ベンゾインメチル
エーテル、ベンゾインエチルエーテル、ベンジル、ジフ
エニルジスルフイド、テトラメチルチウラムモノサルフ
アイド、ジアセチル、エオシン、チオニン、ミヒラーケ
トン、アントラキノン、クロルアントラキノン、メチル
アントラキノン、α−ヒドロキシイソブチルフエノン、
p−イソプロピルαヒドロキシイソブチルフエノン、α
・α′ジクロル−4−フエノキシアセトフエノン、1−
ヒドロキシ1−シクロヘキシルアセトフエノン、2・2
ジメトキシ2−フエニルアセトフエノン、メチルベンゾ
イルフオトメイト、2−メチル−1−[4−(メチルチ
オ)フエニル]・2・モルフオリノープロペン、チオキ
サントン、ベンゾフエノンなどを挙げることができ、こ
れらの使用量は樹脂成分(固形分)100重量部に対して
0.1〜10重量部の範囲が良く0.1重量部より少なくなると
硬化性が低下するので好ましくなく、10重量部より多く
なると硬化皮膜の機械的強度が劣化する傾向がある。
The photopolymerization initiator used in combination with the unsaturated resin in the present invention is not particularly limited as long as it can initiate radical polymerization by active rays such as ultraviolet rays, and benzoin is a typical example. Benzoin methyl ether, benzoin ethyl ether, benzyl, diphenyl disulfide, tetramethyl thiuram monosulfide, diacetyl, eosin, thionine, Michler's ketone, anthraquinone, chloranthraquinone, methylanthraquinone, α-hydroxyisobutylphenone,
p-isopropyl α-hydroxyisobutylphenone, α
.Alpha .'- dichloro-4-phenoxyacetophenone, 1-
Hydroxy 1-cyclohexylacetophenone, 2.2
Examples thereof include dimethoxy 2-phenylacetophenone, methylbenzoyl photomate, 2-methyl-1- [4- (methylthio) phenyl] -2.morpholinopropene, thioxanthone, and benzophenone. Is based on 100 parts by weight of resin component (solid content)
The range of 0.1 to 10 parts by weight is preferable, and if it is less than 0.1 parts by weight, the curability is deteriorated, which is not preferable, and if it exceeds 10 parts by weight, the mechanical strength of the cured film tends to deteriorate.

光重合開始剤としては非水溶性のものが樹脂と均一な割
合が電着析出するので好ましい。また、必要に応じて染
料や顔料なども添加できる。
As the photopolymerization initiator, a water-insoluble one is preferable because a uniform proportion with the resin causes electrodeposition precipitation. Further, dyes and pigments can be added as required.

本発明のプリント配線フオトレジスト用カチオン型電着
塗装は一般には次のようにして行なわれる。
The cationic electrodeposition coating for a printed wiring photoresist of the present invention is generally performed as follows.

カチオン電着塗料組成物(A)の電着は、該組成物
(A)を水溶化または水分散化してなる電着塗装浴をpH
6.0〜9、浴濃度(固形分濃度)3〜25重量%、好まし
くは5〜20重量%、浴温度15〜40℃、好適には15〜30℃
に管理し、ついでこのように管理された電着塗装浴に銅
箔を張った絶縁基板を陰極として浸漬し、一定電圧(1
〜400V)の直流を印加するか、又は1〜400mA/dm2の一
定電流の直流を印加することにより行なわれる。また通
電開始より所定電圧または電流を印加してもよく、また
1〜30秒を要して徐々に所定電流又は電圧まで上昇させ
てもよい。この場合、通電時間は30秒〜5分が適当であ
る。電着塗装後、電着浴から被塗物を引き上げ水洗した
のち、そのまま、または要すればエアーブロー、熱風な
どにより水切乾燥する。
The electrodeposition of the cationic electrodeposition coating composition (A) is carried out by adjusting the pH of an electrodeposition coating bath obtained by water-solubilizing or water-dispersing the composition (A).
6.0-9, bath concentration (solid content concentration) 3-25% by weight, preferably 5-20% by weight, bath temperature 15-40 ° C, preferably 15-30 ° C
Then, the insulating substrate coated with copper foil is immersed as a cathode in the electrodeposition coating bath controlled in this way as a cathode, and a constant voltage (1
~ 400 V) or a constant current of 1 to 400 mA / dm 2 is applied. A predetermined voltage or current may be applied after the start of energization, or may be gradually increased to the predetermined current or voltage in 1 to 30 seconds. In this case, 30 seconds to 5 minutes are suitable for the energization time. After electrodeposition coating, the object to be coated is lifted from the electrodeposition bath and washed with water, and then dried as it is, or if necessary, by air blow, hot air, etc.

ついで、この被塗物を水溶化または水分散化した重合性
不飽和樹脂または飽和樹脂を主成分とするカチオン電着
塗料組成物(B)を用いて前記と同じ条件で管理された
電着塗装浴中に浸漬し、前記と同じ条件で電着塗装す
る。但し、電着時間は10秒から3分間が好ましい。電着
浴から被塗物を引き上げ水洗したのち、そのまま、また
は要すればエアーブロー、熱風などにより水切乾燥す
る。
Then, a cationic electrodeposition coating composition (B) containing a polymerizable unsaturated resin or a saturated resin, which is a water-soluble or water-dispersed product, is used as an electrodeposition coating under the same conditions as described above. Immerse in the bath and perform electrodeposition coating under the same conditions as above. However, the electrodeposition time is preferably 10 seconds to 3 minutes. After pulling up the article to be coated from the electrodeposition bath and washing it with water, it is drained and dried as it is, or if necessary, by air blow, hot air or the like.

ついで、基板上に形成された未硬化の光硬化性電着塗膜
上にパターンマスクがなされ活性光線で露光され、導体
回路とすべき部分以外の未露光部は現像処理によって除
去される。
Then, a pattern mask is formed on the uncured photocurable electrodeposition coating film formed on the substrate and exposed with an actinic ray, and the unexposed portion other than the portion to be a conductor circuit is removed by a developing process.

本発明において露光に使用する活性光線は光重合開始剤
の吸収量によって異なるが、一般には3,000〜4,500Åの
波長を有する光線がよい。これらの光源として太陽光、
水銀灯、クセノンランプ、アーク灯などがある。活性光
線の照射による塗膜の硬化は数分以内、通常は1秒〜20
分の範囲で行なわれる。
The actinic ray used for exposure in the present invention varies depending on the absorption amount of the photopolymerization initiator, but in general, a ray having a wavelength of 3,000 to 4,500Å is preferable. Sunlight as these light sources,
There are mercury lamps, xenon lamps and arc lamps. Curing of the coating film by irradiation of actinic rays is within a few minutes, usually 1 second to 20
It takes place in the range of minutes.

また、現像処理はオニウム塩基含有樹脂を用いた場合水
又は弱酸水を、その他の場合は弱酸水を塗膜面上に吹き
つけることによつて塗膜の未硬化部分を洗い流すことに
よって行なうことができる。弱酸水は通常ギ酸、酢酸、
乳酸、ヒドロキシ酢酸等のモノカルボン酸の希薄水溶
液、塩酸等の無機酸の希薄水溶液など塗膜中に有する遊
離のアミノ基として中和して水溶性を与えることのでき
るものが使用可能である。例えば酢酸水溶液の場合、0.
1%〜5%位が適当である。0.1%以下では現像が困難で
あり、5%以上では画像部を浸す恐れがあるので好まし
くない。
Further, the development treatment may be carried out by washing the uncured portion of the coating film by spraying water or weak acid water when an onium base-containing resin is used, and in other cases spraying weak acid water on the surface of the coating film. it can. Weak acid water is usually formic acid, acetic acid,
A dilute aqueous solution of a monocarboxylic acid such as lactic acid or hydroxyacetic acid, a dilute aqueous solution of an inorganic acid such as hydrochloric acid, or the like that can neutralize the free amino groups contained in the coating film to give water solubility can be used. For example, in the case of acetic acid aqueous solution, 0.
1% to 5% is suitable. If it is less than 0.1%, development is difficult, and if it is more than 5%, the image area may be dipped, which is not preferable.

ついで、現像処理によって基板上に露出した銅箔部分
(非回路部分)は塩化第2鉄等を用いた通常のエツチン
グ処理によって除去される。しかる後、回路パターン上
の光硬化塗膜も現像処理に用いられるよりも高濃度のモ
ノカルボン酸、無機酸によって溶解除去されて基板上に
プリント回路が形成される。
Then, the copper foil portion (non-circuit portion) exposed on the substrate by the developing treatment is removed by a usual etching treatment using ferric chloride or the like. After that, the photo-cured coating film on the circuit pattern is also dissolved and removed by a monocarboxylic acid or an inorganic acid having a higher concentration than that used in the development process, and a printed circuit is formed on the substrate.

[効果] 本発明はカチオン電着塗装法によりガラス転移温度の低
い光硬化性電着塗料組成物を銅箔上に塗装し、水洗また
は水洗乾燥後、さらにその塗膜上にガラス転移温度の高
い電着塗料組成物を塗布してプリント配線フオトレジス
トを得る2コート電着塗装法である。この塗膜は表面粘
着性がないためフイルム密着露光に最適で、さらに驚く
べきことに感光性が1コート電着塗装の場合より高く露
光量が少なくてすむという効果がある。また、本発明の
方法により形成される塗膜の未露光部は弱酸によって短
時間で現像され、露光部分は耐エッチング性にも優れて
おり現像液よりも強い酸又は強アルカリによって短時間
で容易に溶解除去することができる。
[Effect] In the present invention, a photocurable electrodeposition coating composition having a low glass transition temperature is applied onto a copper foil by a cationic electrodeposition coating method, washed with water or washed with water and dried, and the coating film having a high glass transition temperature is further applied. It is a two-coat electrodeposition coating method for obtaining a printed wiring photoresist by applying an electrodeposition coating composition. Since this coating film has no surface tackiness, it is most suitable for film contact exposure and, surprisingly, it has the effect that the photosensitivity is higher than in the case of one-coat electrodeposition coating and the exposure amount is small. Further, the unexposed portion of the coating film formed by the method of the present invention is developed in a short time by a weak acid, and the exposed portion is also excellent in etching resistance, and easy in a short time by an acid or strong alkali stronger than the developing solution. Can be dissolved and removed.

[実施例] 以下、本発明を実施例によってさらに具体的に説明す
る。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples.

製造例 1 メチルメタクリレート30重量部、ブチルアクリレート35
重量部、グリシジルメタクリレート35重量部およびアゾ
ビスイソブチロニトリル2重量部からなる混合液を窒素
ガス雰囲気下において110℃に保持したプロピレングリ
コールモノメチルエーテル(親水性溶剤)90重量部中に
3時間を要して滴下した。滴下後、1時間熟成させ、ア
ゾビスジメチルバレロニトリル1重量部及びプロピレン
グリコールモノメチルエーテル10重量部からなる混合液
を1時間要して滴下し、さらに5時間熟成させてグリシ
ジル基含有アクリル樹脂溶液を得た。次に、この溶液に
アクリル酸10重量部、ハイドロキノン0.12重量部及びテ
トラエチルアンモニウムブロマイド0.6重量部を加えて
空気を吹き込みながら110℃で5時間反応させ、ついで5
0℃まで冷却しメチルアミノエタノール8.0重量部加え70
℃で2時間反応させ、3級アミノ基含有重合性不飽和樹
脂(アミノ基含有約0.91モル/kg、不飽和当量約850、数
平均分子量約20,000、Tg約6℃)溶液を得た。この重合
性不飽和樹脂を酢酸で0.6当量中和した後、光開始剤と
してα−ヒドロキシイソブチルフエノン6重量部を添加
したのち固形分含有率が10重量%になるように水を加え
て電着塗装浴(pH6.7)とした。
Production Example 1 30 parts by weight of methyl methacrylate, 35 butyl acrylate
Parts by weight, 35 parts by weight of glycidyl methacrylate, and 2 parts by weight of azobisisobutyronitrile were added to 90 parts by weight of propylene glycol monomethyl ether (hydrophilic solvent) maintained at 110 ° C. under a nitrogen gas atmosphere for 3 hours. It dripped in need. After the dropping, the mixture was aged for 1 hour, a mixed solution containing 1 part by weight of azobisdimethylvaleronitrile and 10 parts by weight of propylene glycol monomethyl ether was added dropwise over 1 hour, and then aged for 5 hours to obtain a glycidyl group-containing acrylic resin solution. Obtained. Next, 10 parts by weight of acrylic acid, 0.12 parts by weight of hydroquinone and 0.6 parts by weight of tetraethylammonium bromide were added to this solution, and the mixture was reacted at 110 ° C. for 5 hours while blowing air, and then 5
Cool to 0 ° C and add 8.0 parts by weight of methylaminoethanol 70
The reaction was carried out for 2 hours at 0 ° C. to obtain a tertiary amino group-containing polymerizable unsaturated resin (amino group-containing about 0.91 mol / kg, unsaturated equivalent about 850, number average molecular weight about 20,000, Tg about 6 ° C.) solution. After neutralizing 0.6 equivalent of this polymerizable unsaturated resin with acetic acid, 6 parts by weight of α-hydroxyisobutylphenone was added as a photoinitiator, and then water was added so that the solid content was 10% by weight. The coating bath (pH 6.7) was used.

製造例 2 グリシジルメタクリレート30重量部、スチレン5重量
部、n−ブチルメタクリレート24重量部、メチルアクリ
レート23重量部、ジメチルアミノエチルメタクリレート
18重量部およびアゾビスイソバレロニトリル5重量部か
らなる混合液を窒素ガス雰囲気下において80℃に保持し
たセロソルブ90重量部中に3時間を要して滴下した。滴
下後、1時間熟成させ、アゾビスジメチルバレロニトリ
ル1重量部とセロソルブ10重量部からなる混合液を1時
間要して滴下し、さらに5時間熟成させてアクリル樹脂
溶液を得た。次に、この溶液にアクリル酸15重量部及び
ハイドロキノン0.13重量部を加えて空気を吹き込みなが
ら110℃で5時間反応させて光硬化性樹脂(アミノ基含
有量約1.0モル/kg、不飽和当量545、Tg20℃、数平均分
子量約15,000)溶液を得た。
Production Example 2 30 parts by weight of glycidyl methacrylate, 5 parts by weight of styrene, 24 parts by weight of n-butyl methacrylate, 23 parts by weight of methyl acrylate, dimethylaminoethyl methacrylate
A mixed solution of 18 parts by weight and 5 parts by weight of azobisisovaleronitrile was added dropwise to 90 parts by weight of cellosolve kept at 80 ° C. in a nitrogen gas atmosphere over 3 hours. After the dropping, the mixture was aged for 1 hour, a mixed solution of 1 part by weight of azobisdimethylvaleronitrile and 10 parts by weight of cellosolve was added dropwise over 1 hour, and the mixture was aged for 5 hours to obtain an acrylic resin solution. Next, 15 parts by weight of acrylic acid and 0.13 parts by weight of hydroquinone were added to this solution and reacted at 110 ° C. for 5 hours while blowing air to obtain a photocurable resin (amino group content about 1.0 mol / kg, unsaturated equivalent 545 , Tg20 ° C., number average molecular weight about 15,000) to obtain a solution.

この重合性不飽和樹脂をギ酸で0.6当量中和した後、光
開始剤としてα−ヒドロキシイソブチルフエノン6重量
部を添加したのち固形分含有率が10重量%になるように
水を加えて電着塗装浴(pH6.5)とした。
After neutralizing 0.6 equivalent of this polymerizable unsaturated resin with formic acid, 6 parts by weight of α-hydroxyisobutylphenone was added as a photoinitiator, and water was added so that the solid content was 10% by weight. The coating bath (pH 6.5) was used.

製造例 3 メチルメタクリレート35重量部、ブチルアクリレート20
重量部、2−ヒドロキシエチルメタクリレート15重量
部、ジメチルアミノエチルメタクリレート30重量部およ
びアゾビスイソブチロニトリル2重量部からなる混合系
を窒素ガス雰囲気下において105℃に保持したジオキサ
ン(親水性溶剤)100重量部中に2時間を要して滴下
し、さらに同温度で1時間熟成させてアクリル樹脂溶液
を得た。次に、この溶液200重量部に2−ヒドロキシエ
チルメタクリレートとトリレンジイソシアネートとの等
モル付加物を20重量部加えて温度80℃において5時間反
応せしめて本発明に使用できる重合性不飽和樹脂(3級
アミノ基含有量約1.6モル/kg、不飽和当量約20,000、Tg
約22℃)の溶液を得た。この重合性不飽和樹脂を酢酸で
0.6当量中和した後、光開始剤としてベンゾインエチル
エーテルを6重量部添加したのち固形分含有率が10重量
%になるように水を加えて電着塗装浴(pH6.3)とし
た。
Production Example 3 35 parts by weight of methyl methacrylate, 20 butyl acrylate
Dioxane (hydrophilic solvent) in which a mixed system consisting of 1 part by weight, 15 parts by weight of 2-hydroxyethyl methacrylate, 30 parts by weight of dimethylaminoethyl methacrylate and 2 parts by weight of azobisisobutyronitrile was kept at 105 ° C under a nitrogen gas atmosphere. It was added dropwise to 100 parts by weight over 2 hours and further aged at the same temperature for 1 hour to obtain an acrylic resin solution. Then, 20 parts by weight of an equimolar adduct of 2-hydroxyethyl methacrylate and tolylene diisocyanate was added to 200 parts by weight of this solution, and the mixture was reacted at a temperature of 80 ° C. for 5 hours to prepare a polymerizable unsaturated resin usable in the present invention ( Tertiary amino group content about 1.6 mol / kg, unsaturated equivalent about 20,000, Tg
A solution of about 22 ° C.) was obtained. This polymerizable unsaturated resin was treated with acetic acid.
After neutralization by 0.6 equivalent, 6 parts by weight of benzoin ethyl ether was added as a photoinitiator, and then water was added so that the solid content was 10% by weight to prepare an electrodeposition coating bath (pH 6.3).

製造例 4 エピコートNo.1001(商品名、シエル化学(株)製)960
重量部、アクリル酸115重量部、ハイドロキノン0.8重量
部及びテトラエチルアンモニウムブロマイド3重量部を
ブチルセロソルブ350重量部中に加え、空気を吹き込み
ながら110℃で酸価が1以下になるまでエステル化反応
を行なったのち、温度を50℃に下げジメチルアミノエタ
ノール36重量部、酢酸24重量部を加え70℃で4時間反応
させて4級アンモニウム塩基含有不飽和樹脂(4級アン
モニウム塩基含有量約0.35モル/kg、不飽和当量約720、
数平均分子量約1,200、Tg10℃)を得た。
Production Example 4 Epicoat No. 1001 (trade name, manufactured by Ciel Chemical Co., Ltd.) 960
Parts by weight, 115 parts by weight of acrylic acid, 0.8 parts by weight of hydroquinone and 3 parts by weight of tetraethylammonium bromide were added to 350 parts by weight of butyl cellosolve, and an esterification reaction was carried out at 110 ° C. while blowing air until the acid value became 1 or less. After that, the temperature is lowered to 50 ° C., 36 parts by weight of dimethylaminoethanol and 24 parts by weight of acetic acid are added, and the mixture is reacted at 70 ° C. for 4 hours to obtain a quaternary ammonium salt group-containing unsaturated resin (quaternary ammonium salt group content of about 0.35 mol / kg, Unsaturated equivalent of about 720,
A number average molecular weight of about 1,200 and Tg of 10 ° C) was obtained.

この不飽和樹脂にベンゾインエチルエーテル5重量%
(ビヒクル成分に対して)を加えたのち、固形分含有率
が10重量%になるように水を加えて電着塗装浴(pH7.
8)とした。
5% by weight of benzoin ethyl ether in this unsaturated resin
After adding (to the vehicle component), water is added so that the solid content is 10% by weight, and the electrodeposition coating bath (pH 7.
8)

製造例5 製造例1のブチルアクリレートの変わりにブチルメタク
リレートに変えて製造例1と同様な方法で行なった。こ
の樹脂のTgは52℃である。
Production Example 5 The procedure of Production Example 1 was repeated except that butyl methacrylate was used instead of butyl acrylate of Production Example 1. The Tg of this resin is 52 ° C.

製造例6 製造例3のブチルアクリレートのかわりにエチルメタク
リレートに変えて製造例3と同様な方法で行なった。こ
の樹脂のTgは72℃である。
Production Example 6 The procedure of Production Example 3 was repeated except that ethyl methacrylate was used instead of butyl acrylate of Production Example 3. The Tg of this resin is 72 ° C.

製造例7 メチルメタクリレート35重量部、エチルメタクリレート
30重量部、2−ヒドロキシエチルメタクリレート15重量
部、ジメチルアミノエチルメタクリレート20重量部およ
びアゾビスイソブチロニトリル2重量部からなる混合系
を窒素ガス雰囲気中において105℃に保持したジオキサ
ン(親水性溶剤)100重量部中に3時間を要して滴下
し、さらに同温度で1時間熟成させて、アクリル樹脂
(3級アミノ基含有量1.3モル/kg、Tg65℃)溶液を得
た。この樹脂を酢酸で0.6当量中和した後固形分含有率
が10重量%になるように水を加えて電着塗装浴(pH6.
5)とした。
Production Example 7 35 parts by weight of methyl methacrylate, ethyl methacrylate
30 parts by weight, 15 parts by weight of 2-hydroxyethyl methacrylate, 20 parts by weight of dimethylaminoethyl methacrylate and 2 parts by weight of azobisisobutyronitrile were mixed at 105 ° C. in a nitrogen gas atmosphere to maintain dioxane (hydrophilic solvent). ) It was added dropwise to 100 parts by weight over 3 hours and further aged at the same temperature for 1 hour to obtain an acrylic resin (tertiary amino group content 1.3 mol / kg, Tg 65 ° C.) solution. After neutralizing 0.6 equivalent of this resin with acetic acid, water was added so that the solid content was 10% by weight, and an electrodeposition coating bath (pH 6.
5)

実施例1 製造例1の電着塗装浴を用いて0.4mmと6mmのスルーホー
ルを有するプリント配線用銅張積層板(100×200×1.6m
m)を陰極とし、浴温25℃で100Vの直流電流を3分間通
電して電着塗装し、塗膜を水洗し、70℃で2分間乾燥し
て30μ厚の平滑な感光膜を得た。ついで、製造例5の電
着塗装浴を用いて、浴温25℃で120Vの直流電流を1分間
通電し電着塗装した後、塗膜を水洗し、70℃で5分間乾
燥した。2コート合計33μ厚のスルーホール内に溜りが
なくかつ表面粘着性のない平滑な感光膜を得た。次に室
温25℃でネガフイルムを真空装置でこの塗板と密着さ
せ、3Kwの超高圧水銀灯を用いて両面ともに紫外線(以
下、UVと略す)照射した。
Example 1 Using the electrodeposition coating bath of Production Example 1, a copper clad laminate for printed wiring (100 × 200 × 1.6 m) having through holes of 0.4 mm and 6 mm was used.
m) as a cathode and a DC current of 100 V for 3 minutes at a bath temperature of 25 ° C. for electrodeposition coating, the coating film was washed with water and dried at 70 ° C. for 2 minutes to obtain a 30 μm smooth photosensitive film. . Then, using the electrodeposition coating bath of Production Example 5, a direct current of 120 V was applied at a bath temperature of 25 ° C. for 1 minute for electrodeposition coating, and then the coating film was washed with water and dried at 70 ° C. for 5 minutes. A smooth photosensitive film having two coats with a total thickness of 33 μm, which did not accumulate in the through holes and had no surface tackiness, was obtained. Next, the negative film was brought into close contact with this coated plate by a vacuum device at room temperature of 25 ° C., and both sides were irradiated with ultraviolet rays (hereinafter abbreviated as UV) using a 3 Kw ultra-high pressure mercury lamp.

実施例2 製造例2の電着塗装浴を用いて0.4mmと0.6mmのスルーホ
ールを有するプリント配線用銅張積層板(100×200×1.
6mm)を陰極とし、浴温25℃で銅張積層板に対し60mA/dm
2の直流電流を3分間通電して電着塗装した。この時の
最大電圧は70Vであった。ついで、製造例5の電着塗装
浴を用いて、浴温25℃で100Vの直流電流を2分間通電し
電着塗装した後、塗膜を水洗し、70℃で5分間乾燥し
た。2コート合計30μ厚のスルーホール内に溜りがなく
かつ表面粘着性のない平滑な感光膜を得た。次に室温25
℃でネガフイルムを真空装置でこの塗板と密着させ、3K
wの超高圧水銀灯を用いて両面ともに紫外線(以下、UV
と略す)照射した。
Example 2 Using the electrodeposition coating bath of Production Example 2, a copper clad laminate for printed wiring having through holes of 0.4 mm and 0.6 mm (100 × 200 × 1.
6mm) as the cathode and 60mA / dm for the copper clad laminate at a bath temperature of 25 ℃.
A direct current of 2 was applied for 3 minutes for electrodeposition coating. The maximum voltage at this time was 70V. Then, using the electrodeposition coating bath of Production Example 5, a direct current of 100 V was applied for 2 minutes at a bath temperature of 25 ° C. to perform electrodeposition coating, and then the coating film was washed with water and dried at 70 ° C. for 5 minutes. A two-coat, 30 μm thick, through-hole was obtained to obtain a smooth photosensitive film having no accumulation in the through holes and no surface tackiness. Then room temperature 25
The negative film is attached to this coated plate with a vacuum device at 3
Using an ultra-high pressure mercury lamp of w, ultraviolet rays (hereinafter, UV
Abbreviated).

実施例3 実施例2において、2コート目に用いた製造例5の電着
塗装浴のかわりに製造例7の電着塗装浴を使用して実施
例2と同じように処理した。この2コート合計の膜厚は
23μであり、スルーホール内に溜り表面粘着性はなかっ
た。
Example 3 In Example 2, the same treatment as in Example 2 was carried out by using the electrodeposition coating bath of Production Example 7 instead of the electrodeposition coating bath of Production Example 5 used for the second coat. The total film thickness of these two coats is
It was 23μ and there was no surface tackiness accumulated in the through holes.

実施例4 製造例3の電着塗装浴を用いて0.4mmと0.6mmのスルーホ
ールを有するプリント配線用銅張積層板(100×200×1.
6mm)を陰極とし、浴温25℃で銅張積層板に対し50mA/dm
2の直流電流を3分間通電して電着塗装した。この時の
最大電圧は60Vであった。この塗膜を水洗、70℃で2分
間乾燥して15μ厚の平滑な感光膜を得た。ついで、製造
例6の電着塗装浴を用いて、浴温25℃で120Vの直流電流
を1分間通電し電着塗装した後、塗膜を水洗、70℃で5
分間乾燥した。2コート合計20μ厚のスルーホール内に
溜りがなくかつ表面粘着性のない平滑な感光膜を得た。
次に実施例1と同じ方法でUV照射した。
Example 4 A copper clad laminate for printed wiring having through holes of 0.4 mm and 0.6 mm using the electrodeposition coating bath of Production Example 3 (100 × 200 × 1.
6mm) as the cathode and 50mA / dm for the copper clad laminate at a bath temperature of 25 ℃.
A direct current of 2 was applied for 3 minutes for electrodeposition coating. The maximum voltage at this time was 60V. This coating film was washed with water and dried at 70 ° C. for 2 minutes to obtain a smooth photosensitive film having a thickness of 15 μm. Then, using the electrodeposition coating bath of Production Example 6, a direct current of 120 V was applied for 1 minute at a bath temperature of 25 ° C. to carry out electrodeposition coating, and then the coating film was washed with water and kept at 70 ° C. for 5 minutes.
Dry for minutes. A two-coat, 20 μm thick through-hole was obtained, and a smooth photosensitive film having no surface tackiness and no accumulation was obtained.
Next, UV irradiation was performed in the same manner as in Example 1.

実施例5 実施例4の1コート目に用いた製造例3の電着塗装浴の
かわりに製造例4の電着塗装浴を使用し、実施例4と同
じように処理した。この2コート合計の膜厚は25μであ
り、スルーホール内に溜り及び表面粘着性はなかった。
Example 5 The same procedure as in Example 4 was carried out using the electrodeposition coating bath of Production Example 4 instead of the electrodeposition coating bath of Production Example 3 used for the first coat of Example 4. The total film thickness of the two coats was 25 μm, and there was no accumulation in the through holes and no surface tackiness.

比較例1 実施例1の1コートのみの塗板を用い、実施例1と同じ
方法でUV照射した。
Comparative Example 1 Using the coated plate of Example 1 having only one coat, UV irradiation was performed in the same manner as in Example 1.

比較例2 実施例2の1コートのみの塗板を用い、実施例1と同じ
方法でUV照射した。
Comparative Example 2 UV irradiation was performed in the same manner as in Example 1 using the coated plate of Example 2 having only one coat.

比較例3 実施例で用いた銅張積層板を陽極とし、製造例5の電着
塗装浴を用い、浴温25℃で、板に対し60mA/dm2の直流電
流を4分間通電して電着塗装したこの時の最大電圧は11
0Vであった。この塗膜を水洗、70℃で5分間乾燥して20
μ厚の平滑な感光膜を得た。次に実施例1と同じ方法で
UV照射した。厚くつけることを試みたが25μ厚でプレー
グを起し塗膜破壊を起こした。
Comparative Example 3 Using the copper clad laminate used in Example as an anode, and using the electrodeposition coating bath of Production Example 5 at a bath temperature of 25 ° C., a DC current of 60 mA / dm 2 was applied to the plate for 4 minutes to generate electricity. Maximum voltage at this time is 11
It was 0V. Wash this coating with water and dry at 70 ° C for 5 minutes.
A smooth photosensitive film having a thickness of μ was obtained. Next, in the same manner as in Example 1,
UV irradiation was performed. Attempts were made to make it thick, but at 25 μm, plague was caused and the coating film was destroyed.

比較例4 実施例2の1コートのみの塗板上に製造例5の塗料固形
分を2%にしてデイツピング塗装した後、70℃で10分間
乾燥した。2コート後の膜厚は22μmであった。この場
合、スルーホール内に樹脂が溜り厚く残っていた。
Comparative Example 4 Dip coating was carried out on the coated plate of Example 2 having only one coat so that the solid content of the coating material of Production Example 2 was 2%, and then the coating was dried at 70 ° C. for 10 minutes. The film thickness after two coats was 22 μm. In this case, the resin was accumulated in the through hole and remained thick.

比較例5 実施例2の1コートのみの塗板上に、製造例7の塗料を
ロールコーターで塗装した後70℃で10分間乾燥した。2
コート後の膜厚は25μmであった。この場合も、スルー
ホール内に樹脂が溜り厚く残っていた。
Comparative Example 5 The coating material of Production Example 7 was applied onto the coated plate of Example 2 having only one coat by a roll coater, and then dried at 70 ° C. for 10 minutes. Two
The film thickness after coating was 25 μm. In this case as well, the resin was thick and remained in the through holes.

比較例6 実施例4の1コートのみの塗板を用い、実施例1と同じ
方法でUV照射した。
Comparative Example 6 Using the coated plate of Example 4 having only one coat, UV irradiation was performed in the same manner as in Example 1.

比較例7 実施例で用いた銅張積層板を陰極とし、製造例6の電着
塗装浴を用い、浴温25℃で、板に対し60mA/dm2の直流電
流を3分間通電して電着塗装浴したこの時の最大電圧は
130Vであった。この塗膜を水洗、70℃で5分間乾燥して
10μ厚の平滑な感光膜を得た。次に実施例1と同じ方法
でUV照射した。厚く塗布することを試みたが15μ厚でプ
レーグを起し塗膜破壊を起こした。
Comparative Example 7 The copper clad laminate used in Example was used as a cathode, the electrodeposition coating bath of Production Example 6 was used, and a DC current of 60 mA / dm 2 was applied to the plate for 3 minutes at a bath temperature of 25 ° C. to generate electricity. The maximum voltage at this time is
It was 130V. Wash this coating with water and dry at 70 ° C for 5 minutes
A smooth photosensitive film having a thickness of 10 μm was obtained. Next, UV irradiation was performed in the same manner as in Example 1. An attempt was made to apply it thickly, but at a thickness of 15 μm, prepreg was caused and the coating film was destroyed.

実施例1〜5及び比較例1〜7のネガフイルム密着露光
後のネガフイルムのハガシ具合、露光量、未露光部の弱
アルカリでの洗い出し現像、水洗後、塩化第2鉄での銅
箔のエツチング処理除去、露光部の硬化塗膜の剥離、及
びプリント回路板としてのパターンの状態について調べ
た。その結果を後記表1に示す。
Negative film of Examples 1 to 5 and Comparative Examples 1 to 7 The degree of peeling of the negative film after the exposure, the exposure amount, the unexposed area was washed out with a weak alkali, developed, washed with water, and then the copper foil with ferric chloride was used. The removal of the etching treatment, the peeling of the cured coating film in the exposed area, and the state of the pattern as a printed circuit board were examined. The results are shown in Table 1 below.

露光量 線中200μmの画線が現像後、シヤープでしっかりとし
た硬化膜になる最低露光量(375nmでの積算光量mJ/c
m2) 現像 25℃、1モル/l乳酸水溶液を2分間スプレー後の未露光
部の洗い出し後の状態。
Exposure dose The minimum exposure dose of a 200 μm image line that develops into a firm cured film after development (total light intensity at 375 nm mJ / c
m 2 ) Development 25 ° C., 1 mol / l aqueous solution of lactic acid was sprayed for 2 minutes, and the unexposed area was washed out.

エツチング処理除去 スルーホール内が硬化するまで露光、現像、水洗後、50
℃、塩化第2鉄溶液を3分間スプレー後の表面及びスル
ーホール内部の状態。
Etching treatment removal After exposure, development and washing with water until the inside of the through hole is cured, 50
℃, the state of the surface and the inside of the through hole after spraying ferric chloride solution for 3 minutes.

剥離 50℃、3モル/l乳酸水溶液を3分スプレー後の硬化膜の
剥離状態。
Peeling The peeled state of the cured film after spraying 3 mol / l lactic acid aqueous solution at 50 ° C for 3 minutes.

プリント回路板としてのパターン状態 要求された回路がきちんとできているかを調べた。Pattern status as a printed circuit board We checked whether the required circuit was properly formed.

フロントページの続き (72)発明者 岩沢 直純 神奈川県平塚市東八幡4丁目17番1号 関 西ペイント株式会社内 (72)発明者 赤木 雄 神奈川県平塚市東八幡4丁目17番1号 関 西ペイント株式会社内 (72)発明者 近藤 寿夫 神奈川県平塚市東八幡4丁目17番1号 関 西ペイント株式会社内 (56)参考文献 特開 昭54−68224(JP,A) 特開 昭62−187848(JP,A)(72) Inventor Naozumi Iwasawa 4-17-1, Higashi-Hachiman, Hiratsuka-shi, Kanagawa Kansai Paint Co., Ltd. (72) Inventor Yuo Akagi 4-1-1, Higashi-Hachiman, Hiratsuka, Kanagawa In-house (72) Inventor Toshio Kondo 4-17-1, Higashi-Hachiman, Hiratsuka-shi, Kanagawa Kansai Paint Co., Ltd. (56) Reference JP-A-54-68224 (JP, A) JP-A-62-187848 (JP) , A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】銅張積層板上に光硬化性カチオン電着塗料
組成物(A)を電着塗装した後、さらにその塗膜上にガ
ラス転移温度20℃以上のカチオン型水溶性または水分散
性樹脂を主成分とするカチオン電着塗料組成物(B)を
電着塗装することを特徴とするプリント配線フオトレジ
スト用カチオン型電着塗装方法。
1. A photocurable cationic electrodeposition coating composition (A) is electrodeposited on a copper-clad laminate, and then a cationic water-soluble or water-dispersion having a glass transition temperature of 20 ° C. or higher is further applied on the coating film. A cationic electrodeposition coating method for a printed wiring photoresist, which comprises electrodepositing a cationic electrodeposition coating composition (B) containing a polymerizable resin as a main component.
JP63109482A 1988-03-28 1988-05-02 Cation type electrodeposition coating method for printed wiring photoresist Expired - Lifetime JPH0769613B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63109482A JPH0769613B2 (en) 1988-05-02 1988-05-02 Cation type electrodeposition coating method for printed wiring photoresist
KR1019890003940A KR940008381B1 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
EP19890105457 EP0335330B1 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
DE89105457T DE68907101T2 (en) 1988-03-28 1989-03-28 Electroplating process for photoresists on printed circuits.
AU31735/89A AU613463B2 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
US07/329,636 US4898656A (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
CA 594851 CA1337864C (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109482A JPH0769613B2 (en) 1988-05-02 1988-05-02 Cation type electrodeposition coating method for printed wiring photoresist

Publications (2)

Publication Number Publication Date
JPH01279251A JPH01279251A (en) 1989-11-09
JPH0769613B2 true JPH0769613B2 (en) 1995-07-31

Family

ID=14511361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109482A Expired - Lifetime JPH0769613B2 (en) 1988-03-28 1988-05-02 Cation type electrodeposition coating method for printed wiring photoresist

Country Status (1)

Country Link
JP (1) JPH0769613B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU649695B2 (en) * 1990-08-02 1994-06-02 Ppg Industries Ohio, Inc. Photoimageable electrodepositable photoresist composition
JP5960899B1 (en) * 2015-10-02 2016-08-02 ハニー化成株式会社 Resin composition for negative-type cationic electrodeposition photoresist, method for producing the same, and coating film formed by electrodeposition coating thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468224A (en) * 1977-11-10 1979-06-01 Unitika Ltd Method of preventing adhesive of photosensitive resin
JPS62187848A (en) * 1986-02-10 1987-08-17 Fuotopori Ouka Kk Method for preventing tacky adhesion on surface of photosensitive resin

Also Published As

Publication number Publication date
JPH01279251A (en) 1989-11-09

Similar Documents

Publication Publication Date Title
KR940008381B1 (en) Electrodeposition coating process of photoresist for printed circuit board
US5268256A (en) Photoimageable electrodepositable photoresist composition for producing non-tacky films
JPH07119374B2 (en) Positive type photosensitive cationic electrodeposition coating composition
EP0539714B1 (en) Amphoteric compositions
US6602651B1 (en) Water-based solder resist composition
JP2547904B2 (en) Photoimageable electrodepositable photoresist composition
JPH01203424A (en) Curable composition
JPH0769613B2 (en) Cation type electrodeposition coating method for printed wiring photoresist
JPH0769612B2 (en) Electrodeposition coating method for printed wiring photoresist
US5070000A (en) Electrodeposition coating composition for use in printed circuit board photo resist
US4965073A (en) Process for preparing the printed-circuit boards using a photosensitive composition containing a reduction type leico pigment
JPH083634B2 (en) Method for electrodeposition coating of electrodeposition coating composition for printed wiring photoresist
JPH0473763A (en) Photosetting composition for electrodeposition coating
JP2001117228A (en) Photosensitive resin composition for photoresist and resist pattern forming method
US5102519A (en) Process for preparing a printed-circuit board
JP2916939B2 (en) Manufacturing method of printed wiring board
JP2911958B2 (en) UV curable electrodeposition coating composition
JPS6360594A (en) Manufacture of printed wiring board
JPH07221432A (en) Manufacture of circuit board
JPS6343393A (en) Method of forming printed circuit board
JP3285674B2 (en) Electrodeposition coating composition for printed wiring photoresist and method for producing printed wiring board using the same
JPH03174475A (en) Electrodeposition coating composition for photoresist for printed circuit board
JPH06306311A (en) Cationic-electrodeposition coating composition for producing printed wiring board
JPS6323389A (en) Method of forming printed circuit
JPS63221178A (en) Positive type photosensitive cationic electrodeposition paint composition