JPH0769180B2 - Biaxial vibration gyro - Google Patents

Biaxial vibration gyro

Info

Publication number
JPH0769180B2
JPH0769180B2 JP2130324A JP13032490A JPH0769180B2 JP H0769180 B2 JPH0769180 B2 JP H0769180B2 JP 2130324 A JP2130324 A JP 2130324A JP 13032490 A JP13032490 A JP 13032490A JP H0769180 B2 JPH0769180 B2 JP H0769180B2
Authority
JP
Japan
Prior art keywords
axis
axis direction
piezoelectric material
support member
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2130324A
Other languages
Japanese (ja)
Other versions
JPH0425714A (en
Inventor
厚▲吉▼ 寺嶋
Original Assignee
赤井電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赤井電機株式会社 filed Critical 赤井電機株式会社
Priority to JP2130324A priority Critical patent/JPH0769180B2/en
Publication of JPH0425714A publication Critical patent/JPH0425714A/en
Publication of JPH0769180B2 publication Critical patent/JPH0769180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、角速度を検出する目的の下で、コリオリの
力を検知する振動ジャイロ、なかでもとくに、単一の装
置で、直交三次元座標系の二軸の周りのそれぞれの角速
度の検出を可能ならしめる二軸振動ジャイロに関するも
のである。
The present invention relates to a vibrating gyroscope for detecting a Coriolis force for the purpose of detecting an angular velocity, and in particular, a single device having orthogonal three-dimensional coordinates. The present invention relates to a biaxial vibrating gyro that enables detection of respective angular velocities around the biaxial of the system.

〔従来の技術〕[Conventional technology]

従来既知の振動ジャイロとしては、例えば、第11図に示
すものがある。
Conventionally known vibration gyros include, for example, one shown in FIG.

これは、三次元座標系のZ軸方向へ相互に平行に延在し
てY軸方向に所定の間隔をおいて位置する二本の腕部材
4,5の下端部を、Y軸方向へ延びるベース部6にて一体
的に連結してなる駆動振動子7を、支持部材8を介して
基台9に固定するとともに、その駆動振動子7のベース
部6に、X軸方向へ突出する検知手段10を設けることに
よって構成されている。
This is two arm members that extend parallel to each other in the Z-axis direction of the three-dimensional coordinate system and are positioned at a predetermined interval in the Y-axis direction.
A drive vibrator 7 formed by integrally connecting the lower ends of 4,5 with a base portion 6 extending in the Y-axis direction is fixed to a base 9 via a support member 8, and the drive vibrator 7 is also provided. The base portion 6 is provided with a detecting means 10 protruding in the X-axis direction.

かかる振動ジャイロでは、例えば、それぞれの腕部材4,
5に設けた駆動手段11,12に交流電圧を印加して、それら
の腕部材4,5を、圧電的方法、電磁的方法などによって
Y軸方向へ対称振動させつつ、駆動振動子7をZ軸の周
りに角速度ωzで回動させると、ある瞬間に速度Vで運
動しているそれぞれの腕部材4,5に、X軸方向の、相互
に逆向きのコリオリの力Fcxが発生する。
In such a vibration gyro, for example, each arm member 4,
An AC voltage is applied to the driving means 11 and 12 provided in 5 to cause the arm members 4 and 5 to vibrate symmetrically in the Y-axis direction by a piezoelectric method, an electromagnetic method, or the like, while the driving vibrator 7 is moved to the Z direction. When the arm members 4 and 5 that are moving around the axis at the angular velocity ωz move at the velocity V at a certain moment, Coriolis forces Fcx in the X-axis direction and in opposite directions are generated.

ここで、腕部材4,5の速度Vは交番的に変化するので、
コリオリの力Fcxは、両腕部材4,5の振動数で変調された
形で生じ、駆動振動子7は基台9に対してZ軸の周りに
ねじれ振動することになり、そのねじれ角は、コリオリ
の力Fcx、ひいては角速度ωzに比例する。
Here, since the speed V of the arm members 4 and 5 changes alternately,
The Coriolis force Fcx is generated in a form modulated by the frequency of the arm members 4 and 5, and the drive vibrator 7 is torsionally vibrated about the Z axis with respect to the base 9, and the torsion angle is , Coriolis force Fcx, and thus proportional to angular velocity ωz.

そこでこの従来装置では、そのねじれ振動の大きさを、
X軸方向へ突出する検知手段10により、圧電的方法、電
磁的方法などをもって検知することとしており、例え
ば、バイモルフ素子その他を用いた圧電的方法では、ね
じれ振動を検知手段10のたわみ振動に変換し、たわみ量
に応じてバイモルフ素子が発生する電荷を電圧として抽
出して検知することとしている。
Therefore, in this conventional device, the magnitude of the torsional vibration is
The detection means 10 protruding in the X-axis direction is used to detect by a piezoelectric method, an electromagnetic method, or the like. For example, in a piezoelectric method using a bimorph element or the like, torsional vibration is converted into flexural vibration of the detection means 10. However, the charges generated by the bimorph element are extracted as a voltage and detected according to the amount of deflection.

ところが、かかる従来技術にあっては、それぞれの腕部
材4,5の質量のアンバランス、長さのアンバランスなど
により、腕部材4,5の振動が、ベース部6の、Y軸方向
への不要な振動を引き起こすことに起因して、検知手段
10が、その不要な振動によって発生される信号をも出力
することになるため、角速度ωzが零であるにもかかわ
らず、コリオリの力を検知しているかの如き状態、すな
わち、オフセットを発生し、S/N比、ひいては検出感度
の低下をもたらすという問題があった。
However, in such a conventional technique, the vibration of the arm members 4 and 5 in the Y-axis direction of the base member 6 is caused by the unbalance of the mass and the length of the arm members 4 and 5. Detection means due to causing unwanted vibration
Since 10 also outputs the signal generated by the unnecessary vibration, even if the angular velocity ωz is zero, the state as if the Coriolis force is detected, that is, the offset is generated. , S / N ratio, and eventually, the detection sensitivity was lowered.

そこで、従来技術のかかる問題を解決すべく、出願人は
先に、S/N比のすぐれた高感度の振動ジャイロとして、
第12図に例示するように、駆動振動子7のベース部6か
らZ軸方向へ突出させて設けた支持部材8の一側面に、
Z軸方向へ分極処理した圧電材料と、この圧電材料の、
Y軸と直交する対抗面のそれぞれに設けた電極とからな
る検知手段13を、それの一方の電極を支持部材8に接触
させた状態で、X軸方向へ偏らせて固定してなる振動ジ
ャイロを提案した(特願平1−270366号)。
Therefore, in order to solve the problem of the conventional technology, the applicant first proposed as a highly sensitive vibration gyro with an excellent S / N ratio.
As illustrated in FIG. 12, on one side surface of the support member 8 provided so as to project from the base portion 6 of the drive vibrator 7 in the Z-axis direction,
Of the piezoelectric material polarized in the Z-axis direction and the piezoelectric material,
A vibrating gyroscope in which a detecting means 13 including electrodes provided on each of the opposing surfaces orthogonal to the Y axis is fixed while being biased in the X axis direction with one of the electrodes being in contact with the supporting member 8. Was proposed (Japanese Patent Application No. 1-270366).

この振動ジャイロでは、それぞれの腕部材4,5に、質
量,長さなどのアンバランスがあっても、検知手段13
は、それらのアンバランスに起因して発生する振動によ
っては、電極間に電荷を発生することがなく、コリオリ
の力FcxによってZ軸の周りに発生するねじれ振動の大
きさに応じた電荷だけを発生するので、腕部材のアンバ
ランスの影響を有効に取り除いて、検知感度を十分に向
上させることができる。
In this vibrating gyro, even if the arm members 4 and 5 have an imbalance in mass, length, etc., the detecting means 13
Does not generate electric charge between the electrodes due to the vibration generated due to their unbalance, and only the electric charge according to the magnitude of the torsional vibration generated around the Z axis by the Coriolis force Fcx. Since this occurs, the influence of the imbalance of the arm member can be effectively removed, and the detection sensitivity can be sufficiently improved.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、このような本出願人が本願に先行して提
案した技術では、Z軸の周りの角速度ωzだけが検出可
能であり、他の軸の周りの角速度は検出不能であるた
め、たとえば、映像撮影の際の撮影機の上下および左右
両方向の振れの防止や、飛翔体の運動制御のために二軸
の周りでの制御が必要となった場合には、二台の振動ジ
ャイロを用いることが必要になり、制御機内での振動ジ
ャイロの占める体積が過大となる問題があった。それゆ
えに、振動ジャイロの小型化や、二軸の周りでの角速度
の検出が可能な振動ジャイロの出現が強く望まれてい
た。
However, in the technique proposed by the applicant prior to the present application, only the angular velocity ωz around the Z axis can be detected, and the angular velocities around the other axes cannot be detected. When it is necessary to prevent the camera from swinging up and down and to the left and right when shooting, and to control the motion of the flying object around two axes, use two vibrating gyros. This is necessary, and there is a problem that the volume occupied by the vibration gyro in the controller becomes excessive. Therefore, miniaturization of the vibration gyro and appearance of the vibration gyro capable of detecting the angular velocity around the two axes have been strongly desired.

この発明は、このような要求を満たすべくなされたもの
であり、振動ジャイロの大型化をもたらすことなく、二
軸の周りの角速度を検出することができる二軸振動ジャ
イロを提供するものである。
The present invention has been made to meet such requirements, and provides a biaxial vibration gyro that can detect an angular velocity around two axes without increasing the size of the vibration gyro.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明の二軸振動ジャイロは、とくに、二本の腕部材
とベース部とからなる駆動振動子のベース部、好ましく
はその中央部分に、Z軸方向へ突出する支持部材を設
け、この支持部材の、Y軸と直交する一方の側面もしく
は対抗側面のそれぞれに、圧電材料と電極とからなる検
知手段の少なくとも二個を、X軸方向へ偏らせて取付け
たところにおいて、取付状態での検知手段の、前記圧電
材料を、YZ面と平行をなす面内で、Y軸とのなす角度θ
が nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理するとともに、その圧電材料の、
Y軸と直交する対抗面のそれぞれに電極を設けたもの、 もしくは、前記検知手段に代え、圧電材料を、YZ面と平
行をなす面内で、Y軸とのなす角度θが nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理し、その圧電材料の、Y軸と直交
する対抗面のそれぞれに電極を設けるとともに、それら
の電極の少なくとも一方をX軸方向に二分割することに
より検知手段を構成し、このような検知手段を、支持部
材の、Y軸と直交する少なくとも一側面に、たとえばそ
の全幅にわたって取付けたもの、 または、二本の腕部材とベース部材とからなる駆動振動
子のベース部、好ましくはその中央部分に、X軸方向へ
突出する支持部材を設け、この支持部材の、Y軸と直交
する一方の側面もしくは対抗側面のそれぞれに、圧電材
料と電極とからなる検知手段の少なくとも二個を、Z軸
方向へ偏らせて取付けたところにおいて、取付状態での
検知手段の、前記圧電材料を、YZ面と平行をなす面内
で、Y軸のとなす角度θが nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理するとともに、その圧電材料の、
Y軸と直交する対抗面のそれぞれに電極を設けたもの、 もしくは、前記検知手段に代えて、圧電材料を、YZ面と
平行をなす面内で、Y軸とのなす角度θが nπ<θ<nπ+π/2(nは整数) となる方向へ分極処理し、その圧電材料の、Y軸と直交
する対抗面のそれぞれに電極を設けるとともに、それら
の電極の少なくとも一方をZ軸方向に二分割することに
より検知手段を構成し、このような検知手段を、支持部
材の、Y軸と直交する少なくとも一側面に、たとえばそ
の全幅にわたって取付けたものである。
The biaxial vibrating gyroscope of the present invention is provided with a support member projecting in the Z-axis direction at the base portion of the drive vibrator, which is composed of two arm members and the base portion, preferably at the center portion thereof. When at least two detecting means composed of a piezoelectric material and an electrode are attached to one side surface or the opposite side surface orthogonal to the Y axis while being biased in the X axis direction, the detecting means in the attached state. Of the piezoelectric material in the plane parallel to the YZ plane and the angle θ with the Y axis.
Is polarized in the direction of nπ <θ <nπ + π / 2 (n is an integer), and the piezoelectric material
An electrode is provided on each of the opposing surfaces orthogonal to the Y axis, or instead of the detection means, the piezoelectric material is in a plane parallel to the YZ plane, and the angle θ with the Y axis is nπ <θ < nπ + π / 2 (n is an integer) is polarized, and electrodes are provided on each of the opposing surfaces of the piezoelectric material orthogonal to the Y axis, and at least one of these electrodes is divided into two in the X axis direction. The detection means is constituted by this, and such detection means is attached to at least one side surface of the support member orthogonal to the Y-axis, for example, over the entire width thereof, or consists of two arm members and a base member. A support member protruding in the X-axis direction is provided on the base portion of the drive vibrator, preferably in the central portion thereof, and a piezoelectric material and an electrode are provided on one side surface or an opposing side surface of the support member orthogonal to the Y-axis. Inspection consisting of When at least two of the knowing means are attached while being biased in the Z-axis direction, the angle θ formed by the Y-axis in the plane parallel to the YZ plane of the piezoelectric material of the detecting means in the attached state. Is polarized in the direction of nπ <θ <nπ + π / 2 (n is an integer), and the piezoelectric material
An electrode is provided on each of the opposing surfaces orthogonal to the Y axis, or instead of the detection means, the piezoelectric material is in a plane parallel to the YZ plane, and the angle θ with the Y axis is nπ <θ. Polarization is performed in the direction of <nπ + π / 2 (n is an integer), electrodes are provided on each of the opposing surfaces of the piezoelectric material orthogonal to the Y axis, and at least one of these electrodes is divided into two in the Z axis direction. Thus, the detection means is configured, and such detection means is attached to at least one side surface of the support member orthogonal to the Y axis, for example, over the entire width thereof.

〔作 用〕[Work]

先ずは、第13図に示すように、三次元座標系のZ軸方向
へ相互に平行に延在して、Y軸方向に所定の間隔をおい
て位置する二本の腕部材4,5の下端部を、Y軸方向へ延
びるベース部6によって一体的に連結してなる駆動振動
子7において、駆動振動子7の回動運動に伴って発生す
るコリオリの力と、このコリオリの力によって、駆動振
動子7に作用するモーメントとを考える。
First, as shown in FIG. 13, two arm members 4 and 5 that extend in parallel with each other in the Z-axis direction of the three-dimensional coordinate system and are located at a predetermined interval in the Y-axis direction are provided. In the drive vibrator 7 in which the lower end portion is integrally connected by the base portion 6 extending in the Y-axis direction, the Coriolis force generated by the rotational movement of the drive vibrator 7 and the Coriolis force Consider the moment acting on the drive vibrator 7.

腕部材4,5をY軸方向に対称振動させつつ、駆動振動子
7をZ軸の周りに角速度ωzで回動させると、それぞれ
の腕部材4,5に、前述したような、X軸方向の、相互に
逆向きのコリオリの力Fcxが発生する。これに加えて、
X軸の周りにまた角速度ωxで回動させると、それらの
腕部材4,5には、Z軸方向の、相互に逆向きのコリオリ
の力Fczも発生する。従って、駆動振動子全体としてみ
ると、そこには、Z軸とX軸との二軸の周りでの駆動運
動に基づき、コリオリの力Fcxに起因する、Z軸の周り
のモーメントMtzの他、コリオリの力Fczに起因する、X
軸の周りのモーメントMtxが作用する。
When the drive vibrator 7 is rotated around the Z axis at an angular velocity ωz while the arm members 4 and 5 are vibrated symmetrically in the Y axis direction, the respective arm members 4 and 5 are moved in the X axis direction as described above. , The mutually opposite Coriolis forces Fcx are generated. In addition to this,
When the arm members 4 and 5 are rotated around the X axis at the angular velocity ωx, Coriolis forces Fcz in the Z axis directions and in the opposite directions are also generated. Therefore, in terms of the drive oscillator as a whole, there is a moment Mtz about the Z axis caused by the Coriolis force Fcx based on the drive motion about the Z axis and the X axis. X due to Coriolis force Fcz
A moment Mtx about the axis acts.

そこで、第14図に例示するように、駆動振動子7のベー
ス部6、好ましくはその中央部分に、Z軸方向へ突出す
る支持部材8aを設け、この支持部材8aを図示しない基台
に固定した場合には、支持部材8aは、モーメントMtzに
よる、Z軸周りのねじれ変形と、モーメントMtxによ
る、Y軸方向のたわみ変形とを生じることになる。この
一方において、ベース部6の、これも好ましくは中央部
分に、図に仮想線で示すように、X軸方向へ突出する支
持部材8bを設け、その先端を図示しない基台に固定した
場合は、その支持部材8bは、モーメントMtzによる、Y
軸方向のたわみ変形と、モーメントMtxによる、X軸周
りのねじれ変形とを生じることになる。それ故に、駆動
用振動子7に、Z軸方向もしくはX軸方向へ突出する支
持部材を設け、その支持部材に生じるねじれ変形および
たわみ変形の双方を検知できる検知手段をそこに配設す
ることによって、2軸の周りの角速度ωz,ωxの両者を
検出可能な二軸振動ジャイロを構成することができる。
Therefore, as illustrated in FIG. 14, a support member 8a protruding in the Z-axis direction is provided at the base portion 6 of the drive vibrator 7, preferably at the center thereof, and the support member 8a is fixed to a base not shown. In this case, the support member 8a undergoes torsional deformation about the Z axis due to the moment Mtz and flexural deformation in the Y axis direction due to the moment Mtx. On the other hand, when the support member 8b protruding in the X-axis direction is provided at the center portion of the base portion 6, which is also preferably at the center portion, and its tip is fixed to a base not shown, , Its supporting member 8b is
Bending deformation in the axial direction and torsional deformation around the X axis due to the moment Mtx will occur. Therefore, the driving vibrator 7 is provided with a support member protruding in the Z-axis direction or the X-axis direction, and a detection means capable of detecting both torsional deformation and flexural deformation occurring in the support member is provided therein. A biaxial vibration gyro that can detect both angular velocities ωz and ωx around two axes can be configured.

次いで、ねじれ変形およびたわみ変形のそれぞれを検知
できる検知手段の作動原理について説明する。
Next, the operating principle of the detection means capable of detecting each of the torsional deformation and the flexural deformation will be described.

圧電材料に応力Tと電界とが加わった場合に発生する
電気変位を式にて表すと、 となり、圧電材料としてチタン酸ジルコン酸鉛を例にと
ると、応力Tだけが加わった場合の電気変位は、 で表される。
When the electric displacement generated when the stress T and the electric field are applied to the piezoelectric material is expressed by an equation, If lead zirconate titanate is used as an example of the piezoelectric material, the electric displacement when only the stress T is applied is It is represented by.

なおここにおいて、加わる応力T1〜T6は、第15図および
第16図で示される方向に作用するものとし、圧電材料は
白抜矢印で示すように、第3軸方向に分極されているも
のとする。
Here, the applied stresses T 1 to T 6 are assumed to act in the directions shown in FIGS. 15 and 16, and the piezoelectric material is polarized in the third axis direction as shown by the white arrow. I shall.

ここで、第17図に示すように、第1軸および第3軸を、
第2軸の周りに角度θだけ変位させてなるunw座標系内
に配置した圧電材料17に、応力が作用した場合について
考える。
Here, as shown in FIG. 17, the first axis and the third axis are
Consider a case where stress is applied to the piezoelectric material 17 arranged in the unw coordinate system which is displaced by the angle θ around the second axis.

第18図に示すように、u軸と直交する面に引張りまたは
圧縮応力σuが作用すると、第1軸に直行する面18に
は、 σθ=σu cos2θ ……(3) で表わされる引張りまたは圧縮応力が作用するととも
に、 τθ=−(σu sin 2θ)/2 ……(4) で表わされる剪断応力が作用する。
As shown in FIG. 18, when tensile or compressive stress σu acts on the surface orthogonal to the u axis, the surface 18 orthogonal to the first axis is expressed by σθ 1 = σu cos 2 θ (3) A tensile stress or a compressive stress acts, and a shear stress represented by τθ 1 =-(σu sin 2θ) / 2 (4) also acts.

また、第19図に示すように、v軸(第2軸)周りに剪断
応力τvが作用すると、第1軸と直交する面18には、 σθ=τv sin 2θ ……(5) で表わされる引張りまたは圧縮応力の他、 τθ=τv cos 2θ ……(6) で表わされる剪断応力が作用する。
Further, as shown in FIG. 19, when a shear stress τv acts on the v-axis (second axis), σθ 2 = τv sin 2θ (5) is expressed on the surface 18 orthogonal to the first axis. In addition to the tensile or compressive stress, the shear stress represented by τθ 2 = τv cos 2θ (6) acts.

同様にして、第3軸に直交する面には、引張りまたは圧
縮応力σuによって、 σθ′=σu cos2(θ+π/2)=σu sin2θ…(7) τθ′={−σu sin 2(θ+π/2)/2 =(σu sin 2θ)/2 ……(8) で表わされる引張りまたは圧縮応力と剪断応力とが作用
し、剪断応力τvによって、 σθ′=τv sin2(θ+π/2)=−τv sin2θ …
(9) τθ′=τv cos2(θ+π/2)=−τv cos2θ …(1
0) で表わされる引張りまたは圧縮応力と剪断応力とが作用
する。
Similarly, on the surface orthogonal to the third axis, due to tensile or compressive stress σu, σθ 1 ′ = σu cos 2 (θ + π / 2) = σu sin 2 θ (7) τθ 1 ′ = {− σu sin 2 (θ + π / 2) / 2 = (σu sin 2θ) / 2 (8) The tensile or compressive stress represented by (8) and the shear stress act, and the shear stress τv causes σθ 2 ′ = τv sin2 (θ + π / 2) = − τv sin2θ…
(9) τθ 2 ′ = τv cos2 (θ + π / 2) = − τv cos2θ (1
The tensile or compressive stress and the shear stress represented by 0) act.

これがため、第17図に示すような圧電材料17を、柱状部
材の側面に、w軸と直交する面w1,w2のいずれか一方が
接するように、たとえば第20図に示すように、基台19に
固定した柱状部材20に、面w1を接触させて接合した場合
は、柱状部材20に、w軸方向のたわみ変形およびu軸周
りのねじれ変形が生じると、圧電材料17には、そのたわ
み変形に起因する、u軸方向の圧縮または引張応力が発
生するとともに、ねじれ変形に起因する、v軸周りおよ
びw軸周りの剪断応力が発生することになる。
Therefore, the piezoelectric material 17 as shown in FIG. 17 is formed so that one of the surfaces w 1 and w 2 orthogonal to the w axis is in contact with the side surface of the columnar member, for example, as shown in FIG. When the surface w 1 is brought into contact with and bonded to the columnar member 20 fixed to the base 19, when the columnar member 20 undergoes bending deformation in the w-axis direction and twisting deformation around the u-axis, the piezoelectric material 17 is The compressive or tensile stress in the u-axis direction is generated due to the flexural deformation, and the shear stress around the v-axis and the w-axis is generated due to the torsional deformation.

参考までに、ねじれ変形による、v軸まわりおよびw軸
周りの剪断応力は、次のような原理で発生する。
For reference, shear stress around the v-axis and around the w-axis due to torsional deformation is generated according to the following principle.

第21図に示すように、基台19からu軸方向へ突出する、
直六面体形状の柱状部材20が、基台19の固定下で、偶力
Mtを受けて捩られる場合を考えると、その柱状部材20の
横断面寸法が2b×2hであるときには、第22図に示すよう
に横断面力の、任意の点P(v,w)での、w軸周りの剪
断応力τwおよびv軸周りの剪断応力τvはそれぞれ、 で与えられる。
As shown in FIG. 21, it projects from the base 19 in the u-axis direction,
When the columnar member 20 having a rectangular parallelepiped shape is fixed to the base 19,
Considering the case where the columnar member 20 is twisted by receiving Mt, when the cross-sectional dimension of the columnar member 20 is 2b × 2h, the cross-sectional force at an arbitrary point P (v, w) as shown in FIG. , The shear stress τw around the w axis and the shear stress τv around the v axis are respectively Given in.

従って、uvw座標系において、圧電材料にそれぞれの応
力σu,τvが作用すると、123座標系の第1軸と直交す
る面および第3軸と直交する面のそれぞれに囲まれた圧
電材料の小ユニットには、 T1=σθ+σθ=σu cos2θ+τv sin2θ ……(1
3) T3=σθ′+σθ′=σu sin2θ−τv sin2θ …
(14) T5=τθ+τθ=τv cos2θ−(σu sin2θ)/2…
(15) なる応力が作用することになり、第20図に示すようにし
て圧電材料17を柱状部材20に接合した場合において、そ
の圧電材料17の面w1,w2に電極を設けると、電気変位
は、 となる。
Therefore, when the respective stresses σu and τv act on the piezoelectric material in the uvw coordinate system, a small unit of the piezoelectric material surrounded by the planes orthogonal to the first axis and the third axis of the 123 coordinate system. , T 1 = σθ 1 + σθ 2 = σu cos 2 θ + τv sin2θ …… (1
3) T 3 = σθ 1 ′ + σθ 2 ′ = σu sin 2 θ−τv sin 2θ.
(14) T 5 = τθ 1 + τθ 2 = τv cos2θ- (σu sin2θ) / 2 ...
When the piezoelectric material 17 is bonded to the columnar member 20 as shown in FIG. 20, when electrodes are provided on the surfaces w 1 and w 2 of the piezoelectric material 17, The electrical displacement is Becomes

ここで、w軸が第3軸に対して角度θだけ変位している
ことを考慮すると、w軸方向の電気変位Dwは、 Dw=D1 sinθ+D3 cosθ ……(17) となり、従って、 Dw=d15{τv cos2θ−(σu sin2θ)/2}sinθ +{d31(σu cos2θ+τv sin2θ) +d33(σu sin2θ−τv sin2θ)}cosθ…(18) となる。
Here, considering that the w axis is displaced by the angle θ with respect to the third axis, the electrical displacement Dw in the w axis direction is Dw = D 1 sin θ + D 3 cos θ (17), and therefore Dw = d 15 {τv cos2θ- (σu sin2θ) / 2} to become sinθ + {d 31 (σu cos 2 θ + τv sin2θ) + d 33 (σu sin 2 θ-τv sin2θ)} cosθ ... (18).

ところで、前記(11),(12)式および(18)式から明
らかなように、第22図のvw座標系では、第1象現21と第
3象現23、第2象現22と第4象現24とで、それぞれの剪
断応力τw,τvの極性が相違するので、第20図の、w軸
と直交する面の全体に圧電材料を接合しただけでは、剪
断応力τvがたとえ発生していても、それによる電気変
位は全体として零となり、電極には電荷は発生しない。
By the way, as is clear from the equations (11), (12) and (18), in the vw coordinate system of FIG. 22, the first quadrant 21 and the third quadrant 23, the second quadrant 22 and the second quadrant 22 and the Since the polarities of the shear stresses τw and τv are different between the four quadrants 24, the shear stress τv is generated even if the piezoelectric material is bonded to the entire surface orthogonal to the w axis in FIG. However, the electric displacement due to this is zero as a whole, and no charge is generated at the electrodes.

加えて、角度θがnπ(nは整数)のときには、(18)
式から明らかなように、ねじれ変形による剪断応力τv
が発生していても、その剪断応力τvによる電気変位は
零となり、また、その角度θが、nπ+π/2(nは整
数)のときには、たわみ変形による、引張りもしくは圧
縮応力σuが発生していても、それによる電気変位は零
となるので、角度θが、nπ,nπ+π/2のときは、ねじ
れ変形とたわみ変形のいずれか一方に対して感度を有し
ないことになる。
In addition, when the angle θ is nπ (n is an integer), (18)
As is clear from the equation, the shear stress τv due to the torsional deformation
Even if the stress is generated, the electric displacement due to the shear stress τv becomes zero, and when the angle θ is nπ + π / 2 (n is an integer), the tensile or compressive stress σu is generated by the flexural deformation. However, since the electric displacement due to this is zero, when the angle θ is nπ, nπ + π / 2, there is no sensitivity to either torsional deformation or flexural deformation.

そこでこの発明では、基本的には、w軸となす角度θが nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理した圧電材料を主体として構成し
た二個の検知手段を、柱状部材の、w軸と直交する側面
に、v軸方向へ偏らせて接合することとし、これによっ
て、簡単な構造にして、二軸検知可能な小型の振動ジャ
イロを得ることとした。
Therefore, in the present invention, basically, two detection means mainly composed of a piezoelectric material polarized in a direction in which an angle θ formed with the w axis is nπ <θ <nπ + π / 2 (n is an integer), The columnar member is joined to the side surface orthogonal to the w-axis while being biased in the v-axis direction, whereby a simple structure and a small vibration gyro capable of biaxial detection are obtained.

なおここで、電気変位をより効果的に出力させるために
は、w軸と直交する面の、幅方向の中央部を鏡としてそ
の各半分に検知手段を接合することが好ましい。
Here, in order to output the electric displacement more effectively, it is preferable that the central portion in the width direction of the surface orthogonal to the w-axis be a mirror and the detection means be joined to each half thereof.

〔実施例〕〔Example〕

以下にこの発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の一実施例を示す斜視図であり、図
中、従来技術および本出願人の先行して提案した前記技
術で述べた部分と同様の部分は、それらと同一の番号で
示す。
FIG. 1 is a perspective view showing an embodiment of the present invention. In the figure, the same parts as those described in the prior art and the above-mentioned technology previously proposed by the applicant are designated by the same reference numerals. Indicate.

すなわち、4,5はそれぞれ、Z軸方向へ相互に平行に延
在して、Y軸方向に所定の間隔をおいて位置する腕部材
を示し、6は、それら腕部材4,5を、図では下端部にて
一体的に連結するベース部をそれぞれ示す。また、7
は、腕部材4,5とベース部6とからなる駆動振動子を示
し、この駆動振動子7は、そのベース部6、好ましくは
その中央部分からZ軸方向へ突設した支持部材8によっ
て基台9に固定されている。
That is, reference numerals 4 and 5 denote arm members that extend in parallel to each other in the Z-axis direction and are positioned at a predetermined interval in the Y-axis direction, and 6 indicates those arm members 4 and 5. Shows the base parts integrally connected at the lower end. Also, 7
Indicates a drive vibrator including the arm members 4 and 5 and the base portion 6, and the drive vibrator 7 is supported by a support member 8 protruding from the base portion 6, preferably the central portion thereof in the Z-axis direction. It is fixed to the table 9.

ここでこの例では、第2図に要部を拡大して示すところ
から明らかなように、支持部材8の、Y軸と直交する一
方の側面に、一つの検知手段30をX軸方向へ偏せて取付
けるとともに、Y軸と直交する他方の側面に、他の検知
手段30を、これもまたX軸方向へ偏せて取付けて、両検
知手段30を、支持部材8を隔てて対向させることにより
二軸振動ジャイロを構成する。
Here, in this example, as is apparent from the enlarged view of the main part in FIG. 2, one detection means 30 is offset in the X-axis direction on one side surface of the support member 8 orthogonal to the Y-axis. And the other detecting means 30 is also attached to the other side surface orthogonal to the Y-axis while being biased in the X-axis direction so that both detecting means 30 face each other with the support member 8 interposed therebetween. A biaxial vibrating gyro is constituted by.

なおここにおいて、XYZ座標系と、前述したuvw座標系と
は、X軸とv軸、Y軸とw軸、そしてZ軸とu軸をそれ
ぞれ対応させることによって共通の座標系となる。
Here, the XYZ coordinate system and the aforementioned uvw coordinate system become a common coordinate system by associating the X axis with the v axis, the Y axis with the w axis, and the Z axis with the u axis.

ところで、図示例のそれぞれの検知手段30は、圧電材料
31を、YZ面と平行をなす面内で、Y軸となす角度θが nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理したところにおいて、その圧電材
料31の、Y軸と直交する対向面のそれぞれに、その圧電
材料31と同幅の電極32を設けてなり、各検知手段30の一
方の電極32は支持部材8に面接触する。
By the way, each detecting means 30 in the illustrated example is a piezoelectric material.
When 31 is polarized in a direction parallel to the YZ plane in a direction in which the angle θ with the Y axis is nπ <θ <nπ + π / 2 (n is an integer), the Y axis of the piezoelectric material 31 An electrode 32 having the same width as that of the piezoelectric material 31 is provided on each of the opposing surfaces that are orthogonal to, and one electrode 32 of each detecting means 30 makes surface contact with the support member 8.

このことによれば、支持部材8に、w軸方向のたわみ変
形およびu軸周りのねじれ変形のそれぞれが生じたとき
に、一方の検知手段30、第2図では手前側の検知手段30
に、電気変位Dw1が Dw1=d15{τv cos2θ−(σu sin2θ)/2}sinθ +{d31(σu cos2θ+τv sin2θ) +d33(σu sin2θ−τv sin2θ)}cosθ……(18-1) の大きさで発生すると、図の後方側に位置する他方の検
知手段30の電気変位Dw2は、剪断応力τvの作用方向は
同方向で、引張りまたは圧縮応力τuの作用方向が反対
となることにより、 Dw2=d15{τv cos2θ+(σu sin2θ)/2}sinθ +{d31(−σu cos2θ+τv sin2θ) +d33(−σu sin2θ−τv sin2θ)}cosθ……(18-2) となる。そこで、(18−1)式と(18−2)式の和をと
ると、 Dw1+Dw2 =2τv(d15 cos2θ sinθ+d31 sin2θ cosθ −d33 sin2θ cosθ) ……(19) (18−1)式と(18−2)式の差をとると、 Dw1−Dw2 =2σu{(−d15(sin2θ sinθ)/2+d31 cos3θ +d33 sin2θ cosθ} ……(20) となり、和および差をとることにより、ねじれ変形およ
びたわみ変形のそれぞれを、相互に分離して検知するこ
とが可能となる。なお、加算もしくは減算のいずれか一
方だけを行えば、単軸検知として、それらの変形の一方
だけを検知し得ることは勿論である。
According to this, when the support member 8 undergoes bending deformation in the w-axis direction and twisting deformation around the u-axis, respectively, one detecting means 30, the detecting means 30 on the front side in FIG.
And the electrical displacement Dw 1 is Dw 1 = d 15 {τv cos 2θ− (σu sin2θ) / 2} sinθ + {d 31 (σu cos 2 θ + τv sin2θ) + d 33 (σu sin 2 θ−τv sin2θ)} cosθ …… When it occurs with the magnitude of (18-1), the electric displacement Dw 2 of the other detecting means 30 located on the rear side of the figure is that the acting direction of the shear stress τv is the same direction and the acting direction of the tensile or compressive stress τu. Is opposite, Dw 2 = d 15 {τv cos 2θ + (σu sin2θ) / 2} sinθ + {d 31 (−σu cos 2 θ + τv sin2θ) + d 33 (−σu sin 2 θ−τv sin2θ)} cosθ… … (18-2). Therefore, if the sum of equations (18-1) and (18-2) is taken, Dw 1 + Dw 2 = 2τv (d 15 cos2θ sinθ + d 31 sin2θ cosθ −d 33 sin2θ cosθ) (19) (18-1 ) And Eq. (18-2), Dw 1 −Dw 2 = 2σu {(− d 15 (sin2θ sinθ) / 2 + d 31 cos 3 θ + d 33 sin 2 θ cos θ} (20) , It is possible to detect the torsional deformation and the flexural deformation separately from each other by taking the sum and the difference. If only one of the addition and the subtraction is performed, the single axis detection is performed. Of course, only one of these deformations can be detected.

第3図(a)は、手前側の検知手段30の圧電材料31を角
度θの方向へ分極処理し、後方側の検知手段30の圧電材
料31を角度θ+πの方向へ分極処理した例であり、ここ
では、手前側の検知手段30に発生する電気変位Dw1が Dw1=d15{τv cos2θ−(σu sin2θ)/2}sinθ +{d31(σu cos2θ+τv sin2θ) +d33(σu sin2θ−τv sin2θ)}cosθ……(18-3) のとき、後方側の検知手段30の電気変位Dw2は、 Dw2=−d15{τv cos2θ+(σu sin2θ)/2}sinθ −{d31(−σu cos2θ+τv sin2θ) +d33(−σu sin2θ−τv sin2θ)}cosθ……(18-4) となる。従って、(18−3)式と(18−4)式との和 Dw1−Dw2 =2σu{−d15(sin2θ sinθ)/2 +d31 cos3θ+d33 sin2θ cosθ) ……(21) から、引張または圧縮応力σuを求めることができ、
(18−3)式と(18−4)式との差 Dw1+Dw2 =2τv{(d15(cos2θ sinθ+d31 sin2θ cosθ −d33 sin2θ cosθ) ……(22) より剪断応力τvを求めることができる。
FIG. 3A shows an example in which the piezoelectric material 31 of the detection means 30 on the front side is polarized in the direction of the angle θ, and the piezoelectric material 31 of the detection means 30 on the rear side is polarized in the direction of the angle θ + π. , Where the electrical displacement Dw 1 generated in the detection means 30 on the front side is Dw 1 = d 15 {τv cos2θ− (σu sin2θ) / 2} sinθ + {d 31 (σu cos 2 θ + τv sin2θ) + d 33 (σu sin 2 θ−τ v sin 2 θ)} cos θ (18-3), the electric displacement Dw 2 of the detection means 30 on the rear side is Dw 2 = −d 15 {τ v cos 2 θ + (σu sin 2 θ) / 2} sin θ − {D 31 (−σ u cos 2 θ + τ v sin 2 θ) + d 33 (−σ u sin 2 θ−τ v sin 2 θ)} cos θ (18-4). Therefore, the sum of equations (18-3) and (18-4) Dw 1 −Dw 2 = 2σu {−d 15 (sin2θ sinθ) / 2 + d 31 cos 3 θ + d 33 sin 2 θ cos θ) (21 ), The tensile or compressive stress σu can be obtained,
Difference between Eqs. (18-3) and (18-4) Dw 1 + Dw 2 = 2τv {(d 15 (cos2θ sinθ + d 31 sin2θ cosθ −d 33 sin2θ cosθ) …… (22) Obtain the shear stress τv You can

なおこのことは、第3図(b)に示すように、支持部材
8の、Y軸と直交する一方の側面に、二個の検知手段30
を、X軸方向の逆方向へそれぞれ偏らせて取付けるとと
もに、一方の検知手段30の圧電材料31を、Y軸に対して
角度θおよびθ+πの方向へそれぞれ分極処理した場合
においても同様である。
As shown in FIG. 3 (b), this means that two detection means 30 are provided on one side surface of the support member 8 orthogonal to the Y axis.
The same applies to the case where the piezoelectric materials 31 of the one detecting means 30 are polarized in the directions opposite to the X-axis direction, and the piezoelectric material 31 of one of the detecting means 30 is polarized in the directions of the angles θ and θ + π with respect to the Y-axis.

以上に述べたような二個一対の検知手段30を、第1図に
示すような支持部材8に適用することにより、Z軸周り
の角速度ωzにより発生されるコリオリの力Fcxに基づ
く、支持部材8のねじれ変形が、剪断応力として検知さ
れ、また、X軸周りの角速度ωxによって発生されるコ
リオリの力Fczに基づく、支持部材8のたわみ変形が、
引張りまたは圧縮応力として検知されることになる。
By applying the pair of two detecting means 30 as described above to the supporting member 8 as shown in FIG. 1, the supporting member based on the Coriolis force Fcx generated by the angular velocity ωz around the Z axis. The torsional deformation of 8 is detected as shear stress, and the flexural deformation of the support member 8 based on the Coriolis force Fcz generated by the angular velocity ωx about the X axis is
It will be sensed as a tensile or compressive stress.

ここで、支持部材の突出方向を、第1図に示すところと
は逆に、Z軸の正方向とすることも可能であり、このこ
とによっても、図示例と同様の効果をもたらすことがで
きる。
Here, the projecting direction of the supporting member can be the positive direction of the Z axis, which is opposite to that shown in FIG. 1, and this also can bring about the same effect as the illustrated example. .

第4図は、他の実施例を示す斜視図であり、これは、支
持部材8を板状材料にて構成するとともに、その支持部
材8の、Y軸と直交するそれぞれの面に取付けた検知手
段30を、第5図に示すように構成したものであり、板状
支持部材8とほぼ等しい幅を有する圧電材料31を、YZ面
と平行な面内でY軸とのなす角度θが nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理し、その圧電材料31の、Y軸と直
交する対向面のそれぞれに、圧電材料31と同幅の電極32
を設けたところにおいて、それらの一方の電極を、X軸
方向に二分割、好ましくは二等分してなる小電極32a,32
bとすることによって検知手段30としたものである。
FIG. 4 is a perspective view showing another embodiment, in which the support member 8 is made of a plate-shaped material and is attached to each surface of the support member 8 orthogonal to the Y axis. The means 30 is configured as shown in FIG. 5, and the angle θ between the piezoelectric material 31 having a width substantially equal to that of the plate-like support member 8 and the Y axis in a plane parallel to the YZ plane is nπ. Polarization processing is performed in the direction of <θ <nπ + π / 2 (n is an integer), and an electrode 32 having the same width as the piezoelectric material 31 is formed on each of the opposing surfaces of the piezoelectric material 31 that are orthogonal to the Y axis.
Where one of the electrodes is divided into two in the X-axis direction, and is preferably divided into two small electrodes 32a, 32
By setting b, the detection means 30 is provided.

かかる検知手段30を、支持部材8の、Y軸と直交するそ
れぞれの面に取付けてなる図示の適用状態は、外観とし
ては、一般の厚み振動子によって弾性板を挟み込んだバ
イモルフと同様である。
The illustrated applied state in which the detection means 30 is attached to each surface of the support member 8 orthogonal to the Y axis has an appearance similar to that of a bimorph in which an elastic plate is sandwiched between general thickness vibrators.

この実施例では、コリオリの力Fcx,Fczのそれぞれに対
し、第1図に示したものと同様の機能を発揮させること
ができる。
In this embodiment, the same functions as those shown in FIG. 1 can be exhibited for each of the Coriolis forces Fcx, Fcz.

ところで、検知手段30は、第5図に示すところにおい
て、支持部材側に位置する電極だけを分割することもで
きる他、両電極をともに分割することもでき、また、支
持部材8の、Y軸と直交するいずれか一方の側面だけに
それを取付けることによって使用に供することもでき
る。
By the way, as shown in FIG. 5, the detecting means 30 can divide only the electrode positioned on the side of the supporting member, or can divide both electrodes together, and the Y-axis of the supporting member 8 can be divided. It can also be used by mounting it on only one side that is orthogonal to the.

第6図、支持部材の変更例を示す斜視図であり、これ
は、ベース部6の、好ましくは中央部分からX軸方向へ
突設した支持部材38を図示しない基台に固定したところ
において、支持部材38の、Y軸と直交する対向面のそれ
ぞれに、検知手段30を、Z軸方向の一方側へ偏らせて取
付けたものである。
FIG. 6 is a perspective view showing a modified example of the support member. This is a state in which a support member 38 protruding from the central portion of the base portion 6, preferably in the X-axis direction, is fixed to a base not shown, The detection means 30 is attached to each of the opposing surfaces of the support member 38 that are orthogonal to the Y axis, with the detection means 30 biased to one side in the Z axis direction.

なおこの例では、XYZ座標系と、前述したuvw座標系と
は、X軸と−u軸,Y軸とw軸、そしてZ軸とv軸をそれ
ぞれ対応させることによって共通の座標系となる。
In this example, the XYZ coordinate system and the uvw coordinate system described above become a common coordinate system by associating the X axis with the −u axis, the Y axis with the w axis, and the Z axis with the v axis.

ここにおける検知手段30は、第7図に示すところから明
らかなように、圧電材料31を、XY面と平行をなす面内
で、Y軸となす角度θが nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理するとともに、その圧電材料31
の、Y軸と直交する対向面のそれぞれに電極32を設ける
ことによって構成することができる。
As is apparent from FIG. 7, the detecting means 30 in this case has an angle θ with the Y axis of the piezoelectric material 31 in a plane parallel to the XY plane as nπ <θ <nπ + π / 2 (n Is an integer) and the piezoelectric material 31
Can be configured by providing the electrodes 32 on each of the facing surfaces orthogonal to the Y axis.

この例の二軸振動ジャイロによれば、Z軸周りの角速度
ωzによって発生するコリオリの力Fcxに基づく、支持
部材38のたわみ変形が、引張りまたは圧出応力として検
知され、また、X軸周りの角速度ωxによって発生する
コリオリの力Fczに基づく、支持部材38のねじれ変形
が、剪断応力として検知されることになる。
According to the biaxial vibration gyro of this example, the flexural deformation of the support member 38 based on the Coriolis force Fcx generated by the angular velocity ωz about the Z axis is detected as a tensile or extruding stress, and also about the X axis. The torsional deformation of the support member 38 based on the Coriolis force Fcz generated by the angular velocity ωx will be detected as shear stress.

なお、たわみ変形による引張りまたは圧縮応力σuと、
ねじれ変形による剪断応力τvとの電気変位での分離
は、第2図について述べたところと同様にして行うこと
ができる。
In addition, the tensile or compressive stress σu due to the flexural deformation,
The separation from the shear stress τv due to the torsional deformation and the electric displacement can be performed in the same manner as described with reference to FIG.

第8図は、検知手段の他の例を示す斜視図であり、支持
部材38の、Y軸と直交する対向面のそれぞれに、支持部
材38とほぼ同幅の検知手段30を取付けたものである。
FIG. 8 is a perspective view showing another example of the detecting means, in which the detecting means 30 having substantially the same width as the supporting member 38 is attached to each of the facing surfaces of the supporting member 38 which are orthogonal to the Y axis. is there.

この例の検知手段30は、第9図に示すように、板状をな
す支持部材38とほぼ同幅の圧電材料31を、XY面と平行な
面内で、Y軸となす角度θが nπ<θ<nπ+π/2 (nは整数) となる方向へ分極処理し、その圧電材料の、Y軸と直交
する対向面のそれぞれに電極32を設けるとともに、それ
らの電極の一方を、Z軸方向に二分割、好ましくは二等
分してなる小電極32a,32bとすることによって構成した
ものである。
As shown in FIG. 9, the detecting means 30 in this example has a piezoelectric material 31 having substantially the same width as that of the plate-shaped supporting member 38 in a plane parallel to the XY plane and an angle θ with the Y axis of nπ. Polarization is performed in the direction of <θ <nπ + π / 2 (n is an integer), and electrodes 32 are provided on each of the opposing surfaces of the piezoelectric material orthogonal to the Y axis, and one of these electrodes is placed in the Z axis direction. Is divided into two, preferably into two small electrodes 32a and 32b.

かかる検知手段30を取付けた振動ジャイロは、コリオリ
の力Fcx,Fczに対し、第6図に示したものと同様の機能
を発揮することができる。
The vibrating gyro to which the detecting means 30 is attached can exhibit the same function as that shown in FIG. 6 against the Coriolis forces Fcx and Fcz.

第10図は、この発明のさらに他の実施例を示す斜視図で
あり、これは、2本の腕部材4,5のそれぞれを、それら
の長さ方向の中央部位置で、ベース部6にて一体的に連
結することによって、正面形状がほぼH字状をなす駆動
振動子7を構成し、そしてそのベース部6から、Z軸の
正負両方向へ突出させた支持部材8のそれぞれに、検知
手段30を、第1図に示す実施例と同様にして取付けたも
のである。
FIG. 10 is a perspective view showing still another embodiment of the present invention, in which each of the two arm members 4 and 5 is attached to the base portion 6 at their longitudinal central positions. Of the driving members 7 having a substantially H-shaped front shape by integrally connecting them to each other, and detecting from the base portion 6 to each of the supporting members 8 protruding in both the positive and negative directions of the Z axis. The means 30 is attached in the same manner as the embodiment shown in FIG.

なお、この例においてもまた、検知手段の型式を適宜に
変更できることはもちろんである。
Also in this example, it goes without saying that the type of the detecting means can be changed appropriately.

〔発明の効果〕〔The invention's effect〕

以上に述べたところから明らかなように、この発明によ
れば、Z軸の周りの角速度と、X軸の周りの角速度とを
単一の装置にて検出することができ、従来装置の二台分
の機能を、一台の装置にて発揮させることが可能とな
る。
As is apparent from the above description, according to the present invention, the angular velocity around the Z axis and the angular velocity around the X axis can be detected by a single device, and two conventional devices can be used. It becomes possible to exert the minute function with one device.

【図面の簡単な説明】[Brief description of drawings]

第1図,第4図,第6図,第8図および第10図はそれぞ
れ、この発明の実施例を示す斜視図、 第2図,第3図,第5図,第7図および第9図はそれぞ
れ、検知手段の構成例を示す斜視図、 第11図は従来技術を、第12図は本出願人が先に本願に先
行して提案した技術をそれぞれ示す斜視図、 第13図〜第22図はそれぞれ、この発明の作動原理の説明
図である。 4,5……腕部材、6……ベース部、 7……駆動振動子、8,38……支持部材、 9……基台、30……検知手段、31……圧電材料、 32……電極、32a,32b……小電極。
FIGS. 1, 4, 6, 8, and 10 are perspective views showing an embodiment of the present invention, FIG. 2, FIG. 3, FIG. 5, FIG. 7, FIG. Each of the drawings is a perspective view showing a configuration example of the detection means, FIG. 11 is a conventional technology, FIG. 12 is a perspective view showing a technology previously proposed by the applicant prior to the present application, and FIGS. FIG. 22 is an explanatory diagram of the operating principle of the present invention. 4, 5 ... Arm member, 6 ... Base part, 7 ... Drive vibrator, 8,38 ... Support member, 9 ... Base, 30 ... Detection means, 31 ... Piezoelectric material, 32 ... Electrodes, 32a, 32b ... Small electrodes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】三次元座標系のZ軸方向へ相互に平行に延
在して、Y軸方向に間隔をおいて位置する二本の腕部材
と、これらの腕部材を一体的に連結するベース部とで駆
動振動子を構成し、この駆動振動子のベース部に乙軸方
向へ突出する支持部材を設け、この支持部材の、Y軸と
直交する側面に、圧電材料と電極とからなる検知手段の
少なくとも二個を、X軸方向へ偏らせて取付けた振動ジ
ャイロであって、 取付状態での検知手段の、前記圧電材料を、YZ面と平行
をなす面内で、Y軸とのなす角度θが となる方向へ分極処理するとともに、その圧電材料の、
Y軸と直交する対抗面のそれぞれに電極を設けてなる二
軸振動ジャイロ。
1. Two arm members extending parallel to each other in the Z-axis direction of a three-dimensional coordinate system and positioned at intervals in the Y-axis direction, and these arm members are integrally connected. A drive oscillator is configured with the base portion, a support member protruding in the second axis direction is provided on the base portion of the drive oscillator, and a piezoelectric material and an electrode are formed on a side surface of the support member orthogonal to the Y axis. A vibrating gyroscope in which at least two of the detecting means are attached so as to be offset in the X-axis direction, and the piezoelectric material of the detecting means in the attached state is connected to the Y-axis in a plane parallel to the YZ plane. Angle θ Polarization of the piezoelectric material,
A biaxial vibrating gyroscope in which electrodes are provided on opposite surfaces orthogonal to the Y axis.
【請求項2】三次元座標系のZ軸方向へ相互に平行に延
在して、Y軸方向に間隔をおいて位置する二本の腕部材
と、これらの腕部材を一体的に連結するベース部とで駆
動振動子を構成し、この駆動振動子のベース部にZ軸方
向へ突出する支持部材を設け、この支持部材の、Y軸と
直交する少なくとも一側面に、圧電材料と電極とからな
る検知手段を取付けた振動ジャイロであって、 取付状態での検知手段の、前記圧電材料を、YZ面と平行
をなす面内で、Y軸とのなす角度θが となる方向へ分極処理し、その圧電材料の、Y軸と直交
する対抗面のそれぞれに電極を設けるとともに、それら
の電極の少なくとも一方を、X軸方向に二分割してなる
二軸振動ジャイロ。
2. Two arm members extending parallel to each other in the Z-axis direction of the three-dimensional coordinate system and spaced apart in the Y-axis direction, and these arm members are integrally connected. A drive oscillator is configured with the base portion, a support member protruding in the Z-axis direction is provided on the base portion of the drive oscillator, and the piezoelectric material and the electrode are provided on at least one side surface of the support member orthogonal to the Y-axis. A vibration gyro to which a detecting means consisting of is attached, wherein the angle θ formed by the detecting means in the attached state with the Y axis in a plane parallel to the YZ plane is A biaxial vibrating gyroscope which is polarized in a direction such that an electrode is provided on each of the opposing surfaces of the piezoelectric material orthogonal to the Y axis, and at least one of the electrodes is divided into two in the X axis direction.
【請求項3】三次元座標系のZ軸方向へ相互に平行に延
在して、Y軸方向に間隔をおいて位置する二本の腕部材
と、これらの腕部材を一体的に連結するベース部とで駆
動振動子を構成し、この駆動振動子のベース部にX軸方
向へ突出する支持部材を設け、この支持部材の、Y軸と
直交する側面に、圧電材料と電極とからなる検知手段の
少なくとも二個を、Z軸方向へ偏らせて取付けた振動ジ
ャイロであって、 取付状態での検知手段の、前記圧電材料を、XY面と平行
をなす面で、Y軸とのなす角度θが となる方向へ分極処理するとともに、その圧電材料の、
Y軸と直交する対抗面のそれぞれに電極を設けてなる二
軸振動ジャイロ。
3. Two arm members extending in parallel to each other in the Z-axis direction of the three-dimensional coordinate system and positioned at intervals in the Y-axis direction, and these arm members are integrally connected. A drive oscillator is configured with the base portion, a support member projecting in the X-axis direction is provided on the base portion of the drive oscillator, and a piezoelectric material and an electrode are formed on a side surface of the support member orthogonal to the Y-axis. A vibrating gyroscope in which at least two of the detecting means are attached so as to be offset in the Z-axis direction, and the piezoelectric material of the detecting means in the attached state is formed in a plane parallel to the XY plane with the Y-axis. Angle θ is Polarization of the piezoelectric material,
A biaxial vibrating gyroscope in which electrodes are provided on opposite surfaces orthogonal to the Y axis.
【請求項4】三次元座標系のZ軸方向へ相互に平行に延
在して、Y軸方向に間隔をおいて位置する二本の腕部材
と、これらの腕部材を一体的に連結するベース部とで駆
動振動子を構成し、この駆動振動子のベース部にX軸方
向へ突出する支持部材を設け、この支持部材の、Y軸と
直交する少なくとも一側面に、圧電材料と電極とからな
る検知手段を取付けた振動ジャイロであって、 取付状態での検知手段の、前記圧電材料を、XY面と平行
をなす面内で、Y軸とのなす角度θが となる方向へ分極処理し、その圧電材料の、Y軸と直交
する対抗面のそれぞれに電極を設けるとともに、それら
の電極の少なくとも一方をZ軸方向に二分割してなる二
軸振動ジャイロ。
4. Two arm members extending parallel to each other in the Z-axis direction of the three-dimensional coordinate system and spaced apart in the Y-axis direction, and these arm members are integrally connected. A drive oscillator is configured with the base portion, a support member protruding in the X-axis direction is provided on the base portion of the drive oscillator, and the piezoelectric material and the electrode are provided on at least one side surface of the support member orthogonal to the Y-axis. A vibration gyro to which a detecting means consisting of is attached, wherein the angle θ formed by the detecting means in the attached state with the Y axis in a plane parallel to the XY plane is A biaxial vibrating gyroscope which is polarized in a direction such that an electrode is provided on each of the opposing surfaces of the piezoelectric material orthogonal to the Y axis, and at least one of the electrodes is divided into two in the Z axis direction.
JP2130324A 1990-05-22 1990-05-22 Biaxial vibration gyro Expired - Lifetime JPH0769180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2130324A JPH0769180B2 (en) 1990-05-22 1990-05-22 Biaxial vibration gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2130324A JPH0769180B2 (en) 1990-05-22 1990-05-22 Biaxial vibration gyro

Publications (2)

Publication Number Publication Date
JPH0425714A JPH0425714A (en) 1992-01-29
JPH0769180B2 true JPH0769180B2 (en) 1995-07-26

Family

ID=15031622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2130324A Expired - Lifetime JPH0769180B2 (en) 1990-05-22 1990-05-22 Biaxial vibration gyro

Country Status (1)

Country Link
JP (1) JPH0769180B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6282956B1 (en) 1994-12-29 2001-09-04 Kazuhiro Okada Multi-axial angular velocity sensor
JP3332460B2 (en) * 1993-04-16 2002-10-07 キヤノン株式会社 Angular velocity detection method and vibration gyro
JP3549590B2 (en) * 1994-09-28 2004-08-04 和廣 岡田 Acceleration / angular velocity sensor
JP4702942B2 (en) * 2005-10-14 2011-06-15 Necトーキン株式会社 Vibrating gyro element and vibrating gyro

Also Published As

Publication number Publication date
JPH0425714A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
JPH0894661A (en) Acceleration and angular-velocity densor using piezoelectric element
JP3332460B2 (en) Angular velocity detection method and vibration gyro
JPH0769180B2 (en) Biaxial vibration gyro
JPH02218914A (en) Vibrating gyroscope
JPH0429012A (en) Vibration gyro
JP3323361B2 (en) Vibratory gyroscope
JP2004354358A (en) Angular acceleration sensor
JP3439861B2 (en) Vibratory gyroscope
JPH0760093B2 (en) Vibrating gyro
JP3136544B2 (en) Gyro device
JPS60216210A (en) Angular velocity sensor
JP2575212B2 (en) Vibrating gyro
JPH0748045B2 (en) Vibrating gyro
JPH0748046B2 (en) Vibrating gyro
JPH0786415B2 (en) Vibrating gyro
JP3830056B2 (en) Piezoelectric vibration gyro
JPH03122518A (en) Oscillating gyro
JPS61240115A (en) Angular velocity sensor
JPS6342417A (en) Piezoelectric body angular velocity sensor
JPH03150409A (en) Vibration gyro
JPH0748047B2 (en) Vibrating gyro
JPH0921646A (en) Vibrational angular velocity meter
JP2003139538A (en) Angular velocity sensor
JPH0769179B2 (en) Vibrating gyro
JPH0783668A (en) Piezoelectric vibration gyro