JPH0769134B2 - Insulated metal wire group spacing measurement method - Google Patents

Insulated metal wire group spacing measurement method

Info

Publication number
JPH0769134B2
JPH0769134B2 JP62333805A JP33380587A JPH0769134B2 JP H0769134 B2 JPH0769134 B2 JP H0769134B2 JP 62333805 A JP62333805 A JP 62333805A JP 33380587 A JP33380587 A JP 33380587A JP H0769134 B2 JPH0769134 B2 JP H0769134B2
Authority
JP
Japan
Prior art keywords
metal wire
wire group
magnetic flux
flat
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62333805A
Other languages
Japanese (ja)
Other versions
JPH01176905A (en
Inventor
東治 金
文彦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP62333805A priority Critical patent/JPH0769134B2/en
Publication of JPH01176905A publication Critical patent/JPH01176905A/en
Publication of JPH0769134B2 publication Critical patent/JPH0769134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフラットケーブルの心線導体のように絶縁導体
が平帯状に並置された金属線群の金属線間隔を測定する
方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for measuring a metal wire interval of a metal wire group in which insulated conductors are juxtaposed in a flat band like a core wire conductor of a flat cable. .

[従来の技術] 多数の絶縁心線導体を平行に並べて平帯状に形成したフ
ラットケーブルはOA機器等の普及にともなって需要が増
大しているが、そのケーブル端末の接続作業に際し、密
に並ぶ多数の細い心線導体の端末をコネクタに接続する
作業は手数を要し容易でないので接続作業を自動化する
ことが望まれている。このような多数のフラットケーブ
ルのコネクタ接続作業が自動化されるためには各心線導
体間の間隔が規定値になっていることが必要なので、各
心線導体間の間隔を正確に測定しなければならないが、
従来はこの心線導体間の間隔を目視によって測定してい
た。
[Prior Art] Demand for flat cables in which a large number of insulated core conductors are arranged in parallel and formed into a flat band has been increasing with the spread of OA equipment, but when connecting the cable terminals, the flat cables are closely arranged. Since it is laborious and not easy to connect the ends of many thin core conductors to the connector, it is desired to automate the connecting work. In order to automate the connector connection work for such a large number of flat cables, it is necessary that the spacing between the core conductors be a specified value, so the spacing between the core conductors must be measured accurately. I have to
Conventionally, the distance between the core conductors has been visually measured.

フラットケーブルのように多数の細い金属線が絶縁され
平帯状に平行して蜜に並ぶものではないがコンクリート
円柱内部の直線状鉄筋の主筋に円周方向にスパイラル状
にスパイラル筋が連結された芯材の配列間隔を検出する
ために、コイルとスパイラル筋の間の相互インダクタン
スが大になるように検出コイルの辺長をスパイラル筋の
ピッチと同一に形成し、このコイルをコンクリート円柱
の側面に添わせて、コイル磁束変化によりスパイラル筋
のピッチを検出するようにした特開昭52−4262号の配列
間隔の検出方法が公知である。
Unlike flat cables, many thin metal wires are insulated and are not parallel to each other in a flat strip, but cores of spiral reinforcements connected in a spiral direction in the circumferential direction to the main reinforcements of linear reinforcement inside a concrete cylinder. In order to detect the arrangement interval of the material, the side length of the detection coil is formed to be the same as the pitch of the spiral streak so that the mutual inductance between the coil and the spiral streak is large, and this coil is attached to the side of the concrete cylinder. In addition, there is known a method for detecting the arrangement interval of Japanese Patent Laid-Open No. 52-4262, in which the pitch of the spiral muscle is detected by the change of the magnetic flux of the coil.

また、歯車の回転数を検出するために、歯車のピッチを
検出するコイルのヨークをテーパー状に形成して磁束密
度が飽和しないようにし、このテーパー状ヨークの小径
部端面の径を歯車の歯ピッチに等しく形成して、外周に
コイルを巻装した検出コイルの先端を、回転する歯車に
対向させ、磁束変化により歯車の回転数を検出するよう
にした実開昭58−80518号の電磁誘導式検出器が公知で
ある。
In order to detect the rotation speed of the gear, the yoke of the coil that detects the pitch of the gear is formed in a tapered shape so that the magnetic flux density is not saturated, and the diameter of the end face of the small diameter part of this tapered yoke is set to the gear tooth. Electromagnetic induction of No. Sho 58-80518, in which the tip of a detection coil, which is formed with the same pitch as the pitch and has a coil wound around its outer circumference, faces the rotating gear and detects the number of rotations of the gear by changing the magnetic flux. Type detectors are known.

また、回転する歯車に先端を対向させ磁束変化により歯
車の回転数を検出するコイルの漏洩磁束を少なくするた
めに、磁性ヨークの中間に永久磁石を挾持した実開昭61
−149822号の歯車センサが公知である。
Also, in order to reduce the leakage magnetic flux of the coil that detects the number of rotations of the gear by changing the magnetic flux with the tip facing the rotating gear, a permanent magnet is sandwiched between the magnetic yokes.
A gear sensor of -149822 is known.

[発明が解決しようとする問題点] 前記した従来のようにフラットケーブルの密に並ぶ多数
の細い心線導体間の間隔を目視により測定するのでは、
効率が悪いばかりでなく、機器の精密化にともない高精
度が要求されるのに正確な測定結果を得ることが困難で
あり、コネクタ接続作業の自動化が容易でないという問
題点がある。
[Problems to be Solved by the Invention] As described above, by visually measuring the interval between a large number of thin core conductors closely arranged in a flat cable,
Not only is the efficiency low, but it is difficult to obtain accurate measurement results because high precision is required as the equipment becomes more precise, and it is not easy to automate the connector connection work.

また、前記特許出願公開のコンクリート円柱のスパイラ
ル筋の配列間隔の検出方法は、コイルの辺長をスパイラ
ル筋のピッチと同一に形成しなければならないので、ス
パイラル筋の間隔が変るごとにコイルの寸法を変更しな
ければならず、測定するときは必ずスパイラル筋2本づ
つを対象にしなければならないという問題点があり、こ
れは多数の細い金属線が絶縁され平帯状に平行して蜜に
並ぶフラットケーブルのような心線導体群の間隔測定に
は適用することができない。
Further, the method for detecting the arrangement interval of the spiral reinforcements of the concrete cylinder disclosed in the above-mentioned patent application requires that the side length of the coil be formed to be the same as the pitch of the spiral reinforcements, so that the coil size changes every time the spacing of the spiral reinforcements changes. Has to be changed, and when measuring, it is necessary to target every two spiral muscles. This is a flat line where a number of thin metal wires are insulated and parallel to each other in a flat strip. It cannot be applied to the distance measurement of a core conductor group such as a cable.

また、前記実用新案出願公開の歯車の回転数を検出する
電磁誘導式検出器および歯車センサも、フラットケーブ
ルのように多数の細い心線導体群が平帯状に密に並ぶ心
線導体間隔の測定に使用することができない。
Further, the electromagnetic induction type detector and gear sensor for detecting the number of rotations of the gear of the above-mentioned utility model application also measure the core conductor spacing in which a large number of thin core conductor groups are densely arranged in a flat band like a flat cable. Can not be used for.

本発明はフラットケーブルの心線導体のように細い絶縁
心線導体群が平帯状に密に並ぶ導体金属線間の間隔を正
確に効率良く測定することができる絶縁金属線群間隔測
定方法を提供することを目的とする。
The present invention provides an insulated metal wire group spacing measuring method capable of accurately and efficiently measuring the spacing between conductor metal wires in which thin insulated core wire conductor groups, such as the core wire conductors of a flat cable, are densely arranged in a flat band. The purpose is to do.

[問題点を解決するための手段] 前記の問題点を解決するために本発明の絶縁金属線群間
隔測定方法は、2個の相対向する鋭角尖端3、4を形成
した磁気ヘッドに高周波励磁コイル6を設けて前記鋭角
尖端3、4の対向間のギャップに磁束密度分布に不均一
な高周波磁界を形成し、前記の相対向する2個の鋭角尖
端3、4を平帯状に平行する絶縁金属線群を挾む両側に
配置し、前記平帯状平行絶縁金属線群を前記磁気ヘッド
の相対向する鋭角尖端3、4間に置いて磁束が前記絶縁
金属線群を横切る方向に前記の磁気ヘッドと平帯状平行
絶縁金属線群とを相対的に移動させ、前記磁気ヘッドに
設けたパルス信号検出コイル7で検出される各パルス信
号の間隔時間を測定することにより前記平帯状平行絶縁
金属線群の各金属線間の間隔を測定することを特徴とす
る方法である。
[Means for Solving the Problems] In order to solve the above problems, the insulated metal wire group interval measuring method according to the present invention is high-frequency excited by a magnetic head having two sharply facing sharp tips 3 and 4. A coil 6 is provided to form a high-frequency magnetic field having a non-uniform magnetic flux density distribution in the gap between the opposed acute-angled tips 3 and 4, and insulates the two opposed acute-angled tips 3 and 4 into a flat strip shape. The metal wire groups are arranged on both sides of the magnetic wire group, and the flat strip-shaped parallel insulating metal wire groups are placed between the acute-angled sharp tips 3 and 4 of the magnetic head so that the magnetic flux crosses the insulating metal wire groups. The flat strip-shaped parallel insulated metal wire is moved by relatively moving the head and the flat strip parallel insulated metal wire group, and the interval time of each pulse signal detected by the pulse signal detection coil 7 provided in the magnetic head is measured. Measure the spacing between each metal wire in the group It is a method characterized by that.

[作用] 前記の高周波励磁コイルは磁気ヘッドのギャップに高周
波磁界を形成し、2個の相対向する鋭角尖端3、4は、
ギャップにおける磁束密度分布を不均一な分布にしてそ
の鋭角尖端に集中磁束を生じさせるとともに、ギャップ
に置かれた金属線群のうち相対向する鋭角尖端3、4の
直下に位置する中央の金属線を横切る磁束の密度を最大
にする。
[Operation] The high-frequency exciting coil forms a high-frequency magnetic field in the gap of the magnetic head, and the two acute-angled tips 3 and 4 facing each other are
The magnetic flux density distribution in the gap is made non-uniform to generate a concentrated magnetic flux at the sharp tip, and the central metal wire located directly under the opposite sharp tip 3, 4 of the metal wire group placed in the gap. Maximize the density of the magnetic flux across.

磁気ヘッドの2個の鋭角尖端3、4を相対向させて平帯
状平行絶縁金属線群を挾む両側に配置し、前記のような
磁束分布を形成する2個の相対向する鋭角尖端3、4間
のギャップに平帯状平行絶縁金属線群を置いて、磁束が
絶縁金属線群を横切る方向に平帯状平行絶縁金属線群を
相対移動させると、相対向する鋭角尖端3、4のギ直下
を各金属線が横切るごとに相対向する鋭角尖端3、4の
集中磁束がその金属線と鎖交してパルス信号が生じ、こ
の各パルス信号がパルス信号検出コイルに検出されるの
で、この各金属線ごとに検出された各パルス信号の間隔
時間を測定し、この間隔時間測定値と前記相対移動速度
とにより金属線間の間隔が算定される。
The two acute-angled tips 3 and 4 of the magnetic head are arranged so as to face each other so as to sandwich the flat-belt-shaped parallel insulated metal wire group and form the magnetic flux distribution as described above. When a flat strip-shaped parallel insulated metal wire group is placed in the gap between the four and the flat strip-shaped parallel insulated metal wire group is relatively moved in the direction in which the magnetic flux crosses the insulated metal wire group, directly below the points of the acute-angled tips 3, 4 facing each other. Each time each metal wire crosses, the concentrated magnetic fluxes of the acute-angled tips 3 and 4 that face each other intersect with the metal wire to generate a pulse signal, and each pulse signal is detected by the pulse signal detection coil. The interval time of each pulse signal detected for each metal wire is measured, and the interval between the metal wires is calculated by this interval time measurement value and the relative moving speed.

前記のように磁気ヘッドの相対向する2個の鋭角尖端
3、4の間に平帯状平行絶縁金属線群を移動させること
により、フラットケーブルのように密に並ぶ多数の細い
心線導体間の間隔でも正確に効率良く測定することがで
きる。
As described above, by moving the flat strip-shaped parallel insulated metal wire group between the two sharp-angled tips 3 and 4 of the magnetic head which face each other, between the thin core conductors closely arranged like a flat cable. Accurate and efficient measurement is possible even at intervals.

[実施例] 以下本発明の実施例を図面により説明する。第1図は本
発明の方法によりフラットケーブルの心線導体である金
属線間の距離を測定する例を示す。
Embodiments Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of measuring the distance between metal wires which are core conductors of a flat cable by the method of the present invention.

第1図において、1はフェライト製の磁気ヘッドであ
り、そのギャップ2のヘッド対向先端は円錐形のような
鋭角尖端3、4に形成する。この磁気ヘッドの2個の鋭
角尖端3、4を相対向させて平帯状に平行する絶縁金属
線群を挾む両側に配置する。
In FIG. 1, reference numeral 1 is a magnetic head made of ferrite, and the head of the gap 2 facing the head is formed at an acute pointed tip 3, 4 having a conical shape. Two sharp-angled tips 3 and 4 of this magnetic head are made to face each other, and they are arranged on both sides of a group of insulating metal wires parallel to each other in a flat band shape.

5はヨーク部であり、このヨーク部5には高周波励磁コ
イル6、およびパルス信号検出コイル7を巻回する。8
はこの高周波励磁コイル6に接続された高周波発振回
路、9はパルス信号検出コイル7に接続された検出信号
処理回路である。
Reference numeral 5 denotes a yoke portion, on which a high frequency exciting coil 6 and a pulse signal detecting coil 7 are wound. 8
Is a high frequency oscillating circuit connected to the high frequency exciting coil 6, and 9 is a detection signal processing circuit connected to the pulse signal detecting coil 7.

前記の高周波励磁コイル6に高周波励磁電流たとえば50
0KHzの励磁電流を通ずると、磁気ヘッド1の鋭角尖端
3、4間のギャップ2には高周波磁界が形成されるが、
この鋭角尖端3、4には大量の漏れ磁束が集中しギャッ
プ2にはきわめて不均一な磁束密度分布が生ずる。
A high-frequency exciting current of, for example, 50 is applied to the high-frequency exciting coil 6.
When an exciting current of 0 KHz is passed, a high-frequency magnetic field is formed in the gap 2 between the acute-angled tips 3 and 4 of the magnetic head 1.
A large amount of leakage magnetic flux is concentrated at the sharp tips 3 and 4, and a very uneven magnetic flux density distribution is generated in the gap 2.

これはフェライトのような強磁性体と非磁性体との交界
面では非磁性体における磁束は交界面にほぼ垂直になる
ことによるものであり、第2図示のように、透磁率がμ
1の非磁性体とμ2の強磁性体(μ1≪μ2)の交界面
A−Aにおいて磁束Φが通る角度をθ1、θ2とすると
tanθ1/tanθ2=μ1/μ2 となりμ2=6000μ1 で
θ2=89゜のときはθ1=0.54゜ となる。このように
ギャップ2における鋭角尖端3、4には大量の漏れ磁束
が集中し磁束密度の分布はきわめて不均一となる。第3
図はこのような磁気ヘッドの鋭角尖端3、4の磁束密度
の分布状態を示したものである。
This is because the magnetic flux in the non-magnetic material is almost perpendicular to the crossing interface between the ferromagnetic material such as ferrite and the non-magnetic material, and as shown in FIG.
Let θ1 and θ2 be the angles at which the magnetic flux Φ passes at the interface A-A between the non-magnetic substance of 1 and the ferromagnetic substance of μ2 (μ1 << μ2).
tan θ1 / tan θ2 = μ1 / μ2 and μ2 = 6000μ1 and θ2 = 89 °, θ1 = 0.54 °. As described above, a large amount of leakage magnetic flux is concentrated on the sharp-angled tips 3 and 4 in the gap 2, and the distribution of the magnetic flux density becomes extremely uneven. Third
The figure shows the distribution of the magnetic flux density at the acute-angled tips 3 and 4 of such a magnetic head.

前記のように高周波磁界が形成される2個の相対向する
鋭角尖端3、4間のギャップ2にフラットケーブルBを
置いて磁気ヘッド1もしくはフラットケーブルBを心線
導体Cの直角方向に相対的に動かすと、このギャップ2
の磁束を導電性金属線の心線導体Cが横切るので e=
dΦ/dt の起電力が生じ、この起電力は磁束の変化の
スピードに比例し周波数が一定の場合は磁束密度が大き
いほど大なる起電力が生ずる。これによりパルス信号検
出コイル7の検出信号が検出信号処理回路9に出力され
る。
As described above, the flat cable B is placed in the gap 2 between the two opposed acute-angled tips 3 and 4 in which the high-frequency magnetic field is formed, and the magnetic head 1 or the flat cable B is relatively arranged in the direction perpendicular to the core conductor C. When you move it to this gap 2
Since the core wire conductor C of the conductive metal wire crosses the magnetic flux of
An electromotive force of dΦ / dt is generated, and this electromotive force is proportional to the changing speed of the magnetic flux, and when the frequency is constant, the larger the magnetic flux density is, the larger the electromotive force is generated. As a result, the detection signal of the pulse signal detection coil 7 is output to the detection signal processing circuit 9.

このようにギャップ2における高周波磁界中に置かれた
フラットケーブルBの各心線導体Cと鎖交する磁束は、
第3図示のように各心線導体Cのうち相対向する鋭角尖
端3、4の直下に位置する中央の心線導体C0を横切る磁
束の密度が最も大となる。
Thus, the magnetic flux interlinking with each core conductor C of the flat cable B placed in the high frequency magnetic field in the gap 2 is
As shown in the third drawing, the density of the magnetic flux across the central core conductor C 0 located immediately below the facing acute-angled tips 3 and 4 of each core conductor C is the highest.

そこで磁気ヘッド1を第1図の矢示方向に移動速度Vで
移動させて2個の相対向する鋭角尖端3、4の磁束がフ
ラットケーブルBを速度Vで横切ると、パルス信号検出
コイル7の検出信号が検出信号処理回路9において増
幅、検波されて第4図示のような信号波形p01、p02、p0
3…が得られることになる。この信号を適当なしきい値
(e)を持つコンパレータにより第5図示のようなパル
ス信号p1、p2、p3…にする。
Therefore, when the magnetic head 1 is moved in the direction indicated by the arrow in FIG. 1 at a moving speed V and the magnetic fluxes of the two acute-angled tips 3 and 4 cross the flat cable B at the speed V, the pulse signal detecting coil 7 The detection signal is amplified and detected in the detection signal processing circuit 9, and signal waveforms p01, p02, p0 as shown in the fourth diagram are obtained.
3 will be obtained. This signal is converted into pulse signals p1, p2, p3 ... As shown in FIG. 5 by a comparator having an appropriate threshold value (e).

前記のパルス信号p1、p2、p3…の間隔はフラットケーブ
ルBの各心線導体Cの間隔に比例するから、このパルス
信号p1、p2、p3…の間隔時間を測定することにより各心
線導体間の間隔を測定することができる。
Since the intervals between the pulse signals p1, p2, p3 ... Are proportional to the intervals between the core conductors C of the flat cable B, the core conductors are measured by measuring the interval time between the pulse signals p1, p2, p3. The distance between can be measured.

この間隔時間の測定の一層正確な測定値を得るために各
パルス信号p1、p2、p3…のそれぞれの立上る時の時間差
t1と立下る時の時間差t2を測定すれば、各導体心線間の
間隔Dは、t1とt2の平均値と磁気ヘッドの移動速度Vか
ら式 D=V・(t1+t2)/2 により算定できる。この
各時間差の測定値と上式の算定値は電算機により迅速に
得ることができる。
In order to obtain a more accurate measurement value of this interval time measurement, the time difference between the rising edges of the pulse signals p1, p2, p3 ...
If the time difference t2 between t1 and the falling time is measured, the distance D between the conductor core wires can be calculated from the average value of t1 and t2 and the moving speed V of the magnetic head by the equation D = V. (t1 + t2) / 2. . The measured value of each time difference and the calculated value of the above equation can be quickly obtained by a computer.

前記のようにしてフラットケーブルの心線導体である導
電性金属線の間の間隔が正確に効率良く測定されるの
で、多数のフラットケーブルのコネクタ接続作業を自動
化することが可能となる。
As described above, the distance between the conductive metal wires, which are the core conductors of the flat cable, can be accurately and efficiently measured, so that it is possible to automate the connector connection work for many flat cables.

なお前記のように相対向する2個の鋭角尖端3、4を設
けた磁気ヘッド1により金属線の位置を検出して測定す
る方法は、前記のフラットケーブルの心線導体の測定の
ように導電性を持つ長尺金属線の位置を測定するだけで
なく、金属球体の位置の測定にも利用することができ
る。
The method of detecting and measuring the position of the metal wire by the magnetic head 1 provided with the two acute-angled tips 3 and 4 facing each other as described above is the same as the measurement of the core conductor of the flat cable described above. It can be used not only for measuring the position of a long metal wire having properties, but also for measuring the position of a metal sphere.

[発明の効果] 前述のように本発明は、磁気ヘッドに相対向する2個の
鋭角尖端を設けてギャップにおける磁束密度分布を不均
一にし、この相対向する2個の鋭角尖端間に平帯状に平
行する絶縁金属線群を挾む両側に配置し、この平帯状平
行絶縁金属線群を前記2個の対向鋭角尖端3、4間で磁
束が絶縁金属線群を横切る方向に相対移動させ、この鋭
角尖端の磁束を金属線群に鎖交させて生ずるパルス信号
の間隔時間を測定して金属線間の間隔を測定するように
したので、フラットケーブルのように密に並ぶ多数の細
い心線導体間の間隔でも正確に効率良く測定することが
できるものである。
EFFECTS OF THE INVENTION As described above, according to the present invention, the magnetic head is provided with two opposed acute-angled peaks to make the magnetic flux density distribution in the gap non-uniform, and a flat strip shape is formed between the two opposed acute-angled peaks. The insulating metal wire groups parallel to each other are arranged on both sides of the sandwiched metal wire group, and the flat strip-shaped parallel insulating metal wire groups are relatively moved in the direction in which the magnetic flux crosses the insulating metal wire group between the two opposed acute-angled tips 3, 4. Since the interval time of pulse signals generated by interlinking the magnetic flux of this acute angle with the metal wire group is measured to measure the interval between the metal wires, a large number of thin core wires arranged closely like a flat cable are measured. The distance between conductors can be measured accurately and efficiently.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例の説明図、第2図および第3
図は磁束分布の説明図、第4図および第5図はパルス信
号の説明図である。 1:磁気ヘッド 2:ギャップ 3、4:鋭角尖端 6:高周波励磁コイル C:金属線
FIG. 1 is an explanatory view of one embodiment of the present invention, FIG. 2 and FIG.
The figure is an illustration of magnetic flux distribution, and FIGS. 4 and 5 are illustrations of pulse signals. 1: Magnetic head 2: Gap 3, 4: Sharp tip 6: High frequency exciting coil C: Metal wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2個の相対向する鋭角尖端を形成した磁気
ヘッドに高周波励磁コイルを設けて前記の両鋭角尖端の
間のギャップに磁束密度分布の不均一な高周波磁界を形
成し、前記磁気ヘッドの相対向する各鋭角尖端を、平帯
状に平行する絶縁金属線群を挾む両側に配置し、前記平
帯状平行絶縁金属線群を前記磁気ヘッドの相対向する両
鋭角尖端の間に置いて磁束が前記平帯状平行絶縁金属線
群を横切る方向に前記の磁気ヘッドと平帯状平行絶縁金
属線群とを相対的に移動させ、前記磁気ヘッドに設けた
パルス信号検出コイルで検出される各パルス信号の間隔
時間を測定することにより前記平帯状平行絶縁金属線群
の各金属線間の間隔を測定することを特徴とする絶縁金
属線群間隔測定方法。
1. A high-frequency exciting coil is provided in a magnetic head having two sharp-edged tips facing each other to form a high-frequency magnetic field having a non-uniform magnetic flux density distribution in the gap between the sharp-edged tips. The sharp edges facing each other of the head are arranged on both sides of the insulating metal wire group parallel to each other in a flat band shape, and the flat parallel insulating metal wire groups are placed between the facing sharp edge tips of the magnetic head. Magnetic flux relatively moves the magnetic head and the flat strip-shaped parallel insulated metal wire group in the direction in which the magnetic flux crosses the flat strip-shaped parallel insulated metal wire group, and each is detected by a pulse signal detection coil provided in the magnetic head. An insulating metal wire group interval measuring method, characterized in that the interval between each metal wire of the flat strip parallel insulated metal wire group is measured by measuring the interval time of the pulse signal.
JP62333805A 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method Expired - Lifetime JPH0769134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62333805A JPH0769134B2 (en) 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333805A JPH0769134B2 (en) 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method

Publications (2)

Publication Number Publication Date
JPH01176905A JPH01176905A (en) 1989-07-13
JPH0769134B2 true JPH0769134B2 (en) 1995-07-26

Family

ID=18270148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333805A Expired - Lifetime JPH0769134B2 (en) 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method

Country Status (1)

Country Link
JP (1) JPH0769134B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349627A (en) * 2005-06-20 2006-12-28 Yokohama Rubber Co Ltd:The Method and device for detecting wire position
JP5402518B2 (en) 2009-10-20 2014-01-29 住友電気工業株式会社 Oxide superconducting coil, oxide superconducting coil body and rotating machine
US8886266B2 (en) 2010-06-21 2014-11-11 Sumitomo Electric Industries, Ltd. Superconducting coil, rotating device, and superconducting coil manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524262A (en) * 1975-06-28 1977-01-13 Ono Sokki Co Ltd Method to detect disposition pitches

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880518U (en) * 1981-11-28 1983-05-31 株式会社 小野測器 electromagnetic induction detector
JPS61149822U (en) * 1985-03-11 1986-09-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524262A (en) * 1975-06-28 1977-01-13 Ono Sokki Co Ltd Method to detect disposition pitches

Also Published As

Publication number Publication date
JPH01176905A (en) 1989-07-13

Similar Documents

Publication Publication Date Title
EP1902287B1 (en) An apparatus for magnetizing a magnetizable element
CA1268349A (en) Electromagnetic flow meter
US7321229B2 (en) Inductive position sensors with secondary windings with increased or decreased number of turns
US20030132748A1 (en) Eddy current testing probe
JPH0769134B2 (en) Insulated metal wire group spacing measurement method
CN110320409A (en) A kind of big section XLPE cable conductor AC resistance measurement method
JP2532123B2 (en) Metal distance measurement method
JP5290020B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
JPH04118667U (en) Rogowski coil
JP2651003B2 (en) Eddy current displacement sensor
JP2599438B2 (en) How to measure the distance between metal wires
JPH0713561B2 (en) Insulation metal wire group spacing measurement method
JP2547247B2 (en) Metal distance measuring sensor
JPS5910499B2 (en) Magnetic flaw detection equipment for steel cables using magnetically sensitive elements
JP2567919B2 (en) Flat cable dimension measurement method
JP3130129B2 (en) Eddy current flaw detector
Wilkins et al. Measurement and interpretation of power losses in electrical sheet steel
CA2482582A1 (en) Improved probe
GB1070859A (en) Apparatus for the measurement of changes in diameter of wire or tubular metal and a method for the determination of the corrosion of such metal
CN211086485U (en) Annular opening PCB Rogowski coil of sectional type wiring
JPS604082Y2 (en) displacement transducer
SU622025A1 (en) Three-component alternating electric field sensor
KR840002360B1 (en) Electro magnetic damage detecting instrument of long magnetic substance
JPS609718Y2 (en) Flaw detection coil device
SU1002945A1 (en) Steel rope flaw detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13