JPH0768950B2 - Vane pump - Google Patents

Vane pump

Info

Publication number
JPH0768950B2
JPH0768950B2 JP61276689A JP27668986A JPH0768950B2 JP H0768950 B2 JPH0768950 B2 JP H0768950B2 JP 61276689 A JP61276689 A JP 61276689A JP 27668986 A JP27668986 A JP 27668986A JP H0768950 B2 JPH0768950 B2 JP H0768950B2
Authority
JP
Japan
Prior art keywords
vane
retainer
housing
rotor
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61276689A
Other languages
Japanese (ja)
Other versions
JPS63131882A (en
Inventor
浩 酒巻
行雄 堀越
Original Assignee
イ−グル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イ−グル工業株式会社 filed Critical イ−グル工業株式会社
Priority to JP61276689A priority Critical patent/JPH0768950B2/en
Priority to GB8717229A priority patent/GB2192939B/en
Priority to KR8707877A priority patent/KR920007283B1/en
Priority to IT8767627A priority patent/IT1211222B/en
Priority to DE19873724128 priority patent/DE3724128A1/en
Priority to FR8710382A priority patent/FR2602011A1/en
Priority to KR870012309A priority patent/KR880006461A/en
Priority to KR870012393A priority patent/KR880006462A/en
Priority to GB8725914A priority patent/GB2197389B/en
Priority to GB8725903A priority patent/GB2197388B/en
Priority to DE19873738257 priority patent/DE3738257A1/en
Priority to IT8767961A priority patent/IT1211516B/en
Priority to DE19873738484 priority patent/DE3738484A1/en
Priority to IT8767960A priority patent/IT1211515B/en
Priority to FR8715693A priority patent/FR2606839A1/en
Priority to FR8715694A priority patent/FR2606838A1/en
Priority to US07/197,548 priority patent/US4958995A/en
Publication of JPS63131882A publication Critical patent/JPS63131882A/en
Priority to US07/394,777 priority patent/US5011390A/en
Priority to US07/394,776 priority patent/US4998868A/en
Priority to US07/394,785 priority patent/US5032070A/en
Priority to US07/394,780 priority patent/US4997353A/en
Priority to US07/394,771 priority patent/US4955985A/en
Priority to US07/394,778 priority patent/US5030074A/en
Priority to US07/394,779 priority patent/US4998867A/en
Priority to US07/394,772 priority patent/US5002473A/en
Priority to US07/394,773 priority patent/US5033946A/en
Priority to US07/394,774 priority patent/US4997351A/en
Priority to US07/508,743 priority patent/US5022842A/en
Priority to US07/590,568 priority patent/US5044910A/en
Publication of JPH0768950B2 publication Critical patent/JPH0768950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スーパーチャージャやコンプレッサ等に使用
される回転型ポンプのひとつであるベーンポンプに関す
る。
TECHNICAL FIELD The present invention relates to a vane pump which is one of rotary pumps used in superchargers, compressors and the like.

〔従来の技術〕[Conventional technology]

従来から、第6図に概略構成を示すようなベーンポンプ
が広く知られている。
Conventionally, a vane pump having a schematic configuration shown in FIG. 6 has been widely known.

同図において、(51)はハウジング、(52)は該ハウジ
ング(51)の内周空間に偏心した状態で内挿され、回転
軸(53)によって回転自在に支持されたロータ、(55
a)(55b)(55c)はロータ(52)の外周側を周方向に
3分割するごとく等配凹設されたベーン溝(54a)(54
b)(54c)に径方向突没自在に配設された板状のベーン
である。回転軸(53)によってロータ(52)が図中矢印
(X)方向へ回転すると、ベーン(55a)(55b)(55
c)は遠心力によって外径方向に飛び出し、その先端縁
がハウジング(51)の内周面に摺接しながら回転する。
既述したように、ロータ(52)がハウジング(51)に対
して偏心しているため、この回転に伴ない、ハウジング
(51)、ロータ(52)およびベーン(55a)(55b)(55
c)で区画された作動空間(56a)(56b)(56c)の容積
が繰返し拡縮変化して、吸入口(57)から吸い込んだ流
体を吐出口(58)から吐出させる。
In the figure, (51) is a housing, (52) is a rotor which is inserted into the inner peripheral space of the housing (51) in an eccentric state and is rotatably supported by a rotating shaft (53),
a) (55b) (55c) are vane grooves (54a) (54a) that are equally recessed so as to divide the outer peripheral side of the rotor (52) into three in the circumferential direction.
b) It is a plate-shaped vane that is arranged in (54c) so as to project and retract in the radial direction. When the rotor (52) rotates in the direction of the arrow (X) in the figure by the rotating shaft (53), the vanes (55a) (55b) (55
The centrifugal force c) pops out in the outer diameter direction, and the tip edge of the c) rotates while sliding on the inner peripheral surface of the housing (51).
As described above, since the rotor (52) is eccentric with respect to the housing (51), the housing (51), the rotor (52) and the vanes (55a) (55b) (55) are accompanied by this rotation.
The volumes of the working spaces (56a) (56b) (56c) partitioned by c) are repeatedly expanded and contracted, and the fluid sucked from the suction port (57) is discharged from the discharge port (58).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記従来のベーンポンプは、ベーンがハウジン
グの内周面を高速で摺動するため、ベーン先端縁とハウ
ジング内周面との摺動抵抗による回転効率の低下を避け
ることができず、また、摺動発熱により搬送流体の大幅
な体積効率の低下を避け得ないとともにベーンが膨張し
てハウジングの軸方向両内側面とのかじりを生じること
があり、摩耗も著しいといった問題があった。
However, in the above conventional vane pump, since the vane slides on the inner peripheral surface of the housing at a high speed, it is unavoidable that the rotation efficiency is deteriorated due to the sliding resistance between the tip edge of the vane and the inner peripheral surface of the housing. Due to the sliding heat generation, it is inevitable that the volumetric efficiency of the conveyed fluid is significantly decreased, and the vanes may expand to cause galling with both inner side surfaces of the housing in the axial direction, resulting in significant wear.

本発明は、このような問題に鑑み、摺動による抵抗の発
生や発熱を防止して上記回転や体積についての効率を向
上する目的をもってなされたものである。
In view of these problems, the present invention has been made with the object of preventing the generation of resistance and heat generation due to sliding to improve the efficiency of rotation and volume.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明のベーンポンプは、ハ
ウジングの内周空間に偏心した状態で回転自在に軸支さ
れたロータと、該ロータに凹設された複数のベーン溝に
突没自在に配設された板状のベーンとを有し、ロータお
よびベーンの回転に伴なう各ベーン間の作動空間の繰返
し容積変化を利用して流体を一方から吸入し、他方へ吐
出する構造において、前記ハフジングの端壁の内側に前
記内周空間と同軸的に形成した環状凹部に、リテーナを
回転自在に嵌挿し、該リテーナと各ベーンとを角変位自
在のカムで連結してベーン溝に対するベーンの突没運動
を一定範囲に規制し、前記環状凹部に対するリテーナの
対向面にスパイラル溝を含む動圧軸受機構を設ける構成
とした。
In order to achieve this object, the vane pump of the present invention has a rotor rotatably supported eccentrically in the inner peripheral space of the housing and a plurality of vane grooves recessed in the rotor so as to project and retract. In a structure having a plate-shaped vane provided and sucking fluid from one side and discharging it to the other side by utilizing the repeated volume change of the working space between the vanes accompanying the rotation of the rotor and the vane, A retainer is rotatably fitted into an annular recess formed coaxially with the inner peripheral space inside the end wall of the huffing, and the retainer and each vane are connected by a cam that is angularly displaceable so that the vane can be inserted into the vane groove. The projecting and retracting movement is restricted to a certain range, and a dynamic pressure bearing mechanism including a spiral groove is provided on the surface of the retainer facing the annular recess.

〔作 用〕[Work]

本発明によれば、ロータとともに回転するベーンはカム
を介してリテーナとリンクしているので、リテーナはロ
ータと同期回転し、また、リテーナとロータが偏心関係
にあることから、カムは、リテーナの回転中心とカムの
揺動中心を通る直線の両側へ振れるように周期的に角変
位し、このカムの角変位運動によって、ベーンがベーン
溝に対して一定範囲内の移動量で突没運動を行なうよう
になるため、ベーンをハウジングの内面に対して非接触
の状態として回転させることができ、さらに前記リテー
ナに動圧軸受機構を設けてリテーナがハウジングに対し
て円滑に回転するように構成したため該リテーナの回転
による摺動抵抗を極小に抑えることができる。そして、
動圧軸受機構のスパイラル溝が環状凹部とリテーナの対
向軸受面間に流体を強制的に流通させるので、動圧によ
る良好な軸受圧力が得られる。
According to the present invention, since the vane rotating with the rotor is linked to the retainer via the cam, the retainer rotates synchronously with the rotor, and since the retainer and the rotor are in an eccentric relationship, the cam is not attached to the retainer. The cam is periodically angularly displaced so that it swings to both sides of a straight line passing through the center of rotation and the center of swing of the cam, and the angular displacement movement of this cam causes the vane to move in and out within a certain range relative to the vane groove. Since the vane can be rotated in a non-contact state with the inner surface of the housing, the retainer is provided with a dynamic pressure bearing mechanism so that the retainer can smoothly rotate with respect to the housing. The sliding resistance due to the rotation of the retainer can be minimized. And
Since the spiral groove of the dynamic pressure bearing mechanism forces the fluid to flow between the annular recess and the opposing bearing surface of the retainer, a good bearing pressure due to the dynamic pressure can be obtained.

〔実 施 例〕〔Example〕

以下、本発明に係るベーンポンプの実施例を図面にした
がって説明する。
Embodiments of a vane pump according to the present invention will be described below with reference to the drawings.

第1図および第2図において、(1)はフロントハウジ
ング、(2)はリアハウジングで、ともに軽量で熱膨張
率の小さいアルミニウム等の非鉄金属で製せられ、ボル
ト(3)によって互いに一体的に固着されている。
(4)はハウジング内周空間(5)に偏心した状態で内
挿された鉄製のロータで、フロントハウジグ(1)の軸
孔段部内にあって固定リング(6)によって抜け止めさ
れたボールベアリング(7a)およびリアハウジング
(2)の軸孔段部内にあってベアリングカバー(8)に
よって抜け止めされたボールベアリング(7b)を介して
これら両ハウジング(1)(2)に貫挿されプーリ
(9)から駆動力が伝達される回転軸(10)に軸着され
ている。(11a)(11b)(11c)は摺動性に優れたカー
ボン材を主材とする板状のベーンで、ロータ(4)に該
ロータ(4)の外周側を周方向3分割するごとく等配凹
設されたベーン溝(12a)(12b)(12c)にそれぞれ径
方向突没(摺動)自在に配設されている。フロントハウ
ジング(1)およびリアハウジング(2)の互いに対向
する端壁の内側面にそれぞれハウジング内周空間(5)
と同軸的(フロントハウジング(1)の内周面(1′)
と同軸面)に形成された環状凹部(14a)(14b)には、
アルミニウム等の非鉄金属よりなるリテーナプレート
(15a)(15b)がそれぞれ回転自在に嵌挿されている。
このリテーナプレート(15a)(15b)のハウジング
(1)内側面に対接する外端面には第3図に示すような
スパイラル溝(17)が形成され、また外周面には第4図
や第5図に示すようなレイレーステップ溝(18)やヘリ
ングボーン溝(19)が形成され、該リテーナプレート
(15a)(15b)をハウジング(1)に対して円滑に回転
させる動圧軸受機構が設けられている。各ベーン(11
a)(11b)(11c)とリテーナプレート(15a)(15b)
はカム(22a)(22b)(22c)(23a)(23b)(23c)を
介して互いに連結されている。リテーナプレート(15
a)(15b)の内側面に3等配状に形成した凹部(28a)
(28b)(28c)(29a)(29b)(29c)に嵌挿されるカ
ム(22a)(22b)・・・(23c)は、円形の回転盤の一
面(外側面)の中心に該リテーナプレート(15a)(15
b)に係合する第1のピン(24a)(24b)(24c)(25
a)(25b)(25c)を突設し、ボールベアリング(30a)
(30b)(30c)(31a)(31b)(31c)を介して該リテ
ーナプレート(15a)(15b)に対して回転自在(自転)
に軸着されるとともに、前記回転盤の他面(内側面)の
周縁近傍にベーン(11a)(11b)(11c)に係合する第
2のピン(26a)(26b)(26c)(27a)(27b)(27c)
を突設し、該第2のピン(26a)(26b)・・・(27c)
をベーン(11a)(11b)(11c)の側端に形成した係合
凹部(32a)(32b)(32c)(33a)(33b)(33c)に回
転自在に係合してなる。この係合凹部(32a)(32b)・
・・(33c)は各ベーン(11a)(11b)(11c)側端の外
端(先端)寄りに設けられており、第2図に示すよう
に、ベーン(11a)がベーン溝(12a)内に最も引込んだ
状態のトップ位置において、カム(22a)(23a)の両ピ
ン(24a)(25a)(26a)(27a)がベーン(11a)に重
なり、かつ第2のピン(26a)(27a)が第1のピン(24
a)(25a)の外端寄りに位置するようになる。
In FIGS. 1 and 2, (1) is a front housing, (2) is a rear housing, both made of a non-ferrous metal such as aluminum which is lightweight and has a small coefficient of thermal expansion, and they are integrated with each other by a bolt (3). Is stuck to.
(4) is an iron rotor inserted eccentrically in the inner peripheral space (5) of the housing, and is a ball in the stepped portion of the shaft hole of the front housing (1) that is retained by the fixing ring (6). A pulley is inserted through both the housings (1) and (2) through a ball bearing (7b) which is in the shaft hole step portion of the bearing (7a) and the rear housing (2) and is retained by the bearing cover (8). It is mounted on a rotary shaft (10) to which the driving force is transmitted from (9). (11a), (11b) and (11c) are plate-shaped vanes mainly made of a carbon material having excellent slidability, such as the outer peripheral side of the rotor (4) divided into three in the circumferential direction. The vane grooves (12a) (12b) (12c) provided in a concave and convex arrangement are respectively arranged so as to be capable of projecting and retracting (sliding) in the radial direction. Housing inner peripheral spaces (5) are respectively formed on inner surfaces of end walls of the front housing (1) and the rear housing (2) facing each other.
Coaxial with (inner peripheral surface (1 ') of front housing (1))
The annular recesses (14a) (14b) formed on the
Retainer plates (15a) (15b) made of non-ferrous metal such as aluminum are rotatably fitted therein.
Spiral grooves (17) as shown in FIG. 3 are formed on the outer end surface of the retainer plates (15a), (15b) that are in contact with the inner surface of the housing (1), and the outer peripheral surfaces are shown in FIGS. As shown in the figure, a Rayleigh step groove (18) and a herringbone groove (19) are formed, and a dynamic pressure bearing mechanism for smoothly rotating the retainer plates (15a) (15b) with respect to the housing (1) is provided. Has been. Each vane (11
a) (11b) (11c) and retainer plate (15a) (15b)
Are connected to each other via cams (22a) (22b) (22c) (23a) (23b) (23c). Retainer plate (15
a) Recesses (28a) formed on the inner surface of (15b) in a three-piece pattern
(28b) (28c) (29a) (29b) (29c) The cams (22a) (22b) ... (23c) that are inserted and inserted are the retainer plate at the center of one surface (outer surface) of the circular turntable. (15a) (15
First pin (24a) (24b) (24c) (25
a) (25b) (25c) protruding, ball bearing (30a)
(30b) (30c) (31a) (31b) (31c) through the retainer plate (15a) (15b) rotatable (spin)
The second pins (26a) (26a) (26b) (26c) (27a) that are pivotally attached to the vane and engage with the vanes (11a) (11b) (11c) in the vicinity of the peripheral edge of the other surface (inner side surface) of the turntable. ) (27b) (27c)
Projecting from the second pin (26a) (26b) ... (27c)
Is rotatably engaged with engagement recesses (32a) (32b) (32c) (33a) (33b) (33c) formed at the side ends of the vanes (11a) (11b) (11c). This engaging recess (32a) (32b)
.. (33c) are provided near the outer ends (tips) of the vane (11a), (11b), and (11c) side ends, and as shown in FIG. 2, the vanes (11a) have vane grooves (12a). At the top position in the most retracted state, the pins (24a) (25a) (26a) (27a) of the cams (22a) (23a) overlap the vane (11a) and the second pin (26a) (27a) is the first pin (24
a) It will be located near the outer edge of (25a).

つぎに、当該ベーンポンプの作動について説明する。プ
ーリ(9)からの駆動力によって回転軸(10)およびロ
ータ(4)が回転すると、ベーン(11a)(11b)(11
c)も回転し、該ベーン(11a)(11b)(11c)からカム
(22a)(22b)・・・(23c)を介してリテーナプレー
ト(15a)(15b)にトルクが伝達される。リテーナプレ
ート(15a)(15b)はハウジング内周面(1′)に対し
て同軸的に回転し、これに伴ないリテーナプレート(15
a)(15b)の凹部(28a)(28b)・・・(29c)に嵌挿
されたカム(22a)(22b)・・・(23c)もハウジング
内周面(1′)に対して同軸的に回転(公転)する。既
述したようにロータ(4)はハウジング内周面に対して
偏心して軸着されているため、トップ位置で重なってい
たベーン(11a)とカム(22a)(23a)は回転に伴なっ
てずれるようになり(但し、ベーン(11a)がベーン溝
(12a)から最も飛び出すボトム位置(トップ位置と180
度対称)においては再び重なる)、この変位によってカ
ム(22a)(22b)・・・(23c)を介してリテーナプレ
ート(15a)(15b)に連結されたベーン(11a)(11b)
(11c)はロータ(4)のベーン溝(12a)(12b)(12
c)を径方向に摺動して繰り返し突没し、両ハウジング
(1)(2)、ロータ(4)およびベーン(11a)(11
b)(11c)で区画された作動空間(5)の容積を繰り返
し増減して図示しない吸入口から吐出口へ流体を移送す
る。上記作動において、ベーン(11a)(11b)(11c)
はベーン溝(12a)(12b)(12c)からの飛び出しが規
制され、その先端縁をハウジング内周面と接触せずに回
転するため、トルクの損失をなくし摩耗や発熱を未然に
防止することができる。また、カム(22a)(23a)はリ
テーナプレート(15a)(15b)と相対的に角変位運動を
するだけであるため、リテーナプレート(15a)(15b)
およびベーン(11a)(11b)(11c)との連結部の摩耗
がきわめて少ない。また、リテーナプレート(15a)(1
5b)には、これを嵌挿している環状凹部(14a)(14b)
内面との対向面に既述した動圧受機構が設けられている
ので、リテーナプレート(15a)(15b)が円滑に回転し
てロータ(4)の負荷が軽減され、しかもスラスト方向
の動圧軸受機構をなすスパイラル溝(17)が、常に環状
凹部(14a)(14b)とリテーナプレート(15a)(15b)
の間の微小間隙に、動圧の発生源である流体を流通させ
るため、熱が除去されると同時に大きな軸受圧力が得ら
れ、この軸受圧力によってリテーナプレート(15a)(1
5b)のスラスト方向及びラジアル方向のがたつきが防止
される。したがって、ベーン(11a)(11b)(11c)
を、ハウジング内周面(1′)に対して常に一定の微小
な隙間が介在するように突没運動させるといった高精度
な規制をすることができる。
Next, the operation of the vane pump will be described. When the rotating shaft (10) and the rotor (4) are rotated by the driving force from the pulley (9), the vanes (11a) (11b) (11)
c) also rotates and torque is transmitted from the vanes (11a) (11b) (11c) to the retainer plates (15a) (15b) via the cams (22a) (22b) ... (23c). The retainer plates (15a) (15b) rotate coaxially with the inner peripheral surface (1 ') of the housing, and the retainer plates (15
The cams (22a) (22b) ... (23c) fitted in the recesses (28a) (28b) ... (29c) of a) (15b) are also coaxial with the inner peripheral surface (1 ') of the housing. To rotate (revolve). As described above, since the rotor (4) is eccentrically mounted on the inner peripheral surface of the housing, the vanes (11a) and the cams (22a) (23a) that overlap at the top position are rotated. It comes to shift (however, the vane (11a) comes out most from the vane groove (12a) at the bottom position (180
(They overlap once again)), and this displacement causes the vanes (11a) (11b) connected to the retainer plates (15a) (15b) via the cams (22a) (22b) ... (23c).
(11c) is the vane groove (12a) (12b) (12) of the rotor (4)
c) slides in the radial direction and repeatedly projects, and both housings (1) and (2), rotor (4) and vanes (11a) (11)
b) The volume of the working space (5) defined by (11c) is repeatedly increased and decreased to transfer the fluid from the suction port (not shown) to the discharge port. In the above operation, the vanes (11a) (11b) (11c)
Is restricted from protruding from the vane grooves (12a) (12b) (12c), and its tip edge rotates without making contact with the inner peripheral surface of the housing, eliminating torque loss and preventing wear and heat generation. You can Further, since the cams (22a) (23a) only make angular displacement movement relative to the retainer plates (15a) (15b), the retainer plates (15a) (15b)
Also, the wear of the connecting portions with the vanes (11a) (11b) (11c) is extremely small. In addition, retainer plate (15a) (1
5b) has annular recesses (14a) (14b) into which it is inserted.
Since the dynamic pressure receiving mechanism described above is provided on the surface facing the inner surface, the retainer plates (15a) (15b) rotate smoothly to reduce the load on the rotor (4), and the dynamic bearing in the thrust direction is also provided. The spiral groove (17) forming the mechanism always has the annular recesses (14a) (14b) and the retainer plates (15a) (15b).
Since the fluid that is the source of the dynamic pressure is circulated in the small gap between the two, a large bearing pressure is obtained at the same time as the heat is removed, and this bearing pressure causes the retainer plate (15a) (1
The rattling in the thrust direction and the radial direction of 5b) is prevented. Therefore, vanes (11a) (11b) (11c)
Can be regulated with high precision such that it is moved in and out with respect to the inner peripheral surface (1 ') of the housing so that a constant minute gap is always present.

〔発明の効果〕〔The invention's effect〕

以上説明したとおり、本発明のベーンポンプは、互いに
偏心関係にある回転自在のリテーナとベーンをカムで連
結して、ロータのベーン溝に対するベーンの突没移動量
を規制したもので、上記カムはリテーナおよびベーンに
対して繰り返し角変位するだけであって、リテーナおよ
びベーンとの連結部の摩耗がきわめて少なく、しかも上
記リテーナは、スパイラル溝を含む動圧軸受機構による
顕著な動圧を得て円滑に回転するとともに、軸方向及び
径方向のがたつきが防止されることから、ベーンを、ハ
ウジング内周面に対して常に一定の微小な隙間が介在す
るように突没運動させるといった高精度な規制をするこ
とができ、摺動抵抗による回転効率の低下やベーンの摩
耗を防止し、かつ摺動発熱の増大による体積効率の低下
等の不具合の発生を防止することができる。
As described above, in the vane pump of the present invention, the rotatable retainer and the vane, which are eccentric to each other, are connected by the cam to restrict the amount of the vane protruding and retracting with respect to the vane groove of the rotor, and the cam is the retainer. And the vane is repeatedly angularly displaced, the wear of the retainer and the connecting portion with the vane is extremely small, and the retainer smoothly obtains a remarkable dynamic pressure by the dynamic pressure bearing mechanism including the spiral groove. As it rotates and prevents rattling in the axial and radial directions, highly accurate regulation such that the vane is caused to project and retract so that a constant small gap is always present with respect to the inner peripheral surface of the housing. It is possible to prevent deterioration of rotation efficiency due to sliding resistance and wear of vanes, and problems such as decrease in volume efficiency due to increased sliding heat generation. It is possible to prevent.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係るベーンポンプの断面図、
第2図は同作動説明図、第3図はリーテナプレートの正
面図、第4図および第5図はそれぞれリテーナプレート
の斜視図、第6図は従来のベーンポンプの概略構成を示
す説明図である。 (1)……フロントハウジング、(2)……リアハウジ
ング (4)……ロータ、(5)……内周空間 (10)回転軸、(11a)(11b)(11c)……ベーン (12a)(12b)(12c)……ベーン溝 (15a)(15b)リテーナプレート (17)スパイラル溝 (18)レイレーステップ溝 (19)ヘリングボーン溝 (22a)(22b)……(23c)……カム
FIG. 1 is a sectional view of a vane pump according to an embodiment of the present invention,
2 is an explanatory view of the same operation, FIG. 3 is a front view of a retainer plate, FIGS. 4 and 5 are perspective views of a retainer plate, and FIG. 6 is an explanatory view showing a schematic configuration of a conventional vane pump. is there. (1) ... front housing, (2) ... rear housing (4) ... rotor, (5) ... inner peripheral space (10) rotating shaft, (11a) (11b) (11c) ... vane (12a ) (12b) (12c) …… Vane groove (15a) (15b) Retainer plate (17) Spiral groove (18) Rayleigh step groove (19) Herringbone groove (22a) (22b) …… (23c) …… cam

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ハウジングの内周空間に偏心した状態で回
転自在に軸支されたロータと、該ロータに凹設された複
数のベーン溝に突没自在に配設された板状のベーンとを
有し、ロータおよびベーンの回転に伴なう各ベーン間の
作動空間の繰返し容積変化を利用して流体を一方から吸
入し、他方へ吐出する構造において、前記ハウジングの
端壁の内側に前記内周空間と同軸的に形成した環状凹部
に、リテーナを回転自在に嵌挿し、該リテーナと各ベー
ンとを角変位自在のカムで連結してベーン溝に対するベ
ーンの突没運動を一定範囲に規制し、前記環状凹部に対
するリテーナの対向面にスパイラル溝を含む動圧軸受機
構を設けてなることを特徴とするベーンポンプ。
1. A rotor rotatably supported eccentrically in an inner peripheral space of a housing, and a plate-shaped vane projectingly retracted in a plurality of vane grooves formed in the rotor. In which the fluid is sucked from one side and discharged to the other by utilizing the repeated volume change of the working space between the vanes accompanying the rotation of the rotor and the vane, the inside of the end wall of the housing is A retainer is rotatably fitted in an annular recess formed coaxially with the inner peripheral space, and the retainer and each vane are connected by a cam that is angularly displaceable to restrict the movement of the vane with respect to the vane groove within a certain range. The vane pump is characterized in that a dynamic pressure bearing mechanism including a spiral groove is provided on a surface of the retainer facing the annular recess.
JP61276689A 1986-07-22 1986-11-21 Vane pump Expired - Lifetime JPH0768950B2 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
JP61276689A JPH0768950B2 (en) 1986-11-21 1986-11-21 Vane pump
GB8717229A GB2192939B (en) 1986-07-22 1987-07-21 Vane pump
KR8707877A KR920007283B1 (en) 1986-07-22 1987-07-21 E pump
IT8767627A IT1211222B (en) 1986-07-22 1987-07-21 Rotary vane pump e.g. for compressor in freezing system
DE19873724128 DE3724128A1 (en) 1986-07-22 1987-07-21 WING CELL PUMP
FR8710382A FR2602011A1 (en) 1986-07-22 1987-07-22 Vane pump
KR870012309A KR880006461A (en) 1986-11-14 1987-11-03 Vane Pump
KR870012393A KR880006462A (en) 1986-11-17 1987-11-04 Vane pump
GB8725914A GB2197389B (en) 1986-11-17 1987-11-05 Pumps
GB8725903A GB2197388B (en) 1986-11-14 1987-11-05 Pumps
DE19873738257 DE3738257A1 (en) 1986-11-14 1987-11-11 WING CELL PUMP
IT8767961A IT1211516B (en) 1986-11-17 1987-11-12 VANE PUMP
DE19873738484 DE3738484A1 (en) 1986-11-17 1987-11-12 WING CELL PUMP
IT8767960A IT1211515B (en) 1986-11-14 1987-11-12 Rotary vane pump e.g. for compressor in freezing system
FR8715694A FR2606838A1 (en) 1986-11-17 1987-11-13 VANE PUMP
FR8715693A FR2606839A1 (en) 1986-11-14 1987-11-13 VANE PUMP
US07/197,548 US4958995A (en) 1986-07-22 1988-05-23 Vane pump with annular recesses to control vane extension
US07/394,774 US4997351A (en) 1986-07-22 1989-08-16 Rotary machine having vanes with embedded reinforcement
US07/394,778 US5030074A (en) 1986-07-22 1989-08-16 Rotary machine with dynamic pressure bearing grooves on vane guide ring
US07/394,772 US5002473A (en) 1986-07-22 1989-08-16 Vane pump with annular ring and cylindrical slide as vane guide
US07/394,785 US5032070A (en) 1986-07-22 1989-08-16 Rotary machine having axially biased ring for limiting radial vane movement
US07/394,780 US4997353A (en) 1986-07-22 1989-08-16 Vane pump with dynamic pressure bearing grooves on vane guide ring
US07/394,771 US4955985A (en) 1986-07-22 1989-08-16 Vane pump with annular ring for engaging vanes and drive means in which the rotor drives the annular ring
US07/394,777 US5011390A (en) 1986-07-22 1989-08-16 Rotary vane machine having stopper engaging recess in vane means
US07/394,779 US4998867A (en) 1986-07-22 1989-08-16 Rotary machine having axial projections on vanes closer to outer edge
US07/394,776 US4998868A (en) 1986-07-22 1989-08-16 Vane pump with sliding members on axial vane projections
US07/394,773 US5033946A (en) 1986-07-22 1989-08-16 Rotary vane machine with back pressure regulation on vanes
US07/508,743 US5022842A (en) 1986-07-22 1990-04-12 Vane pump with rotatable annular ring means to control vane extension
US07/590,568 US5044910A (en) 1986-07-22 1990-09-28 Vane pump with rotatable drive means for vanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276689A JPH0768950B2 (en) 1986-11-21 1986-11-21 Vane pump

Publications (2)

Publication Number Publication Date
JPS63131882A JPS63131882A (en) 1988-06-03
JPH0768950B2 true JPH0768950B2 (en) 1995-07-26

Family

ID=17572950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276689A Expired - Lifetime JPH0768950B2 (en) 1986-07-22 1986-11-21 Vane pump

Country Status (1)

Country Link
JP (1) JPH0768950B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150240B2 (en) * 2007-12-25 2013-02-20 パナソニック株式会社 Vane pump
JP5178613B2 (en) * 2009-04-16 2013-04-10 三菱電機株式会社 Screw compressor
JP5178612B2 (en) * 2009-04-16 2013-04-10 三菱電機株式会社 Screw compressor
JP5366856B2 (en) * 2010-02-17 2013-12-11 三菱電機株式会社 Vane rotary type fluid apparatus and compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867988A (en) * 1981-10-16 1983-04-22 Amadera Kuatsu Kogyo Kk Rotary vane compressor
JPS59157595U (en) * 1983-03-31 1984-10-23 マツダ株式会社 Rotary compressor with rotating sleeve

Also Published As

Publication number Publication date
JPS63131882A (en) 1988-06-03

Similar Documents

Publication Publication Date Title
US5044910A (en) Vane pump with rotatable drive means for vanes
JP2823650B2 (en) Rotary scroll supercharger for compressible media
US4917584A (en) Vane pump with annular aetainer limiting outward radial vane movement
US7566211B2 (en) Vane pump having vanes with a cutout portion
JPS63131883A (en) Vane pump
US4898526A (en) Vane pump with axial inlet and peripheral tangential outlet
JPH0768950B2 (en) Vane pump
JP3014656B2 (en) Rotary compressor
US6135742A (en) Eccentric-type vane pump
JPH0768949B2 (en) Vane pump
JPH0329995B2 (en)
CN108474379A (en) Twayblade rotary vacuum pump
JP2582863Y2 (en) Vane pump
JPH0318716Y2 (en)
JP2601991Y2 (en) Vane pump
GB2197389A (en) Rotary vane pumps
JPS60206996A (en) Vacuum pump
JPH04132888A (en) Rotation blocking mechanism
JPS6329084A (en) Vane pump
JPH0437275Y2 (en)
GB2197388A (en) Rotary vane pumps
JPS61205389A (en) Rotary compressor
JP2550622Y2 (en) Scroll type fluid machine
JPH02130282A (en) Vane hydraulic pump having cam ring floating structure and vane hydraulic motor
JPS60206997A (en) Vane supporting mechanism for rotary machine