JPH0768370A - Method for automatically pouring molten copper from refining furnace - Google Patents

Method for automatically pouring molten copper from refining furnace

Info

Publication number
JPH0768370A
JPH0768370A JP23905593A JP23905593A JPH0768370A JP H0768370 A JPH0768370 A JP H0768370A JP 23905593 A JP23905593 A JP 23905593A JP 23905593 A JP23905593 A JP 23905593A JP H0768370 A JPH0768370 A JP H0768370A
Authority
JP
Japan
Prior art keywords
refining furnace
pan
value
molten copper
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23905593A
Other languages
Japanese (ja)
Other versions
JP3247216B2 (en
Inventor
Takanori Wakabayashi
隆憲 若林
Toshiro Wada
敏郎 和田
Kazunori Sunahara
和典 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP23905593A priority Critical patent/JP3247216B2/en
Publication of JPH0768370A publication Critical patent/JPH0768370A/en
Application granted granted Critical
Publication of JP3247216B2 publication Critical patent/JP3247216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Feedback Control In General (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To provide an aromatic molten copper pouring method from a refining furnace, by which the unevenness of thickness of a cast anode is reduced and the uniform anode can be cast. CONSTITUTION:The molten copper 6 in the refining furnace 2 is poured into a storing ladle 8 through a pipe 4 by tilting the refining furnace 2. Then the molten copper 6 in the storing ladle 8 is poured into a weighing ladle 10 by tilting the storing ladle 8 and at last, the molten metal is poured into a mold M conveyed while holding with a turn-table 12 from the weighing ladle 10. Further, the wt. just before discharging the molten metal from the storing ladle is memorized in order to stabilize the wt. just before discharging from the storing ladle 8 to near the aimed value. The value at the moment and the wt. variating gradiation are calculated based on the trend data and fuzzy inference is applied to each value and the suitable tilting speed is introduced and the tilting speed of the refining furnace is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般には、精製炉から
の溶銅を溜鍋を介して鋳型へと注湯する注湯方法に関す
るものであり、特に、溜鍋の重量を測定して、ファジィ
制御により精製炉の傾転速度を制御し、溜鍋への溶銅の
注湯量を一定に保持することを特徴とする自動注湯方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a pouring method for pouring molten copper from a refining furnace into a mold through a pan, and particularly to measuring the weight of the pan. The present invention relates to an automatic pouring method characterized in that the tilting speed of a refining furnace is controlled by fuzzy control, and the amount of molten copper poured into a pan is kept constant.

【0002】[0002]

【従来の技術】従来、銅電解用アノードの鋳造は、精製
炉からの溶銅を、水平に配置する鋳型へと定量注湯する
ウォルカー方式にて行なわれている。
2. Description of the Related Art Conventionally, casting of an anode for copper electrolysis has been carried out by a Walker method in which molten copper from a refining furnace is poured into a horizontally arranged mold in a fixed amount.

【0003】図5を参照して簡単に説明すると、所定形
状の鋳型Mに一定量注湯するために、先ず、精製炉2を
傾転させ、樋4を介して精製炉2内の溶銅6を鋳型内容
量の10倍程度の内容積をもつ溜鍋8に注湯し、次に、
溜鍋8を傾動して、溜鍋8内の溶銅6を鋳型内容量の2
倍程度の内容積をもつ、2機設けられた計量鍋10に注
湯し、最後に計量鍋10からターンテーブル12に担持
されて搬送される2個の鋳型Mに一定量だけ注湯する。
To briefly explain with reference to FIG. 5, in order to inject a fixed amount of molten metal into a mold M having a predetermined shape, first, the refining furnace 2 is tilted, and molten copper in the refining furnace 2 is inserted through a gutter 4. 6 is poured into a pan 8 having an internal volume of about 10 times the internal volume of the mold, and then
Tilt the pan 8 so that the molten copper 6 in the pan 8 has a capacity of 2
The pouring water is poured into two measuring pans 10 each having a double internal volume, and finally, a fixed amount is poured into the two molds M carried on the turntable 12 and conveyed from the pan.

【0004】溜鍋8及び計量鍋10には秤量設備14、
16が設置されており、例えば、溜鍋8の排出量は65
0Kg程度とされ、計量鍋10は各々排出量が325K
g程度となるように設計されている。
The weighing pan 8 and the weighing pan 10 have weighing equipment 14,
16 are installed, for example, the discharge amount of the pan 8 is 65
It is set to about 0 kg, and the discharge amount of each weighing pan 10 is 325 K.
It is designed to be about g.

【0005】上記構成にて、精製炉2の炉傾転は高速モ
ータと低速モータとからなる傾転用電動機20にて行な
われ、基本的には、低速モータは鋳造時に使用し、高速
モータは鋳造時以外の傾転操作に用いられる。高速モー
タは、例えば最大310×10-3rpmの炉回転速度で
正転と逆転が可能であり、低速モータは、例えば最大
1.43×10-3rpmの炉回転速度で正転側にのみ回
転が可能である。
With the above structure, the tilting of the refining furnace 2 is performed by the tilting electric motor 20 composed of a high-speed motor and a low-speed motor. Basically, the low-speed motor is used during casting, and the high-speed motor is cast. Used for tilting operations other than time. The high-speed motor is capable of normal rotation and reverse rotation at a furnace rotation speed of, for example, 310 × 10 -3 rpm at the maximum, and the low-speed motor is only for forward rotation at a furnace rotation speed of, for example, 1.43 × 10 -3 rpm at the maximum. It can rotate.

【0006】溜鍋8の重量は、精製炉2から連続して溶
湯が流れて来るため、図6に示すように、除々に上昇
し、そして計量鍋に注湯するときに急激に下降するとい
った変化を繰り返している。重量データのサンプリング
は、図のピークとなる点Pを取り込む。
Since the molten metal continuously flows from the refining furnace 2 as shown in FIG. 6, the weight of the pan 8 gradually rises and then sharply drops when pouring it into the weighing pan. It is changing repeatedly. The sampling of the weight data takes in the point P which is the peak of the figure.

【0007】又、溜鍋8は、計量鍋10への注湯量が所
定値となる前に、傾転方向を逆転させ復帰動作に入る。
この復帰動作開始直後においては、未だに溜鍋8内の溶
銅6は計量鍋10へと注湯され、この復帰動作後の計量
鍋10への溶銅6の流れ込みを「垂れ込み」という。
[0007] Further, the ladle 8 reverses the tilting direction before the pouring amount into the measuring ladle 10 reaches a predetermined value, and starts a returning operation.
Immediately after the start of the returning operation, the molten copper 6 in the pan 8 is still poured into the measuring pan 10, and the inflow of the molten copper 6 into the measuring pan 10 after the returning operation is referred to as "dripping".

【0008】溜鍋8内の湯量が多い場合と少ない場合と
では、この垂れ込み量が異なり、湯量が少ない場合が垂
れ込み量が少なく、湯量が多い場合には逆に垂れ込み量
は多くなる。
The amount of drooping differs depending on whether the amount of hot water in the pan 8 is large or small. When the amount of hot water is small, the amount of drooping is small, and when the amount of hot water is large, the amount of drooping is large. .

【0009】計量鍋10も、溜鍋8と同様の現象が発生
し、垂れ込み量は、計量鍋10の排出直前の湯量(重
量)によって変わる。
A phenomenon similar to that of the sump 8 occurs in the measuring pan 10, and the amount of sag changes depending on the amount (weight) of hot water immediately before the discharging of the measuring pan 10.

【0010】従って、鋳型M内への注湯量のバラツキ
は、この垂れ込み量のバラツキにより発生し、その結
果、アノード重量のバラツキの要因となっている。
Therefore, the variation of the pouring amount into the mold M is caused by the variation of the sagging amount, and as a result, the variation of the anode weight is caused.

【0011】そのために、このウォルカー方式で安定し
たアノード鋳造を行うためには、先ず第1に、溜鍋8の
重量を一定に保持すること、つまり、精製炉2の傾転速
度vの制御が最も重要であることが経験的に知られてい
る。
For this reason, in order to perform stable anode casting in the Walker system, first of all, the weight of the pan 8 is kept constant, that is, the tilting speed v of the refining furnace 2 is controlled. It is empirically known to be the most important.

【0012】現在この調整は、オペレータが、重量表示
器22などに表示される溜鍋8、計量鍋10内の溶銅重
量(重量表示器22)を見ながら動力制御盤24を操作
して電動機20の駆動を制御し、溜鍋8の上流側にある
精製炉2の傾転速度vを手動で調整することで行ってい
る。
At present, this adjustment is performed by the operator operating the power control panel 24 while observing the weight of molten copper (weight display 22) in the pan 8 and the weighing pan 10 displayed on the weight display 22 or the like. This is performed by controlling the drive of 20 and manually adjusting the tilting speed v of the refining furnace 2 on the upstream side of the pan 8.

【0013】しかしながら、オペレータの技能には個人
差があり、また調整方法の標準化も困難で、延いては安
定操業を乱す要因となっている。
However, there are individual differences in the skill of the operator, and it is difficult to standardize the adjustment method, which is a factor that disturbs stable operation.

【0014】又、自動化も試みられたが、従来の自動注
湯方法は、精製炉2の傾転速度vを注湯量に応じてプロ
グラム化し、それに沿った速度で精製炉2を傾転させ、
それに実際の重量との偏差で修正を行なうものであっ
た。
Although automation has been attempted, in the conventional automatic pouring method, the tilting speed v of the refining furnace 2 is programmed according to the pouring amount, and the refining furnace 2 is tilted at a speed according to the programmed tilting speed v.
Moreover, the correction was made based on the deviation from the actual weight.

【0015】しかしながら、このような自動注湯方法で
は、同じ傾転速度でも、精製炉2の湯口の大きさの変動
や、精製炉2内の溶銅6の温度により変化する注湯量の
変化によって、傾転パターンをメモリー化したもので
は、偏差が増大してきて溜鍋8内の溶銅重量を安定させ
ることが困難であった。
However, in such an automatic pouring method, even if the tilting speed is the same, the pouring amount varies depending on the size of the sprue of the refining furnace 2 and the temperature of the molten copper 6 in the refining furnace 2. In the case where the tilt pattern is stored in the memory, the deviation increases and it is difficult to stabilize the weight of molten copper in the pan 8.

【0016】上述のように、従来技術によると、結果的
にアノードの重量が安定しないために、アノードの厚み
にもバラツキが生じ、後工程であるハンドリング工程、
ミリング工程のトラブルの原因ともなっている。又、電
気分解時のショート原因ともなり、電流効率の悪化をも
たらしている。
As described above, according to the prior art, since the weight of the anode is not stable as a result, the thickness of the anode also varies, and the handling step, which is a post-process,
It also causes troubles in the milling process. Further, it also causes a short circuit during electrolysis, resulting in deterioration of current efficiency.

【0017】従って、本発明の目的は、鋳造されるアノ
ードの厚みのバラツキを少なくし、均一的なアノードの
鋳造を可能とする、精製炉からの溶銅の自動注湯方法を
提供することである。
Therefore, an object of the present invention is to provide an automatic pouring method of molten copper from a refining furnace, which reduces variations in the thickness of the cast anode and enables uniform casting of the anode. is there.

【0018】[0018]

【課題を解決するための手段】上記目的は本発明に係る
精製炉からの溶銅の自動注湯方法にて達成される。要約
すれば、本発明は、精製炉からの溶銅を溜鍋を介して鋳
型へと注湯する溶銅の注湯方法において、前記溜鍋の重
量を測定して記憶しておき、そのトレンドデータを元に
瞬時値と重量変動傾向値を算出し、そしてそれぞれから
ファジィ推論して、適正傾転速度を演算し、その結果に
基づき前記精製炉の傾転速度を制御することを特徴とす
る精製炉からの溶銅の自動注湯方法である。
The above object can be achieved by the method for automatically pouring molten copper from a refining furnace according to the present invention. In summary, the present invention is a method for pouring molten copper from a refining furnace into a mold through a pan, in which the weight of the pan is measured and stored, and the trend thereof is stored. It is characterized in that an instantaneous value and a weight fluctuation tendency value are calculated based on the data, and fuzzy inference is performed from each of them to calculate an appropriate tilting speed, and the tilting speed of the refining furnace is controlled based on the result. This is an automatic pouring method of molten copper from a refining furnace.

【0019】本発明の他の態様によると、精製炉の溶銅
を連続的に溜鍋に傾注し、注入された溜鍋の溶銅を間欠
的に計量鍋に注湯し、更に、この計量鍋から鋳型へと注
湯する溶銅の注湯方法において、前記経時的に増減する
溜鍋の重量のピーク値を記憶し、この記憶データを基
に、目標値との偏差値である瞬時値と、過去の溜鍋注湯
前重量ピーク値との比較による重量変動傾向値を算出
し、これらの瞬時値と上昇傾向或は下降傾向にあるかと
いう重量変動傾向値からファジィ推論して適正傾転速度
を演算し、その結果に基づき前記精製炉の傾転速度を制
御することを特徴とする精製炉からの溶銅の自動注湯方
法が提供される。
According to another aspect of the present invention, the molten copper in the refining furnace is continuously poured into the pan, the poured molten copper in the pan is intermittently poured into the measuring pan, and this measuring is further performed. In the molten copper pouring method of pouring from the pan to the mold, the peak value of the weight of the pan that increases and decreases with time is stored, and based on this stored data, an instantaneous value that is a deviation value from the target value. Then, the weight fluctuation tendency value is calculated by comparing it with the past peak weight value before pouring the pouring water, and fuzzy inference is performed based on these instantaneous values and the weight fluctuation tendency value indicating whether there is an upward tendency or a downward tendency. There is provided a method for automatically pouring molten copper from a refining furnace, which calculates a speed and controls a tilting speed of the refining furnace based on the result.

【0020】[0020]

【実施例】以下、本発明に係る精製炉からの溶銅の自動
注湯方法を図面に則して更に詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for automatically pouring molten copper from a refining furnace according to the present invention will be described below in more detail with reference to the drawings.

【0021】本発明においては、溜鍋の排出直前の重量
を目標値付近に安定させるために、溜鍋の排出直前の重
量を記憶しておき、そのトレンドデータを元に瞬時値と
重量変化傾向を算出し、それぞれからファジィ推論し、
適正傾転速度を導き出し、精製炉の傾転速度にフィード
バックし、適正速度とする。
In the present invention, in order to stabilize the weight immediately before the discharge of the saucepan near the target value, the weight immediately before the discharge of the saucepan is stored, and based on the trend data, the instantaneous value and the weight change tendency are stored. And fuzzy inference from each,
The proper tilt speed is derived and fed back to the tilt speed of the refining furnace to obtain the proper speed.

【0022】図1に、本発明に従って構成される自動注
湯システムが概略図示される。このシステムによると、
精製炉2内の溶銅6は、精製炉2を傾転させることによ
って、樋4を介して鋳型内容量の10倍程度の内容積を
もつ溜鍋8に注湯される。溜鍋8は、傾動して、溜鍋8
内の溶銅6を鋳型内容量の2倍程度の内容積をもつ、通
常2機設けられた計量鍋10に注湯し、最後に計量鍋1
0からターンテーブル12に担持されて搬送される2個
の鋳型Mに一定量だけ注湯する。
FIG. 1 schematically illustrates an automatic pouring system constructed according to the present invention. According to this system,
The molten copper 6 in the refining furnace 2 is poured through a trough 4 into a pan 8 having an internal volume of about 10 times the internal volume of the mold by tilting the refining furnace 2. The pan 8 tilts and the pan 8
The molten copper 6 in the mold is poured into a measuring pan 10 which is usually provided with two machines and has an internal volume about twice the internal volume of the mold, and finally the measuring pan 1
A certain amount of molten metal is poured into the two molds M carried from 0 to the turntable 12.

【0023】ここで、溜鍋8は、計重用ロードセル14
によりその重量が計測され、その信号は秤量部18に送
信され、重量信号に変換される。この重量信号は、ファ
ジィ制御部100の記憶回路102に入力され、本実施
例では過去15回までのデータが格納される。重量デー
タのサンプリングは、ピーク値とされる。
Here, the pan 8 is a load cell 14 for weighing.
The weight is measured by, and the signal is transmitted to the weighing unit 18 and converted into a weight signal. This weight signal is input to the storage circuit 102 of the fuzzy control unit 100, and in the present embodiment, the data up to the past 15 times is stored. The sampling of the weight data is the peak value.

【0024】更に、本発明によると、記憶回路102の
データを基に演算回路103にて、精製炉傾転操作直前
の溜鍋重量の設定値に対する偏差値(d1 )と溜鍋重量
の変動傾向値(d2 )が演算され、それぞれがファジィ
推論にかけられる。
Further, according to the present invention, based on the data in the storage circuit 102, the arithmetic circuit 103 changes the deviation value (d 1 ) from the set value of the pan weight immediately before the tilting operation of the refining furnace and the fluctuation of the pan weight. The trend value (d 2 ) is calculated and each is subjected to fuzzy inference.

【0025】この演算結果に基づき速度指令信号を出力
し、動力制御器24を介して精製炉傾転用電動機20の
駆動を制御する。
A speed command signal is output based on the result of this calculation, and the drive of the refining furnace tilting electric motor 20 is controlled via the power controller 24.

【0026】次に、実施例について、本発明に従ったフ
ァジィ推論についてより詳しく説明する。
Next, the fuzzy inference according to the present invention will be described in more detail with reference to the embodiments.

【0027】実施例1 本実施例にてファジィ推論における瞬時値、即ち、偏差
値(d1 )とされ、 d1 =(重量目標値)−(直前の重量データ) であって、精製炉傾転操作直前の溜鍋重量の設定値に対
する偏差であり、又、変動傾向値(d2 )は、 d2 =(直前〜5回前までのデータの平均値)−(6回
前〜10回前までのデータの平均値) とされ、溜鍋重量の変動傾向がどの程度上昇傾向にある
か、下降傾向にあるかが算出され、重量の変動傾向とさ
れる。
Example 1 In this example, an instantaneous value in fuzzy reasoning, that is, a deviation value (d 1 ), was defined as d 1 = (weight target value)-(weight data immediately before), and It is a deviation from the set value of the saucepan weight immediately before the rolling operation, and the fluctuation tendency value (d 2 ) is d 2 = (average value of data from immediately before to 5 times before)-(6 times before to 10 times before) The average value of the data up to the previous time) is used to calculate how much the tendency of fluctuations in the weight of the ladle is increasing or decreasing, and this is taken as the weight fluctuation tendency.

【0028】上記偏差値(d1 )と変動傾向値(d2
を条件部メンバーシップ関数として、炉傾転速度操作量
v(結論部メンバーシップ関数)を推論する。
The above deviation value (d 1 ) and fluctuation tendency value (d 2 )
Is used as the condition part membership function to infer the furnace tilting speed manipulated variable v (conclusion part membership function).

【0029】ファジィ制御の推論データを得るため、上
手なオペレータにヒアリングし、それを整理すると、図
2に示すような条件部メンバーシップ関数及び結論部メ
ンバーシップ関数となった。これらの関数は、オペレー
タが直感的に感じた定性的な感覚を数値に置き換え、関
数化したものである。
In order to obtain the inference data of fuzzy control, a good operator was interviewed and arranged, and the condition part membership function and the conclusion part membership function as shown in FIG. 2 were obtained. These functions are functionalized by substituting numerical values for the qualitative feeling felt by the operator.

【0030】次に、プロダクションルールについても同
様の方法で、オペレータにヒヤリングしてまとめた結果
が表1に示される。
Next, with respect to the production rules, Table 1 shows the results of hearing and summarizing with the operator in the same manner.

【0031】[0031]

【表1】 [Table 1]

【0032】用語説明 ラベル名 意 味 NL(Negative Large) 負の方向に大きい NM(Negative Medium) 負の方向に中位 NS(Negative Small) 負の方向に小さい ZR(Approximately Zero) おおよそゼロ PS(Positive Small) 正の方向に小さい PM(Positive Midum) 正の方向に中位 PL(Positive Larga) 正の方向に大きいTerm explanation Label name Meaning NL (Negative Large) Large in negative direction NM (Negative Medium) Medium in negative direction NS (Negative Small) Small in negative direction ZR (Approximately Zero) Approximately zero PS (Positive) Small) Small in the positive direction PM (Positive Midum) Medium in the positive direction PL (Positive Larga) Large in the positive direction

【0033】前述のメンバシップ関数とプロダクション
ルールに基づくファジィ推論の手順について説明する
と、図3に示す通りに、先ず、偏差値(d1 )と変動傾
向値(d2 )が演算回路に入力される。演算回路にて
は、各プロダクションルールにおける条件部メンバーシ
ップ関数のグレードが算出され、条件部メンバーシップ
関数の最小をとり結論部メンバーシップ関数のグレード
とする。次いで、結論部メンバーシップ関数の論理和を
取り、重心を求め、精製炉の傾転操作量vを決定する。
Explaining the procedure of fuzzy inference based on the above-mentioned membership function and production rule, as shown in FIG. 3, first, the deviation value (d 1 ) and the fluctuation tendency value (d 2 ) are input to the arithmetic circuit. It The arithmetic circuit calculates the grade of the condition part membership function in each production rule, and takes the minimum of the condition part membership functions as the grade of the conclusion part membership function. Next, the logical sum of the conclusion section membership functions is calculated to obtain the center of gravity, and the tilting operation amount v of the refining furnace is determined.

【0034】例えば、低速傾転をしながら鋳造している
とき、溜鍋重量が目標値に対して125kg重い状態
で、重量の変動傾向が約25kg減少ぎみであるとした
時の精製炉の傾転速度を、現状の速度に対しどの程度加
減すべきかを、本発明に従ってファジィ推論した。つま
り、重量偏差(d1 )=125kg、重量の変動傾向
(d2 )=−25kgとして推論した。図4に結論部メ
ンバーシップ関数の論理和を取った結果を示す。
For example, when casting is performed while tilting at a low speed, when the weight of the ladle is 125 kg heavier than the target value and the tendency of the weight fluctuation is about 25 kg reduction, the refining furnace tilts. According to the present invention, a fuzzy inference was made as to how much the rolling speed should be adjusted with respect to the current speed. That is, it was inferred that the weight deviation (d 1 ) was 125 kg and the weight variation tendency (d 2 ) was −25 kg. Figure 4 shows the result of the logical sum of the conclusion function.

【0035】図4にて、重心より求められた操作量
(v)は−73rpmであった。この推論結果で得られ
た値は、オペレータが実際に行なっている操作と大略同
じものであった。
In FIG. 4, the operation amount (v) calculated from the center of gravity was -73 rpm. The value obtained from this inference result was almost the same as the operation actually performed by the operator.

【0036】実施例2 本実施例では、溜鍋特有の異状値の打消しをより効果的
にするために、メンバシップ関数及びプロダクションル
ール共に傾向重視の観点にたって、 データ取込みを1回毎の瞬時値取込みから、前2回分
の平均値取込みに変更した。即ち、これによって、平均
的な偏差を取り異常値を打ち消すことができると考え
た。 偏差に対する応答性を良くするために、5回平均の差
を2回平均の差(前1〜2回重量平均)−(前10〜1
1回平均)に変更した。これによって、2回平均の差に
より応答性を良くすることができると考えた。 プロダクションルールも、推論結果の応答性を良くす
るためと、許容範囲内にある場合必要のない操作を行わ
ないように、表2のように変更した。
Embodiment 2 In this embodiment, in order to more effectively cancel out the abnormal value peculiar to the saucepan, both the membership function and the production rule are trend-oriented, and the data acquisition is performed once. The instantaneous value acquisition was changed to the previous two average value acquisitions. That is, it is considered that this makes it possible to take an average deviation and cancel out the abnormal value. To improve the responsiveness to the deviation, the difference between the averages of 5 times and the difference between the averages of 2 times (previous 1 to 2 times weighted average)-(previous 10 to 1
Changed to (average once). It was thought that this would improve the responsiveness due to the difference between the two-time averages. The production rules have also been changed as shown in Table 2 in order to improve the responsiveness of the inference result and to prevent unnecessary operations when the result is within the allowable range.

【0037】つまり、本実施例では、偏差値(d1 )及
び変動傾向値(d2 )として、 d1 ={(現在の排出直前の重量)+(その1回前の直
前の重量)}÷2 d2 ={(現在の排出直前の重量)+(その1回前の排
出直前の重量)}÷2−{(10回前の排出直前の重
量)+(11回前の排出直前の重量)}÷2 とした。
That is, in this embodiment, as the deviation value (d 1 ) and the fluctuation tendency value (d 2 ), d 1 = {(current weight immediately before discharge) + (weight immediately before that)} ÷ 2 d 2 = {(weight immediately before the current discharge) + (weight immediately before the first discharge)} ÷ 2-{(weight immediately before the discharge 10 times before) + ( Weight)} / 2.

【0038】[0038]

【表2】 [Table 2]

【0039】運転結果は、予想以上の良い制御性を得る
ことができた。
As for the operation result, better controllability than expected could be obtained.

【0040】[0040]

【発明の効果】以上説明したように、本発明に係る精製
炉からの溶銅の自動注湯方法は、溜鍋の排出直前の重量
を記憶しておき、そのトレンドデータを基に瞬時値と重
量変化傾向を算出し、それぞれからファジィ推論し、適
正傾転速度を導き出し、精製炉の傾転速度を制御する構
成とされるので、鋳造されるアノードの厚みのバラツキ
を少なくし、均一的なアノードを鋳造することができ
る。従って、本発明にて製造されたアノードは、後工程
としてのハンドリング工程、ミリング工程などを不要と
し、次の工程である電解工場での電極のショートといっ
た問題をも解決することができる。
As described above, in the method for automatically pouring molten copper from the refining furnace according to the present invention, the weight immediately before the discharge of the pan is stored, and the instantaneous value is calculated based on the trend data. The weight change tendency is calculated, the fuzzy inference is performed from each of them, the proper tilting speed is derived, and the tilting speed of the refining furnace is controlled. The anode can be cast. Therefore, the anode manufactured according to the present invention does not require a handling step, a milling step or the like as a post-step, and can solve the problem of electrode short-circuiting in the next step, an electrolytic plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る精製炉からの溶銅の自動注湯方法
を実施する自動注湯システムの概略構成図である。
FIG. 1 is a schematic configuration diagram of an automatic pouring system for carrying out an automatic pouring method of molten copper from a refining furnace according to the present invention.

【図2】メンバーシップ関数の一例を示す図である。FIG. 2 is a diagram showing an example of a membership function.

【図3】ファジィ推論の手順を示す説明図である。FIG. 3 is an explanatory diagram showing a procedure of fuzzy inference.

【図4】ファジィ推論により得られた論理和の一例を示
す説明図である。
FIG. 4 is an explanatory diagram showing an example of a logical sum obtained by fuzzy inference.

【図5】従来の精製炉からの溶銅の自動注湯方法を実施
する自動注湯システムの概略構成図である。
FIG. 5 is a schematic configuration diagram of an automatic pouring system for carrying out a method for automatically pouring molten copper from a conventional refining furnace.

【図6】溜鍋の重量変化を示す図である。FIG. 6 is a diagram showing a change in weight of a saucepan.

【符号の説明】[Explanation of symbols]

2 精製炉 8 溜鍋 10 計量鍋 20 傾転用電動機 100 ファジィ制御部 2 Refining furnace 8 Reservoir 10 Measuring pan 20 Electric motor for tilting 100 Fuzzy control section

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F27D 3/14 Z 7141−4K G05B 13/02 N 9131−3H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F27D 3/14 Z 7141-4K G05B 13/02 N 9131-3H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 精製炉からの溶銅を溜鍋及び計量鍋を介
して鋳型へと注湯する溶銅の注湯方法において、前記溜
鍋の重量を測定して記憶しておき、そのトレンドデータ
を基に瞬時値と重量変動傾向値を算出し、そしてそれぞ
れからファジィ推論して、適正傾転速度を演算し、その
結果に基づき前記精製炉の傾転速度を制御することを特
徴とする精製炉からの溶銅の自動注湯方法。
1. A method of pouring molten copper from a refining furnace into a mold through a pan and a measuring pan, in which the weight of the pan is measured and stored, and its trend is stored. An instantaneous value and a weight fluctuation tendency value are calculated based on the data, and fuzzy inference is performed from each of them to calculate an appropriate tilting speed, and based on the result, the tilting speed of the refining furnace is controlled. Automatic pouring method of molten copper from refining furnace.
【請求項2】 精製炉の溶銅を連続的に溜鍋に傾注し、
注入された溜鍋の溶銅を間欠的に計量鍋に注湯し、更
に、この計量鍋から鋳型へと注湯する溶銅の注湯方法に
おいて、前記経時的に増減する溜鍋の重量のピーク値を
記憶し、この記憶データを基に、目標値との偏差値であ
る瞬時値と、過去の溜鍋注湯前重量ピーク値との比較に
よる重量変動傾向値を算出し、これらの瞬時値と上昇傾
向或は下降傾向にあるかという重量変動傾向値からファ
ジィ推論して適正傾転速度を演算し、その結果に基づき
前記精製炉の傾転速度を制御することを特徴とする精製
炉からの溶銅の自動注湯方法。
2. The molten copper of the refining furnace is continuously poured into a pan,
The molten copper in the pouring pot is poured into the measuring pan intermittently, and further, in the molten copper pouring method of pouring from this measuring pan into the mold, the weight of the lapping pan that increases and decreases with time The peak value is stored, and based on this stored data, the instantaneous value that is the deviation value from the target value and the weight fluctuation tendency value by comparing the past peak value before pouring the pouring water are calculated, and these instantaneous values are calculated. From a refining furnace characterized by fuzzy inference from a weight fluctuation tendency value indicating whether it is in an upward tendency or a downward tendency and calculating an appropriate tilting speed, and controlling the tilting speed of the refining furnace based on the result. Automatic molten copper pouring method.
JP23905593A 1993-08-31 1993-08-31 Automatic pouring of molten copper from refining furnace Expired - Fee Related JP3247216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23905593A JP3247216B2 (en) 1993-08-31 1993-08-31 Automatic pouring of molten copper from refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23905593A JP3247216B2 (en) 1993-08-31 1993-08-31 Automatic pouring of molten copper from refining furnace

Publications (2)

Publication Number Publication Date
JPH0768370A true JPH0768370A (en) 1995-03-14
JP3247216B2 JP3247216B2 (en) 2002-01-15

Family

ID=17039205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23905593A Expired - Fee Related JP3247216B2 (en) 1993-08-31 1993-08-31 Automatic pouring of molten copper from refining furnace

Country Status (1)

Country Link
JP (1) JP3247216B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272388A (en) * 2005-03-29 2006-10-12 Yokohama Rubber Co Ltd:The Method and apparatus for control of pouring from molten metal furnace in gravity casting method, and method for manufacturing metallic die for vulcanizing tire to be manufactured by the same method
JP2010112573A (en) * 2008-11-04 2010-05-20 Tohoku Univ Arc melting furnace and arc casting device
JP2012502247A (en) * 2008-09-05 2012-01-26 シュトピンク・アクティーエンゲゼルシャフト Copper anode furnace and operating method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272388A (en) * 2005-03-29 2006-10-12 Yokohama Rubber Co Ltd:The Method and apparatus for control of pouring from molten metal furnace in gravity casting method, and method for manufacturing metallic die for vulcanizing tire to be manufactured by the same method
JP4650055B2 (en) * 2005-03-29 2011-03-16 横浜ゴム株式会社 Method and apparatus for controlling hot water from a hot water furnace in the gravity casting method, and method for producing a mold for tire vulcanization manufactured by the hot water control method
JP2012502247A (en) * 2008-09-05 2012-01-26 シュトピンク・アクティーエンゲゼルシャフト Copper anode furnace and operating method thereof
JP2010112573A (en) * 2008-11-04 2010-05-20 Tohoku Univ Arc melting furnace and arc casting device

Also Published As

Publication number Publication date
JP3247216B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
EP0042689B2 (en) Method and apparatus for controlling electrode drive speed in a consumable electrode furnace
US6115404A (en) Dynamic control of remelting processes
US20110213486A1 (en) Method and device for controlling the solidification of a cast strand in a strand casting plant in startup of the injection process
KR100752693B1 (en) Automation of a high-speed continuous casting plant
US4131754A (en) Automatic melt rate control system for consumable electrode remelting
JPH0768370A (en) Method for automatically pouring molten copper from refining furnace
CN113934139B (en) Melting speed control method for vacuum arc remelting process based on online simulation model
JP2802729B2 (en) Casting equipment
CN112180997B (en) Thin strip continuous casting molten pool liquid level control method and device based on CCD liquid level detection
JP2000018843A (en) Casting facility and melting control method of material
JP2001259825A (en) Method for controlling tilting speed of ladle
CN100421840C (en) Process for automatically controlling shrinkage filling for electroslag remelting refining operation
MX2014004229A (en) Method for controlling a casting system.
JPS6270904A (en) Temperature control method
JPH05263147A (en) Method for controlling strip temperature in continuous annealing furnace
JPH0253148B2 (en)
JP2774727B2 (en) Automatic pouring equipment in casting equipment
JP2774726B2 (en) Automatic pouring equipment in casting equipment
JP2928118B2 (en) Casting equipment
CN112824544B (en) Converter tapping angle optimization method
US5915456A (en) Method and device for casting a strand from liquid metal
JP2978372B2 (en) Plasma heating controller for molten steel in tundish in continuous casting facility
JP3290981B2 (en) Production method of molten copper
JPH0787980B2 (en) Hot water supply amount adjustment device
JPH0787981B2 (en) Hot water supply amount adjustment device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees