JPH0768262A - Flow rate detection mechanism of ion water - Google Patents

Flow rate detection mechanism of ion water

Info

Publication number
JPH0768262A
JPH0768262A JP5241988A JP24198893A JPH0768262A JP H0768262 A JPH0768262 A JP H0768262A JP 5241988 A JP5241988 A JP 5241988A JP 24198893 A JP24198893 A JP 24198893A JP H0768262 A JPH0768262 A JP H0768262A
Authority
JP
Japan
Prior art keywords
water
pressure
flow rate
inflow
detection mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5241988A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nonomura
々 村 和 幸 野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP5241988A priority Critical patent/JPH0768262A/en
Publication of JPH0768262A publication Critical patent/JPH0768262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To accurately detect the water pressure and a flow rate using a semiconductor pressure transducer in an ion water formation apparatus. CONSTITUTION:This flow rate detection mechanism is constituted of the water pressure detecting pitot tube 1 provided in a tap water inflow pipe, semiconductor pressure transducers 2, 3 accurately measuring detected water pressure, an A/D converter 4 subjecting water pressure measuring output to A/D conversion, a pressure reducing valve 5 reducing the pressure of a water pipe and a control part 6 inputting a measured value from the A/D converter to calculate the flow velocity and flow rate of inflow water to perform pH adjusting control by the control of the electrolytic level of an electrolytic power supply 25 or the flow rate control due to the pressure reducing valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン水生成器の流量
検出機構に関し、詳しくは流入水の水圧を正確に測定
し、流速および流量を算出する流量検出機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate detecting mechanism for an ionized water generator, and more particularly to a flow rate detecting mechanism for accurately measuring the water pressure of inflow water and calculating the flow rate and flow rate.

【0002】[0002]

【従来の技術】図5は従来のイオン水生成器の構成図で
あり、蛇口が開けられ水道水が浄水器20に流入する
と、浄水器20に設置されている(設置位置は限定され
ない)水圧スイッチs21がONとなり水圧検出信号を
送出する。この水圧スイッチs21は水圧によって歪み
を発生する金属系ダイヤフラムと、マイクロスイッチを
組み合わせた構造であり流入水の検知用として使用され
ている。制御部(マイコン)23は、水圧スイッチs2
1から水圧検出信号が入力すると、電解on/offス
イッチ27をonにして、設定PHに対応する電解レベ
ルを電解電源25から電解槽22へ印加し電解を開始す
る。水圧スイッチs21がoffになり給水が停止して
電解が終了したら、電極洗浄用の電源極性反転スイッチ
を電解から洗浄側に切り替え一定時間電極洗浄を行う。
なお図の電流センサー24は抵抗型の過電流監視用であ
る。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional ionized water generator. When tap water is opened and tap water flows into the water purifier 20, it is installed in the water purifier 20 (the installation position is not limited). The switch s21 is turned on and sends out a water pressure detection signal. The water pressure switch s21 has a structure in which a metal type diaphragm that is distorted by water pressure is combined with a micro switch, and is used for detecting inflow water. The control unit (microcomputer) 23 has a water pressure switch s2.
When the water pressure detection signal is input from 1, the electrolysis on / off switch 27 is turned on, the electrolysis level corresponding to the set PH is applied from the electrolysis power supply 25 to the electrolysis cell 22, and electrolysis is started. When the water pressure switch s21 is turned off and the water supply is stopped and the electrolysis is completed, the power polarity reversal switch for electrode cleaning is switched from electrolysis to the cleaning side to perform electrode cleaning for a certain period of time.
The current sensor 24 in the figure is for resistance type overcurrent monitoring.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図5に
示す従来技術においては、流入水の検出に機械的作動の
水圧スイッチを使用しているので、その作動上のバラツ
キのため実際に水道水が流入していても、水圧スイッチ
が作動せず水圧検出信号が送出されない場合があるとい
う不都合があった。
However, in the prior art shown in FIG. 5, since a mechanically operated water pressure switch is used to detect inflow water, tap water is actually discharged due to variations in its operation. Even if it is flowing in, there is a disadvantage that the water pressure switch may not operate and the water pressure detection signal may not be sent out.

【0004】本発明は上述の問題点に鑑みてなされたも
のであり、流入水の総圧および静圧を検出することによ
って、流入水の水圧および流量を正確に検出できるイオ
ン水生成器の流量検出機構を提供することを目的として
いる。
The present invention has been made in view of the above problems, and the flow rate of an ion water generator capable of accurately detecting the water pressure and the flow rate of the inflow water by detecting the total pressure and static pressure of the inflow water. The purpose is to provide a detection mechanism.

【0005】上記目的を達成するため、本発明は、水道
水の流入を検知して電解槽へ設定PHに対応する電解レ
ベルを印加し電解によりアルカリイオン水と酸性水を生
成するイオン水生成器において、流入水の総圧および静
圧を測定する測定手段と、前記測定手段により測定され
た値を入力し前記流入水の流速および流量の算出を行う
制御部を備えている。
In order to achieve the above object, the present invention is an ion water generator for detecting an inflow of tap water and applying an electrolysis level corresponding to a set PH to an electrolysis cell to produce alkaline ionized water and acidic water by electrolysis. The measuring means for measuring the total pressure and static pressure of the inflow water, and the control section for inputting the values measured by the measuring means and calculating the flow velocity and the flow rate of the inflow water.

【0006】[0006]

【作用】電解槽に流入する前の流入水について、水圧測
定装置によって、その総圧と静圧を測定する。それらの
値を制御部にデジタルデータとして入力し、総圧と静圧
の測定値から前記流入水の流速および流量を算出する。
その算出結果により、制御部は電解レベルの調整や、減
圧弁調節等でPH制御等を行う。
The total pressure and static pressure of the inflow water before flowing into the electrolytic cell are measured by the water pressure measuring device. These values are input to the control unit as digital data, and the flow velocity and flow rate of the inflow water are calculated from the measured values of total pressure and static pressure.
Based on the calculation result, the control unit performs PH control and the like by adjusting the electrolysis level and adjusting the pressure reducing valve.

【0007】[0007]

【実施例】以下、本発明の一実施例を図に基づいて説明
する。図1は本発明の第1の実施例によるイオン水生成
器の圧力トランジューサ流量検出機構の構成図である。
An embodiment of the present invention will be described below with reference to the drawings. 1 is a block diagram of a pressure transducer flow rate detection mechanism of an ion water generator according to a first embodiment of the present invention.

【0008】図1に示す本実施例は、水道水が蛇口から
流入する流入管内に平行に設置して水圧を検出するピト
ー管1と、ピトー管1による水圧を正確に測定する半導
体圧力トランジューサ2および3と、(なお半導体圧力
トランジューサ2はピトー管1の総圧を、半導体圧力ト
ランジューサ3は静圧を測定する。また半導体圧力トラ
ンジューサ2,3は差圧センサー構成としてもよ
い。)、半導体圧力トランジューサ2,3の測定出力を
A/D変換するA/Dコンバータ4と、流入水道水減圧
用の減圧弁5と、A/Dコンバータ4から水圧測定値を
入力して流入水道水の流速と流量を演算し、算出した流
量値を基に電解レベル、減圧弁5を調節してPH調整を
行い、その他のイオン水生成制御も行うマイコンによる
制御部6とで構成される。なお、その他の従来例と同一
構成には同一符号を付して重複説明は省略する。
In this embodiment shown in FIG. 1, a pitot tube 1 which is installed in parallel in an inflow pipe through which tap water flows in from a faucet and detects a water pressure, and a semiconductor pressure transducer which accurately measures the water pressure by the pitot pipe 1. 2 and 3, (the semiconductor pressure transducer 2 measures the total pressure of the Pitot tube 1 and the semiconductor pressure transducer 3 measures the static pressure. Further, the semiconductor pressure transducers 2 and 3 may have a differential pressure sensor configuration. ), An A / D converter 4 for A / D converting the measured outputs of the semiconductor pressure transducers 2 and 3, a pressure reducing valve 5 for reducing inflowing tap water, and an inflow of water pressure measured values from the A / D converter 4. Comprised of a microcomputer control unit 6 which calculates the flow velocity and flow rate of tap water, adjusts the electrolysis level and the pressure reducing valve 5 to adjust the pH based on the calculated flow rate value, and also performs other ion water production control. It should be noted that the same configurations as those of the other conventional examples are denoted by the same reference numerals, and duplicate description will be omitted.

【0009】つぎに動作について説明する。流入管内に
設置するピトー管1は、まず、図2(a)のように先端
が開いた細管を水流中に入れると、流れは先端位置Bに
近付くにつれてまわるようにひろがりBの直前で静止す
るが、このBの位置の圧力を総圧P2として検出でき
る。また、図2(b)のような先端を閉じた管の側壁に
小孔Aを設けて水流中に平行に置けば、静圧P1のみを
検出できる。この両者を図2(c)のように一体に組み
込みP1,P2を検出するようにしたものである。これ
により、流速v1 =0ならP1=P2,v1 >0ならP
1<P2として流入水の水圧が検知できる。
Next, the operation will be described. As for the Pitot tube 1 installed in the inflow tube, first, as shown in FIG. 2 (a), when a thin tube with an open tip is put into a water stream, the stream stops immediately before the spread B so as to rotate as it approaches the tip position B. However, the pressure at the position B can be detected as the total pressure P2. Further, if a small hole A is provided in the side wall of a pipe whose tip is closed as shown in FIG. 2B and placed in parallel in the water flow, only the static pressure P1 can be detected. As shown in FIG. 2 (c), both of them are integrated to detect P1 and P2. Thus, if the flow velocity v 1 = 0, P1 = P2, and if v 1 > 0, P
The water pressure of the inflow water can be detected as 1 <P2.

【0010】ピトー管1によって検出した水圧P1,P
2は半導体圧力トランジューサ3,2により正確に圧力
値を測定する。この半導体圧力トランジューサは、加わ
る水圧によってピエゾ抵抗効果により生ずる大きな抵抗
変化によって出力される水圧に比例したブリッジ電圧
を、作動アンプで検出して水圧を測定するものであり、
測定感度は従来の金属ダイヤフラム型に比較して100
倍以上高く、機械的作動部分がないので正確に水圧を測
定することができる。
Water pressures P1 and P detected by the Pitot tube 1
Reference numeral 2 accurately measures the pressure value by the semiconductor pressure transducers 3 and 2. This semiconductor pressure transducer measures the water pressure by detecting a bridge voltage proportional to the water pressure output by a large resistance change caused by the piezoresistive effect due to the applied water pressure with an operating amplifier.
The measurement sensitivity is 100 compared with the conventional metal diaphragm type.
It is more than twice as high and there is no mechanical working part, so the water pressure can be measured accurately.

【0011】半導体圧力トランジューサ3,2で測定し
た水圧P1,P2は半導体A/Dコンバータ4でA/D
変換したのち制御部6へ水圧データとして送られる。制
御部6はこの水圧データP1,P2を基に、ベルヌーイ
の定理から次の演算式による演算を行って、流速v1
流量Qを求める。 P2=P1+(1/2)ρv1 21 ={2(P2−P1)/ρ}1/2 Q=v1 ×s 但し図2(c)から、v1 :流速,ρ:流水密度,s=
流入管断面積,Q=流量を表す。
The water pressures P1, P2 measured by the semiconductor pressure transducers 3, 2 are A / D by the semiconductor A / D converter 4.
After conversion, it is sent to the control unit 6 as water pressure data. Based on the hydraulic pressure data P1 and P2, the control unit 6 performs a calculation according to the following calculation formula from Bernoulli's theorem to obtain the flow velocity v 1 ,
Calculate the flow rate Q. P2 = P1 + (1/2) ρv 1 2 v 1 = {2 (P2-P1) / ρ} 1/2 Q = v 1 × s However, from FIG. 2 (c), v 1 : flow velocity, ρ: flowing water density , S =
Inflow pipe cross-sectional area, Q = flow rate.

【0012】以上の演算によって求めた流量値を基に、
制御部6は水道水の流入検知とともに、電解電源25の
電解レベル調節または減圧弁5による流量調節によって
最適なPH調整を行う。その他の電解,電極洗浄,電流
センサー24による電解槽22が稼動中の過電流検出,
検出値による保護処理などは従来例と同様な処理とな
る。
Based on the flow rate value obtained by the above calculation,
The control unit 6 performs optimal pH adjustment by detecting the inflow of tap water and adjusting the electrolysis level of the electrolysis power source 25 or the flow rate by the pressure reducing valve 5. Other electrolysis, electrode cleaning, overcurrent detection while the electrolytic cell 22 is operating by the current sensor 24,
The protection process based on the detected value is similar to the conventional example.

【0013】図3は本発明の第2の実施例であるベンチ
ュリー管による検出機構の詳細図である。図3に示す例
は、水圧検出体として前実施例のピトー管1の代わりに
ベンチュリー管を使用した場合であり、管口部に流入す
る水道水は管しぼり部では管口径が狭くなるので加速さ
れて水圧は低下する。半導体圧力トランジューサ3,2
によって水圧A1 ,A2 を測定し、制御部6はベルヌー
イの定理式に基づいて,流速v1 ,流量Qを以下の式で
演算し、算出データによってPH調整制御を行う。 Q=v11 =v22 = =C{1−(d2 /d14-1/2 {2(A1
2 )/ρ}1/2 =Cs12 {2(A1 −A2 )/ρ(s1 2−s2 2)}
1/2 但し、v1 :管口部の流速、v2 :管しぼり部の流速 d1 :管口部の内径、d2 :管しぼり部の流速 s1 :πd1 2/4:管口部断面積 s2 =πd2 2/4:管しぼり部の断面積 ρ=流水密度 C=流出係数。
FIG. 3 is a detailed view of a detection mechanism using a Venturi tube according to the second embodiment of the present invention. The example shown in FIG. 3 is a case where a Venturi tube is used as the water pressure detector instead of the Pitot tube 1 of the previous example, and the tap water flowing into the tube mouth portion is accelerated because the pipe mouth diameter becomes narrow at the pipe squeezing portion. As a result, the water pressure drops. Semiconductor pressure transducer 3,2
The water pressures A 1 and A 2 are measured by the control unit 6, and the control unit 6 calculates the flow velocity v 1 and the flow rate Q by the following formulas based on Bernoulli's theorem, and performs the PH adjustment control based on the calculated data. Q = v 1 s 1 = v 2 s 2 = = C {1- (d 2 / d 1) 4} -1/2 s 1 {2 (A 1 -
A 2 ) / ρ} 1/2 = Cs 1 s 2 {2 (A 1 −A 2 ) / ρ (s 1 2 −s 2 2 )}
1/2 However, v 1: flow rate of the tube opening, v 2: a tube squeezing portion of the flow rate d 1: inside diameter of the tube opening, d 2: flow rate s 1 of the tube squeezing part: πd 1 2/4: ductal orifice Budan area s 2 = πd 2 2/4 : tube squeezing part cross-sectional area [rho = running water density C = discharge coefficient of the.

【0014】図4も本発明の第3の実施例であり、PH
制御データとして流量データのみを得る場合に、半導体
圧力トランジューサ2,3の代わりに磁気型フロートセ
ンサーを使用した例である。図4の場合は、ピトー管1
の水圧P1 ,P2 の圧力差に比例して、磁性体フロー
ト10が上下動して管内での位置が変化する。フロート
10の移動を磁気抵抗素子11が磁気変化として検出
し、磁気型フロートセンサー12から磁気変化を電気抵
抗に変換した差圧的な検出電位を出力するので、制御部
6は圧力差データから流量データを得てPH調整制御を
行うことができる。この場合の磁気型フロートセンサー
は無接触センサーであるから、構成およびデータ処理が
容易であるという利点を有する。
FIG. 4 is also a third embodiment of the present invention, in which PH
This is an example in which a magnetic type float sensor is used instead of the semiconductor pressure transducers 2 and 3 when only flow rate data is obtained as control data. In the case of FIG. 4, the pitot tube 1
The magnetic float 10 moves up and down in proportion to the pressure difference between the water pressures P1 and P2, and the position in the tube changes. Since the magnetoresistive element 11 detects the movement of the float 10 as a magnetic change and the magnetic type float sensor 12 outputs a differential pressure-like detection potential obtained by converting the magnetic change into an electric resistance, the control unit 6 determines the flow rate based on the pressure difference data. It is possible to obtain data and perform PH adjustment control. Since the magnetic type float sensor in this case is a contactless sensor, it has an advantage that the configuration and data processing are easy.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
流入水の総圧および静圧を測定する測定手段と、その測
定出力をA/D変換するA/Dコンバータと、水道減圧
用の減圧弁と、前記測定手段により測定された値から流
入水の流速、流量の算出を行う制御部を備えたので、流
入する水道水の水圧,流量を正確に検出して最適PH調
整を可能にするという効果がある。
As described above, according to the present invention,
Measuring means for measuring the total pressure and static pressure of the inflow water, an A / D converter for A / D converting the measurement output thereof, a pressure reducing valve for water supply pressure reduction, and inflow water from the values measured by the measuring means. Since the control unit for calculating the flow velocity and the flow rate is provided, there is an effect that the water pressure and the flow rate of the inflowing tap water are accurately detected to enable the optimum PH adjustment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例によるイオン水生成器の
構成図である。
FIG. 1 is a configuration diagram of an ion water generator according to a first embodiment of the present invention.

【図2】図1に示すピトー管の詳細図である。FIG. 2 is a detailed view of the pitot tube shown in FIG.

【図3】本発明の第2の実施例であるベンチュリー管を
用いた水圧検出機構を示す図である。
FIG. 3 is a diagram showing a water pressure detection mechanism using a Venturi tube according to a second embodiment of the present invention.

【図4】本発明の第3の実施例である磁気型フロートセ
ンサーを用いた構成図である。
FIG. 4 is a configuration diagram using a magnetic type float sensor that is a third embodiment of the present invention.

【図5】従来のイオン水生成器の構成図である。FIG. 5 is a configuration diagram of a conventional ionized water generator.

【符号の説明】[Explanation of symbols]

1 ピトー管 2,3 半導体圧力トランジューサ 4 A/Dコンバータ 5 減圧弁 6 制御部 1 Pitot tube 2, 3 Semiconductor pressure transducer 4 A / D converter 5 Pressure reducing valve 6 Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水道水の流入を検知して電解槽へ設定P
Hに対応する電解レベルを印加し電解によりアルカリイ
オン水と酸性水を生成するイオン水生成器において、 流入水の総圧および静圧を測定する測定手段と、前記測
定手段により測定された値を入力し前記流入水の流速お
よび流量の算出を行う制御部を備えたことを特徴とする
イオン水生成器の流量検出機構。
1. An electrolytic cell is set by detecting the inflow of tap water P
In an ion water generator that generates an alkaline ionized water and an acidic water by electrolysis by applying an electrolysis level corresponding to H, measuring means for measuring the total pressure and static pressure of inflow water, and the values measured by the measuring means are A flow rate detection mechanism for an ionized water generator, comprising a control unit that inputs and calculates the flow velocity and flow rate of the inflow water.
JP5241988A 1993-09-02 1993-09-02 Flow rate detection mechanism of ion water Pending JPH0768262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5241988A JPH0768262A (en) 1993-09-02 1993-09-02 Flow rate detection mechanism of ion water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5241988A JPH0768262A (en) 1993-09-02 1993-09-02 Flow rate detection mechanism of ion water

Publications (1)

Publication Number Publication Date
JPH0768262A true JPH0768262A (en) 1995-03-14

Family

ID=17082584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5241988A Pending JPH0768262A (en) 1993-09-02 1993-09-02 Flow rate detection mechanism of ion water

Country Status (1)

Country Link
JP (1) JPH0768262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083132A (en) * 2016-11-21 2018-05-31 有限会社ヘルス Manufacturing method and manufacturing apparatus of disinfected water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083132A (en) * 2016-11-21 2018-05-31 有限会社ヘルス Manufacturing method and manufacturing apparatus of disinfected water

Similar Documents

Publication Publication Date Title
CN102209884B (en) Bi-directional fluidic oscillator flow meter
JPH02161313A (en) Composite flowmeter
JPH0768262A (en) Flow rate detection mechanism of ion water
JPH0241441Y2 (en)
JPH11287688A (en) Flow measuring device
JP4582623B2 (en) Flowmeter
US5460038A (en) Acoustic displacement flow meter
JP3517070B2 (en) Flow meter utilizing differential pressure
JPH0650786A (en) Water-supply monitoring apparatus
JP3186089B2 (en) Gas meter
JP3882328B2 (en) Seismic cutoff device
JPH08178782A (en) Differential pressure measuring apparatus
JPH0953970A (en) Gas meter
JPS5847214A (en) Square wave exciting electro-magnetic flow meter converter
JPH08136298A (en) Fluidic type gas meter
JPH01308921A (en) Gas flowmeter
JP4623488B2 (en) Fluid flow measuring device
JP2003177041A (en) Electromagnetic flowmeter for open channel
JP2004251145A (en) Hydraulic power unit
JPH01288724A (en) Electrode fouling detector for electromagnetic flowmeter
JP3594931B2 (en) Erroneous output prevention device and vortex flowmeter provided with the device
JPH10227670A (en) Gas flowmeter
JP2848046B2 (en) Detector
JP2004354280A (en) Detector for connecting pipe clogging and differential pressure/pressure transmitter containing same
JPH10148552A (en) Flow rate measurement mechanism