JPH0768155A - Excess gas separation-type gas-liquid pressure reactor - Google Patents

Excess gas separation-type gas-liquid pressure reactor

Info

Publication number
JPH0768155A
JPH0768155A JP5240455A JP24045593A JPH0768155A JP H0768155 A JPH0768155 A JP H0768155A JP 5240455 A JP5240455 A JP 5240455A JP 24045593 A JP24045593 A JP 24045593A JP H0768155 A JPH0768155 A JP H0768155A
Authority
JP
Japan
Prior art keywords
gas
liquid
flow path
gas separation
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5240455A
Other languages
Japanese (ja)
Other versions
JP2663329B2 (en
Inventor
Katsuyuki Machitani
勝幸 町谷
Kimio Hirasawa
公雄 平沢
Tokio Hori
登紀男 堀
Masakazu Kashiwa
雅一 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Izumi Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP5240455A priority Critical patent/JP2663329B2/en
Priority to CN93114861A priority patent/CN1049845C/en
Priority to KR1019930024053A priority patent/KR0173996B1/en
Publication of JPH0768155A publication Critical patent/JPH0768155A/en
Application granted granted Critical
Publication of JP2663329B2 publication Critical patent/JP2663329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To easily and surely send even a gas soln. under pressure without using a pump. CONSTITUTION:A pressurized or high-speed current consisting of a gas-liq. mixture flows down stepwise in a passage 12 alternately at a high speed and at a low speed, and a gas separation passage 16 projecting upward and branched from the main passage is formed on the downstream side of the passage 12. Sensors 22 and 24 for detecting the level of a liq. introduced into the passage 16 are mounted at a specified position of the passage 16. A throttle 28 and a solenoid valve 30 to be opened and closed by the detection signal from the sensors 22 and 24 are provided on the tip of the passage 16, and a throttle nozzle 20 is furnished in the main passage on the downstream side of a branch point 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、気体と液体を加圧下
で反応させたり、気体が過飽和状態となって溶解してい
る気体溶解液を供給する余剰気体分離型気液加圧反応装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surplus gas separation type gas-liquid pressurizing reactor for reacting a gas and a liquid under pressure or supplying a dissolved gas solution in which the gas is in a supersaturated state. .

【0002】[0002]

【従来の技術】従来、気体と液体を反応させたり、気体
を液体に溶解させる方法として、気体の溶解等をさせた
い液体を加圧タンク内に収容し、この液体中に大量の気
体を送り込み、上記加圧タンク内で気液反応及び気体の
溶解を行なわせていた。そして、気体が溶解した液体を
圧送又は散水等する場合には、この気体溶解液を圧送ポ
ンプに送り込んで圧送していた。
2. Description of the Related Art Conventionally, as a method of reacting a gas with a liquid or dissolving a gas in a liquid, a liquid in which a gas is desired to be dissolved is stored in a pressure tank, and a large amount of gas is sent into the liquid. The gas-liquid reaction and the dissolution of gas are carried out in the pressure tank. When the liquid in which the gas is dissolved is to be pressure-fed or sprinkled, the gas-dissolved liquid is sent to the pressure-fed pump to be pressure-fed.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術の場
合、従来の加圧反応装置では、反応装置へ液体を圧送す
る際にポンプを用い、溶解反応後の余剰気体の分離を行
う際に一旦大気圧下に減圧する必要があるため、液体を
圧送・散水する際にもさらに別のポンプを用いなければ
ならず、装置が複雑大型化するという問題があった。さ
らに、気体溶解反応後に使用するポンプは、気体が溶解
反応した液体の性質により材質が制限され、ポンプ材料
が高価なものや入手困難なものになるという問題もあっ
た。
In the case of the above-mentioned conventional technique, in the conventional pressurized reaction apparatus, a pump is used when the liquid is pressure-fed to the reaction apparatus, and when the excess gas after the dissolution reaction is separated, Since it is necessary to reduce the pressure to atmospheric pressure, another pump has to be used when pumping and sprinkling liquid, which causes a problem that the device becomes complicated and large. Further, the pump used after the gas dissolution reaction has a problem that the material is limited by the property of the liquid in which the gas is dissolved and reacted, and the pump material becomes expensive or difficult to obtain.

【0004】この発明は、上記従来技術の問題点に鑑み
て成されたもので、気体が溶解した或は気体と反応した
液体の圧送に際して、ポンプを用いなくとも、容易且つ
確実に気体溶解液あるいは反応後の処理液の圧送を可能
にする余剰気体分離型気液加圧反応装置を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art. When the liquid in which the gas is dissolved or reacts with the gas is pressure-fed, the gas-dissolved liquid can be easily and surely used without using a pump. Alternatively, it is another object of the present invention to provide a surplus gas separation type gas-liquid pressurization reaction device that enables pressure-feeding of a treatment liquid after reaction.

【0005】[0005]

【課題を解決するための手段】この発明は、緩急を繰り
返しながら段階的に上から下へ流れる流路であって、加
圧され又は高速の気液混合流が流れる流路を設け、上記
流路の下流側に上方へ突き出して主流路から分岐した気
体分離流路を形成し、この気体分離流路の所定位置に気
体分離流路中に流入した液体の液面を検出するセンサを
取り付け、上記気体分離流路の先端側に絞りと上記セン
サの検知信号により開閉される電磁弁とを設け、上記分
岐点の主流路下流側に絞りノズルを設けた余剰気体分離
型気液加圧反応装置である。
SUMMARY OF THE INVENTION The present invention is provided with a flow path that flows stepwise from top to bottom while repeating gradual movement, in which a pressurized or high-speed gas-liquid mixed flow flows. A gas separation flow channel is formed branching from the main flow channel by projecting upward to the downstream side of the channel, and a sensor for detecting the liquid level of the liquid flowing into the gas separation flow channel is attached to a predetermined position of the gas separation flow channel, Excess gas separation type gas-liquid pressurization reaction device in which a throttle and an electromagnetic valve opened and closed by a detection signal of the sensor are provided on the tip side of the gas separation channel, and a throttle nozzle is provided on the downstream side of the main channel at the branch point. Is.

【0006】[0006]

【作用】この発明の余剰気体分離型気液加圧反応装置
は、緩急を繰り返しながら段階的に上から下に向う流路
を作り、この流路に気液混合流を流すことにより、上記
流路内では、流路上部に気体、流路下部に液体が流れる
状態になり、気液の接触面積が広い流れが得られる。そ
して、緩急を繰り返しながら段階的に上から下に流れ落
ちる流路の出口または、気体溶解液が流れる主流路の下
流に絞りを設けることによって、この流路内部の静圧を
高め気液の反応、溶解効率を高めるものである。この部
分の加圧は主流路下流に設けられた絞りノズルによって
調節する。さらに、分岐点で余剰気体と液体を正確に分
流することは困難であるため、気体分離流路側に気体だ
けではなく少量の液体が流入するよう設定し、この流路
内に液体が流入した際には、液体は密度が大きいために
下方に溜まる形になり、この液面をセンサで検出し、液
体が気体分離流路から外部に流出しないように気体分離
流路の先に取り付けた電磁弁を開閉する。この時、気体
は気体分離流路から上方へ流出して行くが、流出側に絞
りを設けてあるために加圧の低下がほとんど起こらな
い。
The surplus gas separation type gas-liquid pressurization reactor of the present invention forms a flow path from top to bottom in a stepwise manner while repeating the gradual movement, and the gas-liquid mixed flow is caused to flow through this flow path to produce the above flow. In the passage, gas flows in the upper portion of the passage and liquid flows in the lower portion of the passage, and a flow having a wide contact area of gas and liquid is obtained. Then, the outlet of the flow path that gradually flows down from top to bottom while repeating gradual or rapid, or by providing a throttle downstream of the main flow path through which the gas-dissolved liquid flows, the static pressure inside the flow path is increased, and the gas-liquid reaction, It improves the dissolution efficiency. Pressurization of this portion is adjusted by a throttle nozzle provided downstream of the main flow path. Furthermore, it is difficult to divide the surplus gas and the liquid accurately at the branch point.Therefore, not only the gas but also a small amount of the liquid is set to flow into the gas separation channel side, and when the liquid flows into this channel. The liquid has a high density and therefore accumulates downward.This liquid level is detected by a sensor, and a solenoid valve installed at the end of the gas separation channel to prevent the liquid from flowing out of the gas separation channel. Open and close. At this time, the gas flows out upward from the gas separation channel, but since the throttle is provided on the outflow side, the decrease in pressurization hardly occurs.

【0007】[0007]

【実施例】以下この発明の余剰気体分離型気液加圧反応
装置の実施例について図面に基づいて説明する。図1、
図2はこの発明の第一実施例の余剰気体分離型気液加圧
反応装置1を示すもので、ポンプ等で圧送された気液混
合流が流入する流入口10の後に、段階的に上から下に
流れ落ちる流路12が形成されている。この段階的に上
から下に流れ落ちる流路12の終端部に、上方に突きだ
した気体分離流路16が分岐点14で分岐して形成され
ている。また、分岐点14の下流の流路12の流出口1
1には、この気液混合流が流れる主流路18が接続さ
れ、この主流路18の基端部には、絞りノズル20が設
けられている。また、気体分離流路16の出口26の後
に、絞り28と電磁弁30が接続され、気体分離流路1
6の側面には静電容量型の近接センサ22、24が配置
されている。この電磁弁30が設けられた気体放出管路
31には、有害気体を使用する場合、図示しない気体処
理装置、例えばオゾン処理装置等が接続され、放出され
る気体の処理を行っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a gas-liquid pressurization reactor for excess gas separation of the present invention will be described below with reference to the drawings. Figure 1,
FIG. 2 shows a surplus gas separation type gas-liquid pressurization reactor 1 according to a first embodiment of the present invention, which is stepped up after an inlet 10 into which a gas-liquid mixed flow pumped by a pump or the like flows. A flow path 12 is formed so as to flow downward from. A gas separation channel 16 protruding upward is formed at a branch point 14 at the end portion of the channel 12 that flows downward from above in a stepwise manner. In addition, the outlet 1 of the flow path 12 downstream of the branch point 14
A main flow path 18 through which the gas-liquid mixed flow flows is connected to 1, and a throttle nozzle 20 is provided at a base end portion of the main flow path 18. Further, the throttle 28 and the electromagnetic valve 30 are connected after the outlet 26 of the gas separation flow path 16 and the gas separation flow path 1
Capacitance type proximity sensors 22 and 24 are arranged on the side surface of 6. When a harmful gas is used, a gas treatment device (not shown), for example, an ozone treatment device, is connected to the gas discharge pipe 31 provided with the electromagnetic valve 30 to process the discharged gas.

【0008】この実施例の気液加圧混合装置の動作は、
先ず、流入口10より流路12内に所定圧力に加圧され
た気液混合流15を流入させると、流路12の内部で気
体流れ32と液体流れ34に分かれる。そして、流路1
2の流出口11に接続された流路18の基端部の絞りノ
ズル20により、流路12の内部は加圧状態を維持す
る。ここで、この加圧と絞りノズル20のとの関係は、
流路12の内部の大きさを充分大きくとった場合、ベル
ヌーイの定理より次式で与えられる。 P=ρu2/2 P:流路12内での圧力 ρ:液体の密度 u:絞りノズル20での流速
The operation of the gas-liquid pressure mixing device of this embodiment is as follows.
First, when the gas-liquid mixed flow 15 pressurized to a predetermined pressure is flown into the flow path 12 from the inflow port 10, the gas flow 32 and the liquid flow 34 are separated inside the flow path 12. And channel 1
The inside of the flow passage 12 maintains a pressurized state by the throttle nozzle 20 at the base end of the flow passage 18 connected to the two outflow ports 11. Here, the relationship between this pressurization and the throttle nozzle 20 is
If the internal size of the flow channel 12 is sufficiently large, it is given by the following equation from Bernoulli's theorem. P = ρu 2/2 P: pressure in the flow path within 12 [rho: density of the liquid u: flow velocity in the throttle nozzle 20

【0009】そして、分岐点14で分岐した流れは、気
体分離流路16側へも液体及び気体が流入し、比重の重
い液体が下方に留まり気体が気体分離流路16の上方に
向かって流れる。気体分離流路16内では、液体面がセ
ンサ22,24間にほぼ位置するように、絞りノズル2
0及び絞り28の内径が調整されているものである。そ
して、液面の変動に対して、液体面がセンサ24の位置
まで上昇すると図2に示すように、センサ22.24と
もONし、電磁弁30が閉じられる。これにより気体の
放出が止められ、気体分離流路16内の上方に気体が充
満し液面が下降する。そして、液面がセンサ22より下
方に下がると、センサ22,24ともにOFFとなり、
電磁弁30が開放され、再び液面が気体分離流路16内
で上昇し始める。このようにして、気体分離流路16よ
り余剰気体が外部に放出され、気体溶解液のみが流路1
8へ流れ込む。
In the flow branched at the branch point 14, the liquid and the gas also flow into the gas separation channel 16 side, the liquid having a high specific gravity remains below, and the gas flows upward in the gas separation channel 16. . In the gas separation channel 16, the throttle nozzle 2 is arranged so that the liquid surface is located substantially between the sensors 22 and 24.
0 and the inner diameter of the diaphragm 28 are adjusted. Then, when the liquid level rises to the position of the sensor 24 with respect to the fluctuation of the liquid level, the sensor 22.24 is also turned on and the solenoid valve 30 is closed, as shown in FIG. As a result, the release of the gas is stopped, the gas is filled in the upper part of the gas separation channel 16, and the liquid level is lowered. Then, when the liquid level drops below the sensor 22, both the sensors 22 and 24 are turned off,
The electromagnetic valve 30 is opened, and the liquid level starts rising again in the gas separation flow path 16. In this way, the surplus gas is discharged from the gas separation channel 16 to the outside, and only the gas dissolved liquid is flow channel 1.
Pour into 8.

【0010】この実施例の余剰気体分離型気液加圧反応
装置の内部では、加圧状態の気体と液体との間で、互い
に広い接触面積が得られるため、気液反応や液体への気
体溶解が非常に良好に行われる条件となる。また、この
流路12の内部では、流入口10より低い位置に流出口
11が設けられているために、気液混合流のうちの液体
流れ34がより下方に流れ易く、気体流れ32が流路1
2の上方部分に滞る状態になり、そのため、たとえこの
余剰気体分離型気液加圧反応装置に流入する気液混合流
の気体の割合が少なくても、装置内部では、気体の比率
が大きくなる。これにより、少量の気体でも効率よい気
液反応や液体への気体溶解を行うことができるものであ
る。そして、加圧状態のまま気体分離流路16で余剰気
体の分離が行われ、気体が溶解した液体が加圧状態で流
路18に送られるものである。
In the excess gas separation type gas-liquid pressurization reactor of this embodiment, a large contact area can be obtained between the gas under pressure and the liquid. This is the condition under which the dissolution is very good. Further, since the outflow port 11 is provided at a position lower than the inflow port 10 inside the flow path 12, the liquid flow 34 of the gas-liquid mixed flow easily flows downward, and the gas flow 32 flows. Road 1
2, the gas remains in the upper part of the device 2. Therefore, even if the gas ratio of the gas-liquid mixed flow flowing into the excess gas separation type gas-liquid pressure reaction device is small, the gas ratio becomes large inside the device. . As a result, the gas-liquid reaction and the gas dissolution into the liquid can be efficiently performed even with a small amount of gas. Then, the excess gas is separated in the gas separation flow channel 16 in the pressurized state, and the liquid in which the gas is dissolved is sent to the flow channel 18 in the pressurized state.

【0011】この実施例の余剰気体分離型気液加圧反応
装置によれば、気液反応で生成した液体の散水・圧送
を、散水・圧送用のポンプなしで行うことができるもの
である。
According to the excess gas separation type gas-liquid pressurization reaction apparatus of this embodiment, the liquid produced by the gas-liquid reaction can be sprinkled and pumped without a pump for sprinkling and pumping.

【0012】ここで、この実施例の余剰気体分離型気液
加圧反応装置は、気体と液体は、別々に流路12に注入
しても良い。この場合少なくとも気体を所定の圧力に加
圧して注入する。さらに、絞りノズル20 の取付位置
は、余剰気体分離型気液加圧反応装置のすぐ後でも良い
し、流出口11の下流側に設けても良い。さらに、絞り
ノズル20は、図1のような一つの穴を開けたもので
も、複数の穴を開けたものでも良く、また、この絞りノ
ズル20の代わりに圧力調節バルブ等を取り付けて圧力
を可変にしたものでも良い。なお、この流路12の設定
は、流路12の形成面を必ずしも水平及び鉛直方向にす
る必要がなく傾斜していても良い。また、管路を蛇行さ
せたものでも良い。また、流入口10より流出口11が
低いという条件を満たしていれば、流路12の途中の部
分が上昇していても良い。また散水器等の散水部分の絞
りで絞りノズル20を代用しても良い。さらに、図1に
おいては、気体放出管路31に、絞り28、電磁弁30
の順で配置したが、電磁弁30、絞り28の順で配置し
ても良い。また、絞り28の代わりに圧力調節バルブ等
を使用しても良い。
Here, in the excess gas separation type gas-liquid pressurization reactor of this embodiment, the gas and the liquid may be separately injected into the flow path 12. In this case, at least the gas is pressurized to a predetermined pressure and then injected. Further, the throttling nozzle 20 may be attached at a position immediately after the excess gas separation type gas-liquid pressurizing reaction device or at a downstream side of the outflow port 11. Further, the throttle nozzle 20 may have one hole as shown in FIG. 1 or may have a plurality of holes. Further, instead of the throttle nozzle 20, a pressure control valve or the like is attached to vary the pressure. You can use the one It should be noted that the setting of the flow path 12 does not necessarily require that the formation surface of the flow path 12 be horizontal and vertical, and may be inclined. Alternatively, the pipe may be meandering. Further, as long as the condition that the outlet 11 is lower than the inlet 10 is satisfied, an intermediate portion of the flow path 12 may be elevated. Further, the throttle nozzle 20 may be substituted by a throttle of a sprinkler such as a water sprinkler. Further, in FIG. 1, the gas discharge conduit 31 is connected to the throttle 28 and the solenoid valve 30.
However, the solenoid valve 30 and the throttle 28 may be arranged in this order. Further, a pressure control valve or the like may be used instead of the throttle 28.

【0013】次にこの発明の第二実施例を図3に示す。
ここで、上述の実施例と同様の部材は同一符号を付して
説明を省略する。この実施例の余剰気体分離型気液加圧
反応装置は、上記第一実施例の余剰気体分離型気液加圧
反応装置1の流入口10に気液混合器42を取り付けた
ものである。この気液混合器42は、図3に示すよう
に、混合器42内に、絞り部であるのど部46が中央部
に設けられたベンチュリ管状の流路45が形成されてい
るものである。このベンチュリ管状の流路45の下流側
には、のど部46よりわずかに内径が大きい円筒状の気
体流入部47が形成され、この気体流入部47の下流側
に、滑らかにテーパ状に広がった広がり部48が形成さ
れている。そして、この気体流入部47には、気体を流
路45中に混合させるための気体流入口50が形成され
ている。気体流入口50には、所定の気体を導く図示し
ない気体流入管路の先端部が接続されている。
Next, a second embodiment of the present invention is shown in FIG.
Here, the same members as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted. The surplus gas separation type gas-liquid pressurization reaction apparatus of this embodiment has a gas-liquid mixer 42 attached to the inflow port 10 of the surplus gas separation type gas-liquid pressurization reaction apparatus 1 of the first embodiment. As shown in FIG. 3, the gas-liquid mixer 42 has a venturi tubular flow passage 45 in which a throat portion 46, which is a throttle portion, is provided in the center of the mixer 42. A cylindrical gas inflow portion 47 having an inner diameter slightly larger than that of the throat portion 46 is formed on the downstream side of the venturi-shaped flow path 45, and is smoothly tapered in a downstream side of the gas inflow portion 47. A widened portion 48 is formed. The gas inflow portion 47 is formed with a gas inflow port 50 for mixing the gas into the flow path 45. The gas inlet 50 is connected to the tip of a gas inflow conduit (not shown) that guides a predetermined gas.

【0014】この実施例の余剰気体分離型気液加圧反応
装置は、流入管路44から混合器42に流入した液体
が、ベンチュリ管状の流路45の喉部46で加速され
て、一旦静圧が低下し、広がり部48を経て流速が遅く
なり再び静圧が増大し気体が液体中に溶解していく。こ
こで、気体流入口50は、喉部46のわずかに下流側で
あり、この部分の静圧は相対的に負圧になっているた
め、気体が流路45中に流入する。ここで形成された気
液混合流が、上記第一実施例と同様の余剰気体分離型気
液加圧反応装置1に流入するようにしている。これによ
り、より効率よく気液溶解反応が得られ、大量の気体溶
解液を製造することができるものである。
In the surplus gas separation type gas-liquid pressurization reactor of this embodiment, the liquid flowing from the inflow conduit 44 into the mixer 42 is accelerated at the throat portion 46 of the Venturi tubular flow path 45 and once stopped. The pressure decreases, the flow velocity slows down through the spreading portion 48, the static pressure increases again, and the gas dissolves in the liquid. Here, the gas inlet 50 is slightly downstream of the throat portion 46, and the static pressure in this portion is relatively negative, so that gas flows into the flow path 45. The gas-liquid mixed flow formed here is made to flow into the excess gas separation type gas-liquid pressurization reactor 1 similar to the first embodiment. Thereby, the gas-liquid dissolution reaction can be obtained more efficiently, and a large amount of the gas-dissolved liquid can be produced.

【0015】尚、この発明のセンサは、液面の上限のみ
を検知するものにして、液面の上限検知により電磁弁を
閉じ、その後所定時間後に電磁弁を開くようにしても良
く、あるいは、液面の下限のみを検知するものにして、
液面の下限検知により電磁弁を開き、その後所定時間後
に電磁弁を閉じるようにしても良い。また、気体分離流
路の先端側に設けられた絞りと電磁弁とを兼用した電磁
弁にしても良いものである。
The sensor of the present invention may detect only the upper limit of the liquid level, and the electromagnetic valve may be closed by detecting the upper limit of the liquid level, and then the electromagnetic valve may be opened after a predetermined time. Only the lower limit of the liquid level is detected,
The solenoid valve may be opened by detecting the lower limit of the liquid level and then closed after a predetermined time. Further, it is also possible to use an electromagnetic valve that doubles as a throttle provided on the tip side of the gas separation channel and also as an electromagnetic valve.

【0016】[0016]

【発明の効果】この発明の余剰気体分離型気液加圧反応
装置を用いると、気体及び液体またはその混合流をこの
装置に圧送するだけで高効率で、しかも、連続的にこの
気液反応または気液の溶解を行わせることができる。そ
して、気液反応で生成した液体の散水・圧送等を、専用
のポンプなしで容易且つ確実に行うことができるもので
ある。
EFFECTS OF THE INVENTION When the excess gas separation type gas-liquid pressurization reaction device of the present invention is used, the gas and liquid or a mixed flow thereof can be pumped to the device at high efficiency and continuously in the gas-liquid reaction. Alternatively, gas-liquid dissolution can be performed. Then, water sprinkling, pressure feeding, and the like of the liquid generated by the gas-liquid reaction can be easily and reliably performed without a dedicated pump.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第一実施例の余剰気体分離型気液加
圧反応装置を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a surplus gas separation type gas-liquid pressurization reactor according to a first embodiment of the present invention.

【図2】上記第一実施例の余剰気体分離型気液加圧反応
装置のセンサ及び電磁弁の動作を示すタイミングチャー
トである。
FIG. 2 is a timing chart showing operations of a sensor and a solenoid valve of the excess gas separation type gas-liquid pressurization reaction device of the first embodiment.

【図3】この発明の第二実施例の余剰気体分離型気液加
圧反応装置を示す部分破断縦断面図である。
FIG. 3 is a partially broken vertical sectional view showing a surplus gas separation type gas-liquid pressurization reaction device of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 余剰気体分離型気液加圧反応装置 12 流路 14 分岐点 16 気体分離流路 20 絞りノズル 22,24 センサ 28 絞り 30 電磁弁 1 Excess Gas Separation Type Gas-Liquid Pressurization Reactor 12 Flow Path 14 Branch Point 16 Gas Separation Flow Path 20 Throttle Nozzle 22, 24 Sensor 28 Throttle 30 Solenoid Valve

フロントページの続き (72)発明者 柏 雅一 大阪府大阪市淀川区三国本町1丁目10番40 号 和泉電気株式会社内Front page continuation (72) Inventor Masakazu Kashiwa 1-10-40 Mikunihonmachi, Yodogawa-ku, Osaka City, Osaka Prefecture Izumi Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 緩急を繰り返した勾配に形成された流路
であって、加圧され又は高速の気液混合流が流れる流路
を設け、上記流路の下流で上方に突き出して主流路から
分岐した気体分離流路を形成し、この気体分離流路の所
定位置に気体分離流路中の液面を検出するセンサを取り
付け、上記気体分離流路の先端側に絞りと上記センサの
検知信号により開閉される電磁弁とを設け、上記分岐点
の主流路下流側に絞りノズルを設けたことを特徴とする
余剰気体分離型気液加圧反応装置。
1. A flow path formed in a gradient of repeated grading, wherein a flow path in which a pressurized or high-speed gas-liquid mixed flow flows is provided, and the flow path protrudes upward in the downstream of the flow path and extends from the main flow path. A branched gas separation flow path is formed, a sensor for detecting the liquid level in the gas separation flow path is attached to a predetermined position of this gas separation flow path, and a diaphragm and a detection signal of the sensor are provided at the tip side of the gas separation flow path. And a solenoid valve that is opened and closed by the above, and a throttle nozzle is provided on the downstream side of the main flow path at the branch point.
【請求項2】 上記センサは、上記気体分離流路内の液
体面の少なくとも上限又は下限の一方を検知するもので
あることを特徴とする請求項1記載の余剰気体分離型気
液加圧反応装置。
2. The excess gas separation type gas-liquid pressurization reaction according to claim 1, wherein the sensor detects at least one of an upper limit and a lower limit of a liquid level in the gas separation channel. apparatus.
JP5240455A 1993-01-22 1993-09-01 Excess gas separation type gas-liquid pressurized reactor Expired - Fee Related JP2663329B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5240455A JP2663329B2 (en) 1993-09-01 1993-09-01 Excess gas separation type gas-liquid pressurized reactor
CN93114861A CN1049845C (en) 1993-01-22 1993-11-10 Method and apparatus for dissolution and mixture of gas and liquid
KR1019930024053A KR0173996B1 (en) 1993-01-22 1993-11-12 Apparatus for dissolving a gas into and mixing the same with a liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240455A JP2663329B2 (en) 1993-09-01 1993-09-01 Excess gas separation type gas-liquid pressurized reactor

Publications (2)

Publication Number Publication Date
JPH0768155A true JPH0768155A (en) 1995-03-14
JP2663329B2 JP2663329B2 (en) 1997-10-15

Family

ID=17059757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240455A Expired - Fee Related JP2663329B2 (en) 1993-01-22 1993-09-01 Excess gas separation type gas-liquid pressurized reactor

Country Status (1)

Country Link
JP (1) JP2663329B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095878A (en) * 2003-08-25 2005-04-14 Matsushita Electric Works Ltd Gas-liquid dissolving tank
JP2005262129A (en) * 2004-03-19 2005-09-29 Technomate Co Ltd Liquid mixing apparatus
JP2010022927A (en) * 2008-07-18 2010-02-04 Miike Iron Works Co Ltd Miniaturizing-mixing device
WO2010024253A1 (en) * 2008-08-26 2010-03-04 パナソニック電工株式会社 Air-dissolved water production device
JP2011041880A (en) * 2009-08-19 2011-03-03 Miike Iron Works Co Ltd Atomizing mixer
JP2012055891A (en) * 2011-10-31 2012-03-22 Miike Iron Works Co Ltd Fining mixing device
JP2012166192A (en) * 2000-08-04 2012-09-06 Therox Inc Apparatus and method for oxygenating wastewater
CN114904410A (en) * 2021-02-07 2022-08-16 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191031A (en) * 1986-02-14 1987-08-21 Matsushita Electric Works Ltd Apparatus for generating air bubbles
JPH0226602A (en) * 1988-07-15 1990-01-29 Matsushita Electric Works Ltd Accumulator
JPH0429703A (en) * 1990-05-28 1992-01-31 Matsushita Electric Works Ltd Accumulator
JPH04100526A (en) * 1990-08-14 1992-04-02 Matsushita Electric Works Ltd Apparatus for generating minute air bubbles
JP3059411U (en) * 1998-11-27 1999-07-09 サンエイ株式会社 Mixed hair processing equipment for semi-processed prepared food ingredients

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191031A (en) * 1986-02-14 1987-08-21 Matsushita Electric Works Ltd Apparatus for generating air bubbles
JPH0226602A (en) * 1988-07-15 1990-01-29 Matsushita Electric Works Ltd Accumulator
JPH0429703A (en) * 1990-05-28 1992-01-31 Matsushita Electric Works Ltd Accumulator
JPH04100526A (en) * 1990-08-14 1992-04-02 Matsushita Electric Works Ltd Apparatus for generating minute air bubbles
JP3059411U (en) * 1998-11-27 1999-07-09 サンエイ株式会社 Mixed hair processing equipment for semi-processed prepared food ingredients

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166192A (en) * 2000-08-04 2012-09-06 Therox Inc Apparatus and method for oxygenating wastewater
JP2005095878A (en) * 2003-08-25 2005-04-14 Matsushita Electric Works Ltd Gas-liquid dissolving tank
JP4581556B2 (en) * 2003-08-25 2010-11-17 パナソニック電工株式会社 Gas-liquid dissolution tank
JP2005262129A (en) * 2004-03-19 2005-09-29 Technomate Co Ltd Liquid mixing apparatus
JP2010022927A (en) * 2008-07-18 2010-02-04 Miike Iron Works Co Ltd Miniaturizing-mixing device
WO2010024253A1 (en) * 2008-08-26 2010-03-04 パナソニック電工株式会社 Air-dissolved water production device
JP2011041880A (en) * 2009-08-19 2011-03-03 Miike Iron Works Co Ltd Atomizing mixer
JP2012055891A (en) * 2011-10-31 2012-03-22 Miike Iron Works Co Ltd Fining mixing device
CN114904410A (en) * 2021-02-07 2022-08-16 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood
CN114904410B (en) * 2021-02-07 2023-07-28 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and cigarette machine

Also Published As

Publication number Publication date
JP2663329B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US7059591B2 (en) Method and apparatus for enhanced oil recovery by injection of a micro-dispersed gas-liquid mixture into the oil-bearing formation
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
US5514267A (en) Apparatus for dissolving a gas into and mixing the same with a liquid
EP2674212B1 (en) Eductor for mixing solid particles into a fluid
JP2670492B2 (en) Gas-liquid dissolving and mixing equipment
FI96388C (en) Method and apparatus for dissolving the gas
JPH0768155A (en) Excess gas separation-type gas-liquid pressure reactor
JPH1094722A (en) Fine bubble feeder
US4112026A (en) Bubble generating apparatus
US6877726B1 (en) Saturation vessel for use in the treatment of waste water
US4110210A (en) Dispersed gas flotation process
JP2003245533A (en) Ultrafine air bubble generator
JP2003190750A (en) Gas dissolution apparatus
JPH07328402A (en) Method for dissolving and mixing gas and liquid
JPH1176780A (en) Fine foam supply device
JPH06165808A (en) Air bubble generator
JPH06210147A (en) Method and device for mixing gas and liquid under pressure
US7121534B2 (en) Method and apparatus for gasifying a liquid
JP3357974B2 (en) Method and apparatus for feeding molten metal
JP2529174B2 (en) Method and device for floating separation of suspended particles in liquid
JP2976875B2 (en) Ozone water production equipment
JPH0429703A (en) Accumulator
JPH0899030A (en) Gas-liquid dissolution mixing apparatus
JPH06285345A (en) Device for producing gas dissolved liquid
JP2023110186A (en) Gas-dissolved liquid generation device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees