JPH0768142A - Composite holoow fiber membrane - Google Patents
Composite holoow fiber membraneInfo
- Publication number
- JPH0768142A JPH0768142A JP24378593A JP24378593A JPH0768142A JP H0768142 A JPH0768142 A JP H0768142A JP 24378593 A JP24378593 A JP 24378593A JP 24378593 A JP24378593 A JP 24378593A JP H0768142 A JPH0768142 A JP H0768142A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- hollow fiber
- fiber membrane
- composite
- macrovoids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は機械的強度に優れた新規
な構造の複合中空糸膜に関するものである。更に詳しく
は、液体の高分子物質、コロイド、イオン、微粒子等の
分離・濃縮、気体分離あるいは有機混合液又は有機混合
蒸気の浸透気化分離等を目的とした中空糸膜であって、
開孔したマクロボイドを有する膜面が高分子物質で被覆
された構造をもつ複合中空糸膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite hollow fiber membrane having a novel structure with excellent mechanical strength. More specifically, a hollow fiber membrane for the purpose of separating and concentrating liquid polymer substances, colloids, ions, fine particles, etc., gas separation or pervaporation separation of organic mixed liquid or organic mixed vapor,
The present invention relates to a composite hollow fiber membrane having a structure in which a membrane surface having open macrovoids is coated with a polymer substance.
【0002】[0002]
【従来の技術】膜分離法は一般に、乾燥法、蒸気法、吸
着法などの分離法に比べて、操作が簡便でかつ省エネル
ギー的であるため、化学工業、食品工業、医薬品工業、
電子工業などの幅広い分野で利用されている。従来、こ
のような分野で利用される分離膜の多くは、被分離物質
の透過速度を高め、かつ分離性能を高める目的から、分
離膜の表面に分離活性を有するスキン層と該スキン層の
機械的強度を保持するスポンジ層を合わせもつ非対称膜
構造と多孔性の支持体膜上にポリマーコーティングを施
し、薄層を形成せしめる複合膜構造が用いられている。
製膜溶液の相変換法などにより形成させた非対称膜は薄
い分離活性層が得られる反面、しばしばこの膜表面の分
離活性層において膜の欠陥となる比較的大きな孔を有す
る場合があり、被分離物質がこの欠陥孔を介してそのま
ま通過してしまうため高い分離能が得られないことがあ
る。2. Description of the Related Art Generally, a membrane separation method is simpler in operation and more energy-saving than separation methods such as a drying method, a vapor method, an adsorption method, etc., so that the chemical industry, the food industry, the pharmaceutical industry,
It is used in a wide range of fields such as the electronics industry. Conventionally, most of separation membranes used in such fields have a skin layer having a separation activity on the surface of the separation membrane and a machine of the skin layer for the purpose of increasing the permeation rate of the substance to be separated and enhancing the separation performance. An asymmetric membrane structure having a sponge layer that maintains the desired strength and a composite membrane structure in which a polymer coating is applied on a porous support membrane to form a thin layer are used.
The asymmetric membrane formed by the phase conversion method of the membrane forming solution can obtain a thin separation active layer, but on the other hand, the separation active layer on the surface of this membrane often has relatively large pores which cause a defect in the membrane, and thus the separation target layer is separated. Since the substance passes through the defective holes as it is, high resolution may not be obtained.
【0003】一方、ポリマーコーティング法による複合
膜では、膜表面に均一なポリマーコーティング層を有す
るため、膜表面に欠陥孔が存在せず高い分離能を得るこ
とができる。しかしながら一般に、膜表面にコーティン
グする高分子物質は支持体膜の膜素材とは異なってお
り、コーティングした高分子物質が支持体膜に強固に密
着していないために、この複合膜を長期間にわたり使用
すると、該高分子物質と支持体膜との熱的線膨張率の違
いによって被覆した高分子物質が剥離することがある。
従来の複合膜ではこの支持体膜の膜表面が比較的微細な
孔をもつスキン層であり、膜表面が滑らかであるため、
被覆した高分子物質との物理的付着、即ちアンカリング
作用が効果的に働かず、両者の剥離が起こり易いという
問題点がある。この剥離が起こると、分離活性層である
高分子物質の被覆層にクラックが生じるために、複合膜
の分離性能は著しく減少してしまう。このような剥離現
象は特に、高分子物質の均一な被覆層を形成させること
が困難な中空糸膜で生じることが多い。On the other hand, the composite membrane prepared by the polymer coating method has a uniform polymer coating layer on the surface of the membrane, and thus has no defect holes on the surface of the membrane and can provide high resolution. However, in general, the polymer material coated on the membrane surface is different from the membrane material of the support membrane, and since the coated polymer material does not firmly adhere to the support membrane, this composite membrane can be used for a long time. When used, the coated polymeric substance may peel off due to the difference in thermal linear expansion coefficient between the polymeric substance and the support film.
In the conventional composite membrane, since the membrane surface of this support membrane is a skin layer having relatively fine pores and the membrane surface is smooth,
There is a problem that the physical adhesion to the coated polymer substance, that is, the anchoring action does not work effectively, and peeling of the both easily occurs. When this peeling occurs, a crack is generated in the coating layer of the polymer substance that is the separation active layer, and the separation performance of the composite membrane is significantly reduced. Such peeling phenomenon often occurs especially in a hollow fiber membrane in which it is difficult to form a uniform coating layer of a polymer substance.
【0004】一方、中空糸膜の表面に数μm 以上の大き
な円形孔を形成させて膜の透水性能を高めようとする試
みがある。例えば特公昭60-29282号公報には、中空糸膜
の製膜ドープ内にドープ溶媒に対して溶解度の小さい液
状分散剤を均一に分散させ、該分散剤を保持したまま、
中空糸膜の形成を行い、次いで該分散剤を抽出除去する
ことによって膜表面の多数の凹部を有する大孔径の中空
糸膜が開示されている。また、特開平5-76736号公報に
は、ポリスルホン系中空糸膜の製膜において、中空糸内
部注入液が製膜ドープに対して相分離を誘発させ、かつ
凝固能力がない液状分離であることによって中空糸膜の
内表面に10μm 以上の円形孔を形成させている。更に、
特開昭49-90684号公報には、ポリアクリロニトリル形中
空糸膜の内表面に直径10μm 以上の孔を含む中空糸膜の
製造法が示されている。On the other hand, there is an attempt to improve the water permeability of the membrane by forming large circular holes of several μm or more on the surface of the hollow fiber membrane. For example, in Japanese Examined Patent Publication No. 60-29282, a liquid dispersant having a low solubility in a dope solvent is uniformly dispersed in the film-forming dope of the hollow fiber membrane, and the dispersant is retained.
A hollow fiber membrane having a large pore size is disclosed, which comprises forming a hollow fiber membrane and then extracting and removing the dispersant to form a large number of recesses on the surface of the membrane. Further, in Japanese Patent Application Laid-Open No. 5-76736, in the production of a polysulfone-based hollow fiber membrane, the liquid injected into the hollow fiber induces phase separation in the membrane dope and has no coagulation ability. By this, a circular hole of 10 μm or more is formed on the inner surface of the hollow fiber membrane. Furthermore,
Japanese Unexamined Patent Publication (Kokai) No. 49-90684 discloses a method for producing a hollow fiber membrane having pores with a diameter of 10 μm or more on the inner surface of a polyacrylonitrile type hollow fiber membrane.
【0005】しかしながら、上記のような膜表面に数μ
m 以上の大きな円形孔部を有する中空糸膜は、この円形
孔部の内壁および円形孔部以外の膜表面部も三次元網目
状の構造を有しており、この膜をそのまま逆浸透膜、限
外濾過膜あるいは浸透気化膜等として用いると、その分
離性能は極めて悪い。更に、このような中空糸膜は一般
に、膜内表面あるいは膜外表面からの圧力に対する機械
的強度が小さく、膜の耐久性に劣る。However, the film surface as described above has several μs.
The hollow fiber membrane having a large circular pore of m or more has a three-dimensional mesh structure on the inner wall of the circular pore and the membrane surface portion other than the circular pore. When used as an ultrafiltration membrane or a pervaporation membrane, its separation performance is extremely poor. Further, such a hollow fiber membrane generally has low mechanical strength against pressure from the inner surface or outer surface of the membrane, resulting in poor durability of the membrane.
【0006】[0006]
【発明が解決しようとする課題】本発明は、高分子物質
を中空糸支持体膜に被覆した従来の複合中空糸膜におい
て、被覆層が支持体膜から剥離し膜破損が生じ易いとい
う欠点を克服し、膜の耐久性に優れ且つ低分子量物質の
分離性能に優れた新規な構造の複合膜を提供することを
目的とする。DISCLOSURE OF THE INVENTION The present invention has the drawback that in a conventional composite hollow fiber membrane in which a polymer material is coated on a hollow fiber support membrane, the coating layer is easily peeled off from the support membrane to cause membrane damage. It is an object of the present invention to overcome the above problems and provide a composite membrane having a novel structure having excellent membrane durability and excellent separation performance for low molecular weight substances.
【0007】[0007]
【課題を解決するための手段】本発明者等は、上記のよ
うな課題を解決するため鋭意検討した結果、新規な構造
を有する複合中空糸膜を発明するに至った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have invented a composite hollow fiber membrane having a novel structure.
【0008】即ち本発明は、マクロボイドが内外表面の
少なくとも一方の表面に内外表面を貫通することなく開
孔している中空糸膜において、少なくとも該マクロボイ
ドの内表面部分が高分子物質で被覆されてなることを特
徴とする複合中空糸膜に関する。That is, according to the present invention, in a hollow fiber membrane in which at least one of the inner and outer surfaces of the macrovoid is open without penetrating the inner and outer surfaces, at least the inner surface portion of the macrovoid is coated with a polymer substance. And a composite hollow fiber membrane.
【0009】本発明においては、マクロボイドが中空糸
膜の内外表面の少なくとも一方に開孔した中空糸膜を用
いて、該中空糸膜の開孔したマクロボイドを有する膜表
面側に、マクロボイドの内表面とともに高分子物質を被
覆させることによって、通常の円筒の中空糸表面に比べ
て、被覆部の面積を大きくさせて被覆層と支持体膜の密
着性を増大させることができる。In the present invention, a hollow fiber membrane having macrovoids formed on at least one of the inner and outer surfaces of the hollow fiber membrane is used, and the macrovoids are provided on the surface side of the hollow fiber membrane having the macrovoids. By coating the inner surface of the polymer material with the polymer material, the area of the coating portion can be increased and the adhesion between the coating layer and the support membrane can be increased, as compared with the surface of a normal hollow cylindrical fiber.
【0010】以下、本発明を詳細に説明する。本発明に
いうマクロボイドとは、中空糸膜の膜厚内に存在する孔
径1〜 200μm の巨大空孔を意味し、膜表面層から連続
して形成される孔径0.05〜1μm の網目状多孔質層とは
区別される。本発明に使用される中空糸支持体膜は、こ
のマクロボイドが内外表面の少なくとも一方の膜表面上
に開孔していることを特徴としている。開孔部の形状は
特に限定されるものではないが、円形状あるいは楕円形
状であるものが利用できる。円形孔の場合、孔径は1〜
100μm であり、楕円孔の場合、長径が10〜1000μm 短
径が1〜50μmであることが好ましい。開孔部1個の面
積は三次元網目状多孔質層の網目孔1個の面積よりも大
きく、前者は後者の5倍以上であることが望ましく、ま
た全開孔部の占有面積は開孔部を有する全膜表面積の30
%以上、好ましくは60%以上であることが本発明の効果
をより大きく得ることになる。また、該マクロボイドの
膜厚方向の大きさは開孔側の膜表面から他方の膜表面に
まで貫通していない限り、特に限定されるものではない
が、全膜厚の80%以下であることが好ましい。The present invention will be described in detail below. The macrovoids referred to in the present invention mean giant pores having a pore diameter of 1 to 200 μm existing in the membrane thickness of the hollow fiber membrane, and a mesh-like porous material having a pore diameter of 0.05 to 1 μm continuously formed from the membrane surface layer. Distinguished from layers. The hollow fiber support membrane used in the present invention is characterized in that the macrovoids are open on at least one of the inner and outer surfaces of the membrane. The shape of the opening is not particularly limited, but a circular or elliptical shape can be used. For circular holes, the hole diameter is 1 to
In the case of an elliptical hole, the major axis is preferably 10 to 1000 µm and the minor axis is 1 to 50 µm. The area of one open hole is larger than the area of one open hole of the three-dimensional mesh-like porous layer, the former is preferably 5 times or more the latter, and the area occupied by all open holes is the open area. Having a total membrane surface area of 30
% Or more, and preferably 60% or more, the effect of the present invention can be more enhanced. The size of the macrovoids in the film thickness direction is not particularly limited as long as it does not penetrate from the film surface on the opening side to the other film surface, but is 80% or less of the total film thickness. It is preferable.
【0011】更に、本発明の複合中空糸膜は少なくとも
上記のマクロボイドの内表面部分が0.1μm 以上の厚さ
をもつ高分子物質の薄層で被覆されていることを特徴と
しており、(1) 高分子物質がマクロボイドを有する中空
糸膜表面の全体を被覆する場合、(2) 該中空糸膜表面の
マクロボイド内表面以外の部分が実質的に被覆されてい
ない場合および(3) マクロボイド内部全体が高分子物質
によって充填されている場合などの態様がある。Furthermore, the composite hollow fiber membrane of the present invention is characterized in that at least the inner surface portion of the above macrovoid is coated with a thin layer of a polymer substance having a thickness of 0.1 μm or more, (1 ) When the polymer substance covers the entire surface of the hollow fiber membrane having macrovoids, (2) when the portion other than the inner surface of the macrovoids on the surface of the hollow fiber membrane is not substantially covered, and (3) the macro There are modes such as the case where the entire void interior is filled with a polymer substance.
【0012】本発明において上記のマクロボイドの被覆
に用いられる高分子物質は特に限定されるものではな
く、例えば、ポリビニルアルコール、酢酸セルロース、
ポリアクリルアミド、ポリビニルピロリドン、キトサ
ン、ポリアクリル酸、ポリスルホン、ポリメタクリル酸
メチル、ポリフッ化ビニリデン、カルボキシメチルセル
ロースなどが挙げられる。In the present invention, the polymer substance used for coating the above macrovoids is not particularly limited, and examples thereof include polyvinyl alcohol, cellulose acetate,
Examples thereof include polyacrylamide, polyvinylpyrrolidone, chitosan, polyacrylic acid, polysulfone, polymethylmethacrylate, polyvinylidene fluoride and carboxymethylcellulose.
【0013】また、本発明の中空糸支持体膜に用いるポ
リマーも特に限定されず、例えば、ポリアクリロニトリ
ル系ポリマー、ポリスルホン系ポリマー、セルロース系
ポリマー、ポリアミド系ポリマー、ポリメタクリル酸メ
チル系ポリマー、ポリフッ化ビニリデン系ポリマー、ポ
リオレフィン系ポリマー、ポリスチレン系ポリマーなど
多種類が挙げられる。これら支持体膜に用いられるポリ
マーと被覆に用いられるポリマーとは素材が異なってい
ればよい。The polymer used in the hollow fiber support membrane of the present invention is not particularly limited, and examples thereof include polyacrylonitrile-based polymers, polysulfone-based polymers, cellulose-based polymers, polyamide-based polymers, polymethylmethacrylate-based polymers, and polyfluorinated polymers. There are various types such as vinylidene-based polymers, polyolefin-based polymers, polystyrene-based polymers and the like. The polymer used for the support film and the polymer used for the coating may be made of different materials.
【0014】支持体膜を中空糸状に製膜する方法は種々
挙げることができるが一般に、湿式紡糸法、乾湿式紡糸
法および溶融紡糸法に区別される。湿式および乾湿式紡
糸法を利用して、膜表面にマクロボイドを開孔させるた
めには、ポリマーとその溶剤および添加剤の種類と組成
を適切に組み合わせ、このポリマードープを中空糸状に
凝固させる際に中空糸内側と外側の凝固液の凝固力を調
整する必要がある。例えば、マクロボイドを中空糸膜の
内表面に形成させるためには、ポリマードープに非溶剤
等を添加して溶解度を小さくする一方、中空糸内表面側
の凝固液にポリマードープの凝固力が小さいものを選択
すればよい。溶融紡糸法では、中空糸膜の紡糸時あるい
は紡糸後に中空糸を延伸させることによって、膜表面に
マクロボイドを形成させることができる。また、分散剤
を添加したポリマードープを用いて中空糸膜を製膜した
後、この分散剤を適当な溶液で抽出することによっても
膜表面にマクロボイドを得ることができる。There are various methods for forming the support membrane in the form of hollow fibers, but in general, they are classified into a wet spinning method, a dry-wet spinning method and a melt spinning method. In order to open macrovoids on the membrane surface by using wet and dry wet spinning methods, the type and composition of the polymer and its solvent and additives are appropriately combined, and the polymer dope is solidified into hollow fibers. It is necessary to adjust the coagulation force of the coagulation liquid inside and outside the hollow fiber. For example, in order to form macrovoids on the inner surface of the hollow fiber membrane, a nonsolvent or the like is added to the polymer dope to reduce the solubility, while the coagulating liquid on the inner surface side of the hollow fiber has a small coagulating force of the polymer dope. Just choose one. In the melt spinning method, macrovoids can be formed on the surface of the membrane by stretching the hollow fiber during or after spinning the hollow fiber membrane. Macrovoids can also be obtained on the membrane surface by forming a hollow fiber membrane using a polymer dope to which a dispersant is added and then extracting this dispersant with an appropriate solution.
【0015】上記のように製膜される中空糸支持体膜に
高分子物質を被覆するためには、支持体膜を高分子物質
を含む溶液中に浸漬させた後、支持体膜表面に付着した
高分子物質を不溶化して安定な被覆層を形成させたり、
高分子溶液を支持体膜中に圧入して膜表面上に高分子物
質層を形成させたりする方法が挙げられている。これら
の場合に、架橋剤を用いたり、熱架橋を行ったりするこ
とも本発明において好ましい態様である。被覆層の厚さ
は、高分子溶液の濃度や圧入圧力を変化させて調整でき
る。すなわち、より高濃度でより高い圧力で高分子物質
を支持体膜に圧入すると被覆層の厚さを増大できる。In order to coat the polymer material on the hollow fiber support membrane formed as described above, the support membrane is immersed in a solution containing the polymer material and then adhered to the surface of the support membrane. Insolubilize the polymer substance to form a stable coating layer,
A method is known in which a polymer solution is pressed into a support membrane to form a polymer substance layer on the membrane surface. In these cases, it is also a preferred embodiment in the present invention to use a crosslinking agent or perform thermal crosslinking. The thickness of the coating layer can be adjusted by changing the concentration of the polymer solution and the press-fitting pressure. That is, when the polymer substance is pressed into the support membrane at a higher concentration and a higher pressure, the thickness of the coating layer can be increased.
【0016】本発明の複合中空糸膜では、マクロボイド
を有する中空糸支持体膜表面に高分子物質の被覆層が比
較的薄く形成され、マクロボイドが高分子物質で充填さ
れずマクロボイドの内表面を被覆している場合、この複
合中空糸膜の表面積はマクロボイドが表面に開孔してい
ない従来の中空糸膜あるいはこの型の中空糸膜に高分子
物質を被覆した従来型の複合中空糸膜の表面積に比べて
格段に大きく、即ち著しく高い透過速度が得られると同
時に被覆面積の増大によって被覆層が剥離しにくくなる
と期待できる。また、被覆層が比較的厚く、高分子物質
がマクロボイド内部を充填し、且つ中空糸支持体膜の内
表面を被覆している場合も、この被覆層はアンカーリン
グ効果により支持体膜表面と強固に接合されているた
め、膜の使用中に被覆層が支持体膜から剥離するという
問題が解消され、耐久性に優れた膜を得ることが期待さ
れる。In the composite hollow fiber membrane of the present invention, a coating layer of a macromolecular substance is formed relatively thin on the surface of the hollow fiber support membrane having macrovoids, and the macrovoids are not filled with the macromolecular substance. When the surface is coated, the surface area of this composite hollow fiber membrane is the conventional hollow fiber membrane in which macrovoids are not opened on the surface or the conventional type composite hollow fiber membrane in which this type of hollow fiber membrane is coated with a polymer substance. It can be expected that the coating layer is significantly larger than the surface area of the thread membrane, that is, a remarkably high permeation rate is obtained, and at the same time, the coating layer is unlikely to peel off due to the increase in the coating area. Further, even when the coating layer is relatively thick, the macromolecular substance fills the inside of the macrovoid, and the inner surface of the hollow fiber support membrane is also coated, this coating layer forms a support membrane surface with the anchoring effect. Since they are firmly bonded, the problem that the coating layer peels off from the support film during use of the film is solved, and it is expected to obtain a film having excellent durability.
【0017】[0017]
【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
【0018】実施例1 ポリアクリロニトリル系共重合体 (アクリロニトリル含
量85モル%:以下 PANと略記) の溶剤としてジメチルス
ルホキシド (以下DMSOと略記) を、添加剤として水を用
いて、それぞれの混合重量比が PAN/DMSO/水=16/74
/10となるように80℃で約20時間混合し、製膜ドープを
調製した。中空糸膜の内部凝固液にDMSO/水=50/50
(重量比) の混合溶液を用いて、この製膜ドープを温度5
0℃の中空糸膜紡糸用ノズルに圧入して紡糸した。この
紡糸ノズル口から吐出した製膜ドープは温度20℃に調節
した水蒸気相部を20cm通過した後、温度50℃の水浴中を
通過させつつ凝固させて中空糸膜とした。得られた中空
糸膜の内径および外径はそれぞれ 0.8および1.3mm であ
り、中空糸膜の内表面を電子顕微鏡(500倍) で観察した
結果、平均孔径が15μm の円形孔が約40%の空孔率で開
孔していた (図1) 。このマクロボイドが膜内表面に開
孔した中空糸膜の内側に重合度が2000のポリビニルアル
コール水溶液(5wt%) を圧力100kPaで約30分間圧入して
該膜内表面上にポリビニルアルコールのゲル層を形成さ
せた。この膜を少量の純水で洗浄した後、70℃乾燥機内
で約20時間乾燥させて本発明の複合中空糸膜を得た。本
中空糸膜の内表面には図1と同様に開孔したマクロボイ
ド観察された。Example 1 Diacyl sulfoxide (hereinafter abbreviated as DMSO) was used as a solvent for a polyacrylonitrile-based copolymer (acrylonitrile content: 85 mol%, hereinafter abbreviated as PAN), and water was used as an additive. PAN / DMSO / water = 16/74
The mixture was mixed at 80 ° C. for about 20 hours so as to be / 10 to prepare a film forming dope. DMSO / water = 50/50 in the inner coagulation liquid of the hollow fiber membrane
This film-forming dope was heated at a temperature of 5
It was spun into a hollow fiber membrane spinning nozzle at 0 ° C by press fitting. The film-forming dope discharged from this spinning nozzle port was passed through a water vapor phase part adjusted to a temperature of 20 ° C. for 20 cm and then coagulated while passing through a water bath at a temperature of 50 ° C. to give a hollow fiber membrane. The inner and outer diameters of the obtained hollow fiber membrane were 0.8 and 1.3 mm, respectively.As a result of observing the inner surface of the hollow fiber membrane with an electron microscope (500 times), the circular pores with an average pore diameter of 15 μm showed about 40%. It was open with a porosity (Fig. 1). A polyvinyl alcohol aqueous solution (5 wt%) having a degree of polymerization of 2000 was pressed into the hollow fiber membrane having macrovoids formed on the inner surface of the membrane at a pressure of 100 kPa for about 30 minutes to form a polyvinyl alcohol gel layer on the inner surface of the membrane. Was formed. This membrane was washed with a small amount of pure water and then dried in a dryer at 70 ° C. for about 20 hours to obtain a composite hollow fiber membrane of the present invention. Macrovoids having pores were observed on the inner surface of the hollow fiber membrane as in FIG.
【0019】上記にて得られた中空糸膜を用いて、ミニ
モジュール (膜面積0.1m2)を作製し、温度75℃のイソプ
ロピルアルコール (以下 IPAと略記) /水の混合液を
(混合重量比: IPA/水=95/5) を、該膜中空糸の内
表面側に流通させ、膜の透過側圧力が10Torrの下で約5
時間の浸透気化実験を行った。同様の実験を一旦、透過
側圧力を1atm とし、約20時間後再び10Torrとする操作
を繰り返しつつ数回行った。膜の透過蒸気は液体窒素を
冷媒に用いたコールドトラップで凝縮させて透過物とし
て採取し、この透過物の重量から透過速度を算出すると
ともに、ガスクロマトグラフィーにより透過物の組成分
析を行い、次式により分離係数を算出した。A mini-module (membrane area 0.1 m 2 ) was prepared using the hollow fiber membrane obtained above, and a mixture of isopropyl alcohol (hereinafter abbreviated as IPA) / water at a temperature of 75 ° C. was prepared.
(Mixed weight ratio: IPA / water = 95/5) was circulated to the inner surface side of the hollow fiber membrane, and the pressure on the permeation side of the membrane was about 5 Torr to about 5
Time pervaporation experiments were performed. The same experiment was repeated several times while repeating the procedure of once setting the pressure on the permeation side to 1 atm and, after about 20 hours, again setting to 10 Torr. The permeated vapor of the membrane is condensed as a permeate by condensing in a cold trap using liquid nitrogen as a refrigerant, the permeation rate is calculated from the weight of the permeate, and the composition of the permeate is analyzed by gas chromatography. The separation factor was calculated by the formula.
【0020】[0020]
【数1】 [Equation 1]
【0021】上記の繰り返し実験で得られた透過速度と
分離係数の結果を表1に示す。Table 1 shows the results of the permeation rate and the separation coefficient obtained by the above repeated experiments.
【0022】比較例1 実施例1と同様の組成および組成比を有する製膜ドープ
を中空糸膜の内部凝固液に水を用いて、同様の紡糸条件
で紡糸を行った。倍率10,000倍の電子顕微鏡観察では、
この中空糸膜の内表面上に開孔部を確認することができ
なかった (図2) 。この中空糸膜を用いて実施例1と同
様の操作を行って、ポリビニルアルコールの被覆層を膜
内表面上に形成させて複合中空糸膜を得た。この膜を用
いて実施例1と同様に行った浸透気化実験の結果を表1
に比較した。実験回数が3回目において、この膜より得
られる分離係数が著しく小さくなり、供給液が透過側へ
リークした。実験後、この膜の内表面を電子顕微鏡で観
察すると幅が約2μm のクラックが発生していた。Comparative Example 1 A membrane-forming dope having the same composition and composition ratio as in Example 1 was spun under the same spinning conditions by using water as the internal coagulating liquid of the hollow fiber membrane. In an electron microscope observation with a magnification of 10,000 times,
No openings could be confirmed on the inner surface of this hollow fiber membrane (Fig. 2). Using this hollow fiber membrane, the same operation as in Example 1 was performed to form a polyvinyl alcohol coating layer on the inner surface of the membrane to obtain a composite hollow fiber membrane. The results of the pervaporation experiment conducted in the same manner as in Example 1 using this membrane are shown in Table 1.
Compared to. In the third experiment, the separation coefficient obtained from this membrane was remarkably reduced, and the feed liquid leaked to the permeate side. After the experiment, when the inner surface of this film was observed with an electron microscope, cracks having a width of about 2 μm were found.
【0023】比較例2 実施例1においてポリビニルアルコールを被覆しない中
空糸支持体膜を用いて実施例1と同様の浸透気化実験を
行うと、供給液はリーク時と同様に分離されずそのまま
膜を通過した。Comparative Example 2 When the same pervaporation experiment as in Example 1 was carried out using the hollow fiber support membrane not coated with polyvinyl alcohol in Example 1, the feed liquid was not separated as in the case of the leak and the membrane was left as it was. It has passed.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【発明の効果】本発明の複合中空糸膜は、マクロボイド
が少なくとも内外表面の一方の膜表面に開孔している中
空糸膜を支持体膜とし、このマクロボイドの内表面を含
む膜表面を高分子物質で被覆した中空糸膜であり、被覆
層の支持体膜からの剥離による膜破損が生じにくいた
め、優れた膜耐久性と高い分離性能を維持することがで
きる。また、本発明によれば、マクロボイドの内表面を
も透過に寄与する膜表面とすることもできるため、表面
積の増大により高い透過速度を得ることができる。INDUSTRIAL APPLICABILITY The composite hollow fiber membrane of the present invention uses a hollow fiber membrane having macrovoids open on at least one of the inner and outer surfaces as a support membrane, and the membrane surface including the inner surface of this macrovoid. It is a hollow fiber membrane in which the polymer is coated with a polymer substance, and membrane damage due to peeling of the coating layer from the support membrane is unlikely to occur, so that excellent membrane durability and high separation performance can be maintained. Further, according to the present invention, the inner surface of the macrovoid can also be used as a membrane surface that contributes to permeation, so that a high permeation rate can be obtained by increasing the surface area.
【図1】実施例1の複合中空糸膜に用いた支持体膜の内
表面の繊維の形状を示す電子顕微鏡写真である。1 is an electron micrograph showing the shape of fibers on the inner surface of a support membrane used in a composite hollow fiber membrane of Example 1. FIG.
【図2】比較例1の複合中空糸膜に用いた支持体膜の内
表面の繊維の形状を示す電子顕微鏡写真である。FIG. 2 is an electron micrograph showing the shape of fibers on the inner surface of the support membrane used in the composite hollow fiber membrane of Comparative Example 1.
Claims (7)
方の表面に内外表面を貫通することなく開孔している中
空糸膜において、少なくとも該マクロボイドの内表面部
分が高分子物質で被覆されてなることを特徴とする複合
中空糸膜。1. A hollow fiber membrane in which macrovoids are opened in at least one of the inner and outer surfaces without penetrating the inner and outer surfaces, and at least the inner surface portion of the macrovoids is coated with a polymer substance. A composite hollow fiber membrane characterized by the following.
m の円形孔、または長径10〜1000μm 、短径1〜50μm
の楕円孔である請求項1記載の複合中空糸膜。2. The macro void opening has a hole diameter of 1 to 100 μm.
m circular hole, major axis 10-1000 μm, minor axis 1-50 μm
The composite hollow fiber membrane according to claim 1, which is an elliptical hole.
膜表面積の30%以上である請求項2記載の複合中空糸
膜。3. The composite hollow fiber membrane according to claim 2, wherein the area occupied by all the open pores of the macrovoid is 30% or more of the total membrane surface area.
体が高分子物質によって被覆されてなる請求項3記載の
複合中空糸膜。4. The composite hollow fiber membrane according to claim 3, wherein the entire surface of the hollow fiber membrane having macrovoids is coated with a polymer substance.
よって被覆されてなる請求項3記載の複合中空糸膜。5. The composite hollow fiber membrane according to claim 3, wherein only the inner surface of the macrovoid is coated with a polymer substance.
って被覆されてなる請求項3記載の複合中空糸膜。6. The composite hollow fiber membrane according to claim 3, wherein the entire interior of the macrovoid is covered with a polymer substance.
体であり、高分子物質がポリビニルアルコールである請
求項4〜6の何れか1項に記載の複合中空糸膜。7. The composite hollow fiber membrane according to claim 4, wherein the hollow fiber membrane is a polyacrylonitrile copolymer and the polymer substance is polyvinyl alcohol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24378593A JP3290266B2 (en) | 1993-09-03 | 1993-09-03 | Composite hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24378593A JP3290266B2 (en) | 1993-09-03 | 1993-09-03 | Composite hollow fiber membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0768142A true JPH0768142A (en) | 1995-03-14 |
JP3290266B2 JP3290266B2 (en) | 2002-06-10 |
Family
ID=17108933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24378593A Expired - Fee Related JP3290266B2 (en) | 1993-09-03 | 1993-09-03 | Composite hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3290266B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289927A (en) * | 2006-03-29 | 2007-11-08 | Toray Ind Inc | Composite separation membrane and method for manufacturing the same |
JP2019084464A (en) * | 2017-11-01 | 2019-06-06 | 旭化成株式会社 | Gas separation membrane |
-
1993
- 1993-09-03 JP JP24378593A patent/JP3290266B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289927A (en) * | 2006-03-29 | 2007-11-08 | Toray Ind Inc | Composite separation membrane and method for manufacturing the same |
JP2019084464A (en) * | 2017-11-01 | 2019-06-06 | 旭化成株式会社 | Gas separation membrane |
Also Published As
Publication number | Publication date |
---|---|
JP3290266B2 (en) | 2002-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9216391B2 (en) | Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation | |
HU213925B (en) | Composite a symmetric membrane and process for selectively removing viral particles from solutions and process for forming a composite membrane | |
US4612119A (en) | Hollow fiber filter medium and process for preparing the same | |
US4073733A (en) | PVA membrane and method for preparing the same | |
EP1321178A2 (en) | A braid-reinforced hollow fiber membrane | |
US4385094A (en) | Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof | |
CA2145451C (en) | Process for producing composite membranes | |
EP1669128A1 (en) | The preparation method of exo-pressure type poly(vinylidene fluoride) hollow fiber membrane spinned utilizing a immersion-coagulation method and the product thereof | |
JPS61283305A (en) | Porous hollow yarn membrane | |
JP3290266B2 (en) | Composite hollow fiber membrane | |
JPS61268302A (en) | Aromatic polysulfone composite semipermeable membrane and preparation thereof | |
JPH11309355A (en) | Polysulfone hollow fiber type blood purifying membrane and its production | |
US5320754A (en) | Pan composite membranes | |
JPS6261619A (en) | Liquid membrane | |
JP3016451B2 (en) | Microporous membrane surface treated with nylon | |
JP3102591B2 (en) | Microporous membrane | |
JP2918137B2 (en) | Porous membrane surface-treated with modified nylon and method for producing the same | |
JPH0359733B2 (en) | ||
WO2023276614A1 (en) | Forward osmosis membrane and forward osmosis membrane module including same | |
EP4364825A1 (en) | Forward osmosis membrane and forward osmosis membrane module including same | |
JPH06343842A (en) | Cellulose acetate hollow fiber separation membrane | |
JPS6365904A (en) | Porous hollow yarn membrane | |
JP3218101B2 (en) | Semipermeable membrane for separating organic matter and method for producing the same | |
JP2646562B2 (en) | Method for producing permselective composite hollow fiber membrane | |
GB2075416A (en) | Reverse osmosis composite hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |