JPH0767867A - Three-dimensional image reconstituting method - Google Patents

Three-dimensional image reconstituting method

Info

Publication number
JPH0767867A
JPH0767867A JP5216216A JP21621693A JPH0767867A JP H0767867 A JPH0767867 A JP H0767867A JP 5216216 A JP5216216 A JP 5216216A JP 21621693 A JP21621693 A JP 21621693A JP H0767867 A JPH0767867 A JP H0767867A
Authority
JP
Japan
Prior art keywords
axis
dimensional
cone beam
inspected
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5216216A
Other languages
Japanese (ja)
Inventor
Munehiro Takayama
宗広 高山
Shiro Yamazaki
史朗 山崎
Nobutaka Kiku
信隆 菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP5216216A priority Critical patent/JPH0767867A/en
Publication of JPH0767867A publication Critical patent/JPH0767867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the accuracy of a reconstituted image without decreasing an irradiated range with respect to an imperfect reconstituted area which expands by the irradiated range of a conical beam, in a CT device for irradiating a body to be examined with the conical beam. CONSTITUTION:An inclination phi made by a center axis M of a conical beam generated from an X-ray source and a body axis orthogonal axis of a body W to be examined is displaced to each different angle on a plane containing the body axis, respectively, and at every inclination, the conical beam is rotated relatively by 360 deg. around the body to be examined centering around the body axis, and based on plural two-dimensional projected images, a three-dimensional image of the body to be examined is reconstituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば円錐ビームX線
CTに好適な3次元画像再構成法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional image reconstruction method suitable for, for example, cone beam X-ray CT.

【0002】[0002]

【従来の技術】近年、X線CTでは、被検査体の内部情
報を2次元投影像より3次元画像として再構成するにあ
たって、円錐状に広がったX線で被検査体を投影する効
率的な走査方式が検討されている。例えば電子情報通信
学会論文誌’88/4Vol.J71−D No.4に
掲載された松尾らの“コーンビームX線CTのためのフ
ィルタ補正逆投影法”と題する文献Iには、図8に示す
ように、被検査体の体軸と一致したz軸に直交するxy
平面上に、X線源の中心軸を設定し、X線源から被検査
体に拡がり角αで発せられる円錐ビームをz軸回りに3
60°回転して2次元検出器上に被検査体を透過したX
線強度分布 投影することが記載されている。
2. Description of the Related Art In recent years, in X-ray CT, when reconstructing the internal information of the object to be inspected from a two-dimensional projection image into a three-dimensional image, it is efficient to project the object with a conical X-ray. Scanning schemes are being considered. For example, IEICE Transactions '88 / 4 Vol. J71-D No. In the document I entitled "Filtered Backprojection Method for Cone-Beam X-ray CT" published by Matsuo et al. In No. 4, as shown in FIG. 8, it is orthogonal to the z-axis which coincides with the body axis of the object to be inspected. Do xy
The central axis of the X-ray source is set on a plane, and the cone beam emitted from the X-ray source to the object to be inspected with a divergence angle α is set around the z axis to
X rotated by 60 ° and transmitted through the inspection object on the two-dimensional detector
Line intensity distribution Projection is described.

【0003】具体化した装置では、円錐ビームを発する
X線源とそれに対向する2次元検出器とが一体となっ
て、円錐ビームが被検査体の体軸を中心に被検査体回り
を1回転する。そして、その一回転の間に一定間隔ごと
に円錐ビームを照射する。2次元検出器は、複数の検出
器からなるものである。ここで、2次元検出器で計測さ
れる2次元投影像は、xy平面上でのX線源の角度位置
θと、2次元検出器上の座標β,γを用いたp(β,
γ,θ)で表現される。βはz軸と直角な方向の座標、
γは平行な方向の座標である。p(β,γ,θ)は、2
次元検出器に投影されるX線源から2次元検出器までの
円錐ビームの経路に沿った再構成像f(x,y,z)の
線積分として定義される。
In the embodied apparatus, an X-ray source that emits a cone beam and a two-dimensional detector facing it are integrated, and the cone beam makes one revolution around the body to be inspected around the body axis of the body to be inspected. To do. Then, a cone beam is emitted at regular intervals during the one rotation. The two-dimensional detector is composed of a plurality of detectors. Here, the two-dimensional projection image measured by the two-dimensional detector is p (β, using the angular position θ of the X-ray source on the xy plane and the coordinates β, γ on the two-dimensional detector.
γ, θ). β is the coordinate in the direction perpendicular to the z axis,
γ is a coordinate in a parallel direction. p (β, γ, θ) is 2
It is defined as the line integral of the reconstructed image f (x, y, z) along the path of the cone beam from the X-ray source projected onto the two-dimensional detector to the two-dimensional detector.

【0004】2次元投影像は、フィルタ補正後、逆投影
法により3次元画像に再構成される。この場合、3次元
空間上あらゆる方向からの投影像が計測される走査方式
を採用すれば、2次元ρフィルタにより補正した後、逆
投影することにより被検査体を完全に再構成することが
できる。しかし、円錐ビームによる走査方式では、円錐
ビームがZ軸に対して垂直に入射する断面(以下、完全
再構成平面という)は、X線源が回転するz=0のxy
平面のみであり、それ以外のz軸方向に関する再構成領
域では、2次元投影像の不完全性のため、2次元ρフィ
ルタを適用することはできない。以下、この領域を不完
全再構成領域とも呼ぶ。
The two-dimensional projection image is reconstructed into a three-dimensional image by the back projection method after the filter correction. In this case, if a scanning method in which projected images from all directions in the three-dimensional space are measured is adopted, the object to be inspected can be completely reconstructed by back-projecting after correction by the two-dimensional ρ filter. . However, in the scanning method using the cone beam, the cross section in which the cone beam is incident perpendicularly to the Z axis (hereinafter referred to as a perfect reconstruction plane) has an xy of z = 0 where the X-ray source rotates.
The two-dimensional ρ filter cannot be applied to the reconstruction area in the z-axis direction other than the plane because of the incompleteness of the two-dimensional projection image. Hereinafter, this area is also referred to as an incomplete reconstruction area.

【0005】そこで、上記文献Iでは、円錐ビームによ
る走査方式において、z軸に垂直な円錐ビームの回転方
向にのみ補正を行う1次元ρフィルタを用い、z=0外
の不完全再構成領域に対しては、2次元投影像にcos
γの補正項を乗じている。
Therefore, in the above document I, in the cone beam scanning method, a one-dimensional ρ filter that corrects only in the direction of rotation of the cone beam perpendicular to the z-axis is used, and an incomplete reconstruction region outside z = 0 is used. On the other hand, the two-dimensional projected image is cos
It is multiplied by the correction term of γ.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記文
献Iに記載された補正方法によれば、z=0の原点から
離れる再構成領域ほど、円錐ビームの透過経路がz軸に
対し傾いて補正幅が大きくなり、その結果、図9に示す
ように、原点から離れる再構成領域ほど、再構成誤差が
増加する欠点がある。このような再構成誤差の増加は、
例えば工業加工品の不要な空洞や亀裂の大きさ及び位置
を非破壊で観察する場合、正確さが得られず、使用に問
題のある不良品を見落としてしまうおそれが大となる。
However, according to the correction method described in the above-mentioned document I, the transmission path of the cone beam is inclined with respect to the z-axis as the reconstruction area is farther from the origin of z = 0. Becomes large, and as a result, as shown in FIG. 9, the reconstruction error increases as the reconstruction area becomes farther from the origin. Such an increase in reconstruction error is
For example, when non-destructively observing the sizes and positions of unnecessary cavities and cracks in industrially processed products, accuracy cannot be obtained, and there is a great risk of overlooking defective products that have problems in use.

【0007】なお、信学技報Vol.’90、No16
8に掲載された工藤らの“円錐ビーム投影による3次元
CT画像再構成実験”と題する文献IIは、X線源を互
いに直交する二つの円周上を動かす直交走査と、2〜3
回転のつるまき螺旋上を動かすヘリカル走査とを提唱し
ているが、直交走査では走査方向を90°変位するの
で、そのための機構が複雑となり、後者のヘリカル走査
では、X線が同じ断面を透過していないため精度上問題
がある。
[Technical Report] Vol. '90, No16
Reference II entitled “3D CT Image Reconstruction Experiment by Conical Beam Projection” published by Kudo et al. In No. 8 describes orthogonal scanning in which an X-ray source is moved on two circles orthogonal to each other, and 2-3.
Although he proposes helical scanning in which a spiral of rotation is moved, the scanning direction is displaced by 90 ° in orthogonal scanning, which complicates the mechanism for that. In the latter helical scanning, X-rays pass through the same cross section. There is a problem in accuracy because it is not done.

【0008】本発明は、円錐ビームによる被検査体の体
軸方向への透過経路の傾きを小さくし、再構成時の補正
幅を小さくして再構成誤差を低減する技術を提供するこ
とを目的とする。
It is an object of the present invention to provide a technique for reducing the reconstruction error by reducing the inclination of the transmission path in the body axis direction of the object to be inspected due to the cone beam and reducing the correction width during reconstruction. And

【0009】[0009]

【課題を解決するための手段】本発明は、被検査体を挟
んでX線源と2次元検出器とを対向配置し、前記被検査
体の体軸直交軸を基準とする前記X線源からの円錐ビー
ムの傾角を前記体軸を含む平面上で複数の値にそれぞれ
変位し、前記各傾角ごとに前記円錐ビームを前記体軸を
中心とする被検査体回りに360°相対回転し、該相対
回転により前記2次元検出器から得られる各2次元投影
像に基づいて前記被検査体の3次元画像を再構成する。
According to the present invention, an X-ray source and a two-dimensional detector are arranged so as to face each other with an object to be inspected interposed therebetween, and the X-ray source is based on a body axis orthogonal axis of the object to be inspected. The tilt angle of the cone beam from the above is respectively displaced to a plurality of values on a plane including the body axis, and the cone beam is relatively rotated around the body to be inspected about the body axis for each tilt angle by 360 °, The three-dimensional image of the inspection object is reconstructed based on each two-dimensional projection image obtained from the two-dimensional detector by the relative rotation.

【0010】また、前記各2次元投影像に基づいて前記
被検査体の3次元画像を再構成する方法は、前記各2次
元投影像を円錐ビームの中心軸を基準に該円錐ビームの
立体的な拡がり角方向に重付け処理した後に、フィルタ
リング処理を行っている。好適な態様では、前記円錐ビ
ームの傾角は、該円錐ビームが前記被検査体の体軸と直
交する透過経路をもつ範囲に設定される。
In the method of reconstructing the three-dimensional image of the object to be inspected based on each of the two-dimensional projection images, the three-dimensional image of each of the two-dimensional projection images is formed with the central axis of the cone beam as a reference. The filtering process is performed after the weighting process is performed in the direction of the spread angle. In a preferred aspect, the tilt angle of the cone beam is set in a range in which the cone beam has a transmission path orthogonal to the body axis of the object to be inspected.

【0011】[0011]

【作用】本発明のX線源から発せられる円錐ビームは、
被検査体の体軸直交軸を基準とした傾角が離散的な複数
の角度に変位され、各傾角に対応した位置ごとに円錐ビ
ームは前記体軸を中心とする被検査体回りに相対的に3
60°回転される。これによって2次元検出器からは各
傾角ごとの2次元投影像が得られる。本発明は、上記の
ようにして得られた複数の2次元投影像により3次元画
像を再構成する。
The cone beam emitted from the X-ray source of the present invention is
The tilt angle with respect to the axis orthogonal to the body axis of the object to be inspected is displaced to a plurality of discrete angles, and the cone beam is relatively moved around the object to be inspected around the body axis at each position corresponding to each angle of inclination. Three
It is rotated 60 °. As a result, a two-dimensional projected image for each tilt angle is obtained from the two-dimensional detector. The present invention reconstructs a three-dimensional image from a plurality of two-dimensional projection images obtained as described above.

【0012】本発明では、円錐ビームの傾角を各異なる
角度にそれぞれ変位することにより、各円錐ビーム同士
が交差して重なる領域が生じる。2次元投影像は、この
重なった領域内で被検査体が照射されて計測されるが、
同領域のz軸方向拡がり角は、同じ拡がり角の一つの円
錐ビームを用いても達成される。従って、本発明で用い
た円錐ビームからみれば、拡がり角を狭めても、重なり
領域の拡がり角が関心領域を照射する範囲確保できれ
ば、同等の再構成像が得られることになる。この拡がり
角を狭めることができる分、本発明では、不完全再構成
領域が減少し、補正項を乗算する際の補正幅が小さくな
って、その結果、再構成誤差も比例的に低減させること
ができる。
In the present invention, by displacing the tilt angles of the cone beams to different angles, regions where the cone beams intersect and overlap each other are generated. The two-dimensional projection image is measured by irradiating the object to be inspected in this overlapping region,
The z-axis divergence angle of the same region is also achieved by using one cone beam having the same divergence angle. Therefore, from the viewpoint of the cone beam used in the present invention, even if the divergence angle is narrowed, if the divergence angle of the overlapping region can secure the range that illuminates the region of interest, an equivalent reconstructed image can be obtained. As the divergence angle can be narrowed, the present invention reduces the incomplete reconstruction area and the correction width when multiplying the correction term, and as a result, the reconstruction error is also proportionally reduced. You can

【0013】例えば図1に示すように、z軸と直交する
体軸直交軸(ここではy軸)に対し±φの傾角となるよ
うに二つの円錐ビームの中心軸M(X線源の中心軸)が
設定される場合、各円錐ビームが重なった、拡がり角度
βにて示される領域が形成され、この領域は従来の円錐
ビームの拡がり角と同じものと考えれば、このような重
なり領域を生じる二つの円錐ビームの拡がり角αは、角
度βより小さいものでよく、各円錐ビームによる不完全
再構成領域は減少されることになる。
For example, as shown in FIG. 1, the central axes M (center of the X-ray source) of the two cone beams are inclined so as to have an inclination angle of ± φ with respect to a body axis orthogonal axis (here, y axis) orthogonal to the z axis. Axis) is set, an area shown by the divergence angle β is formed in which each cone beam overlaps. If this area is considered to be the same as the divergence angle of the conventional cone beam, such an overlap area is defined. The divergence angle α of the resulting two cone beams may be smaller than the angle β, and the area of imperfect reconstruction by each cone beam will be reduced.

【0014】また、本発明の再構成過程では、各2次元
投影像を体軸直交軸を中心とする立体的な拡がり角方向
に重付け処理することは、同方向の距離の相違による空
気、水等の吸収係数を補正し、被検査体の吸収量を正確
に取得して逆投影後の3次元画画像の更なる正確さを得
ることができる。さらに、円錐ビームの傾角を、該円錐
ビームが前記被検査体の体軸と直交する透過経路をもつ
範囲に限定することにより、各傾角ごとに得られる2次
元投影像がそれぞれ完全再構成平面をもつことにより、
より正確な3次元画像を再構成することができる。図1
の例では、二つの完全再構成平面が生じる。さらに、傾
角の設定数を増加することにより、完全再構成平面が増
加して正確さは更に増大する。
Further, in the reconstruction process of the present invention, weighting each two-dimensional projection image in the three-dimensional divergence angle direction centered on the body axis orthogonal axis is performed by the air due to the difference in distance in the same direction. It is possible to correct the absorption coefficient of water or the like and accurately acquire the absorption amount of the inspection object, and obtain further accuracy of the three-dimensional image after backprojection. Further, by limiting the tilt angle of the cone beam to a range in which the cone beam has a transmission path orthogonal to the body axis of the object to be inspected, the two-dimensional projection images obtained for each tilt angle form a perfect reconstruction plane. By having
It is possible to reconstruct a more accurate three-dimensional image. Figure 1
In the example, two perfect reconstruction planes occur. Furthermore, by increasing the set number of tilt angles, the perfect reconstruction plane is increased and the accuracy is further increased.

【0015】[0015]

【発明の効果】よって、本発明によれば、X線源から発
される円錐ビームの被検査体の体軸直交軸を基準とした
傾角が離散的な複数の角度をとるように変位し、各傾角
ごとの円錐ビームを被検査体回りに360°相対回転す
るので、実質的な円錐ビームの拡がり角を小さくでき、
不完全再構成領域が減少して再構成誤差を低減させ、被
検査体の内部情報を正確に計測することができる。
As described above, according to the present invention, the cone beam emitted from the X-ray source is displaced so that the inclination angle with respect to the body axis orthogonal axis of the object to be inspected is a plurality of discrete angles. Since the cone beam for each tilt angle is relatively rotated 360 ° around the object to be inspected, the divergence angle of the cone beam can be substantially reduced,
The incomplete reconstruction area is reduced, the reconstruction error is reduced, and the internal information of the inspection object can be accurately measured.

【0016】[0016]

【実施例】以下、本発明の3次元画像再構成法を、図1
に示す円筒物を計測する工業用CT装置に適用した実施
例によって詳細に説明する。図1に示すX線CT装置に
おいて、X線管1は例えば基台2に一体化されており、
基台2にはX線管1に対向して2次元検出器3が配置さ
れている。また、基台2には、ブラケット4が固定され
ており、ブラケット4には被検査体としての円筒物Wを
z軸を中心に回転駆動するモータ5が装着されている。
更に、基台2には、z軸と同一平面上でz軸上の原点O
を通り、かつ、z軸と直交するR軸を中心に円筒物Wを
回転するモータ6が取付けられている。上記モータ5,
6は、例えばステッピングモータが用いられ、それぞれ
モータドライバによって作動されるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A three-dimensional image reconstruction method of the present invention will be described below with reference to FIG.
An example applied to an industrial CT device for measuring a cylindrical object shown in FIG. In the X-ray CT apparatus shown in FIG. 1, the X-ray tube 1 is integrated with a base 2, for example,
A two-dimensional detector 3 is arranged on the base 2 so as to face the X-ray tube 1. Further, a bracket 4 is fixed to the base 2, and a motor 5 for rotating and driving a cylindrical object W as an object to be inspected around the z axis is attached to the bracket 4.
Furthermore, the base 2 has an origin O on the z-axis on the same plane as the z-axis.
A motor 6 that rotates the cylindrical object W around an R axis that passes through and is orthogonal to the z axis is attached. The motor 5,
6, a stepping motor is used, for example, and each is operated by a motor driver.

【0017】上記基台2を母体とする走査機構は、主コ
ンピュータ9によって制御されている。すなわち、主コ
ンピュータ9には、各モータ5,6をドライバ7,8を
介して後述する手順で制御するモータコントローラ10
と、X線制御コンピュータ11とが接続されるととも
に、2次元検出器3からのX線透過強度分布をA/Dコ
ンバータ12を介して取込むようになっている。ここ
に、X線制御コンピュータ11は、主コンピュータ9に
よるモータコントローラ10への、モータ5をステップ
駆動するタイミングでX線管1を作動させる指令を行う
ターゲットコンピュータである。
The scanning mechanism having the base 2 as a base is controlled by the main computer 9. That is, the main computer 9 has a motor controller 10 for controlling the motors 5 and 6 via the drivers 7 and 8 in a procedure described later.
Is connected to the X-ray control computer 11, and the X-ray transmission intensity distribution from the two-dimensional detector 3 is captured via the A / D converter 12. Here, the X-ray control computer 11 is a target computer that issues a command to the motor controller 10 by the main computer 9 to operate the X-ray tube 1 at the timing of step-driving the motor 5.

【0018】上記構成のX線CT装置は、図2に示すよ
うに、先ず、ステップS1を行い、モータ6を駆動し
て、図5(A)に示すように、円筒物Wの体軸と一致し
たz軸をφ〔rad〕だけマイナス方向(図上右下が
り)に傾ける。これは、円錐ビームの中心軸Mと体軸直
交軸とのなす傾角を−φに設定したことと等価である。
次に、ステップS2でX線管1から円錐ビームを照射す
る。この最初の円錐ビームの回転角θは初期計測角度
(例えば0°)とし、以下、ステップS3、S4の後の
ステップS5でΔθだけ回転角を進める動作によって円
筒物Wの回りに順次に円錐ビームが照射される。Δθの
歩進は、モータ5の駆動による。ステップS6は1回転
したか否かの判断である。ステップS6で“YES”の
場合は、図4に移行し、そのステップS7で、図5
(B)に示すように、円筒物Wの体軸をφ〔rad〕だ
けプラス方向(図上右上がり)に傾ける。これは、円錐
ビームの傾角を+φに設定したことと等価である。その
後、図3と同様に、順次回転角を進め、その間に図3の
ステップS2からS5に相当する処理を行って、ステッ
プS9で円筒物Wが一回転されたことを確認すると、各
傾角に対応したZ軸位置での円筒物Wの2次元投影像が
得られる。
As shown in FIG. 2, the X-ray CT apparatus having the above-described structure first carries out step S1 to drive the motor 6 and, as shown in FIG. Tilt the coincident z-axis by φ [rad] in the negative direction (downward in the figure). This is equivalent to setting the inclination angle between the central axis M of the cone beam and the axis orthogonal to the body axis to -φ.
Next, in step S2, a cone beam is emitted from the X-ray tube 1. The rotation angle θ of this first cone beam is the initial measurement angle (for example, 0 °), and the cone beam is sequentially rotated around the cylindrical object W by the operation of advancing the rotation angle by Δθ in step S5 after steps S3 and S4. Is irradiated. The step of Δθ depends on the driving of the motor 5. Step S6 is a judgment as to whether or not one rotation has been performed. If “YES” in the step S6, the process proceeds to FIG.
As shown in (B), the body axis of the cylindrical object W is tilted by φ [rad] in the positive direction (upward in the figure). This is equivalent to setting the tilt angle of the cone beam to + φ. After that, similarly to FIG. 3, the rotation angle is sequentially advanced, and during that time, the processes corresponding to steps S2 to S5 of FIG. 3 are performed, and when it is confirmed that the cylindrical object W is rotated once in step S9, A two-dimensional projection image of the cylindrical object W at the corresponding Z-axis position is obtained.

【0019】2次元投影像は、ステップ3とS4によっ
て算出される。ステップS3では、2次元検出器3上で
のX線透過強度分布をA/Dコンバータ12よりデジタ
ル信号としり形態で取込み、ステップS4では、X線照
射強度と透過強度分布とより、円筒物WのX線吸収係数
分布、すなわち、2次元投影像を算出している。こうし
て、本実施例では、±φごとの傾角に対応したZ軸位置
での二つの2次元投影像が求められる。この場合、一回
の照射ごとに2次元投影像を求めているが、各二回転分
の走査を行った後、透過強度分布を全部収集した後に一
括して2次元投影像を求めることも可能である。
The two-dimensional projection image is calculated in steps 3 and S4. In step S3, the X-ray transmission intensity distribution on the two-dimensional detector 3 is captured as a digital signal from the A / D converter 12, and in step S4, the cylindrical object W is determined from the X-ray irradiation intensity and the transmission intensity distribution. X-ray absorption coefficient distribution, that is, a two-dimensional projection image is calculated. Thus, in this embodiment, two two-dimensional projected images at the Z-axis position corresponding to the inclination angle of ± φ are obtained. In this case, the two-dimensional projection image is obtained for each irradiation, but it is also possible to collectively obtain the two-dimensional projection image after collecting the transmission intensity distribution after scanning for each two rotations. Is.

【0020】次に、上記のように求めた2次元投影像よ
り本実施例の3次元再構成過程を経て、3次元画像を再
構成する。本3次元再構成過程は、図6に示すように、
2次元投影像p(u,v,θ,φ)のz軸方向に関する
重付け処理13、z軸周りの1次元のフィルタリング処
理14及び逆投影処理15からなる。ここで、u,v
は、図7に示すように、2次元検出器3上の直交座標を
表し、uはz軸と直交する方向、vはz軸と平行の方向
である。
Next, a three-dimensional image is reconstructed from the two-dimensional projection image obtained as described above through the three-dimensional reconstruction process of this embodiment. The three-dimensional reconstruction process is as shown in FIG.
The two-dimensional projection image p (u, v, θ, φ) includes a weighting process 13 in the z-axis direction, a one-dimensional filtering process 14 around the z-axis, and a backprojection process 15. Where u, v
As shown in FIG. 7, represents the orthogonal coordinates on the two-dimensional detector 3, u is the direction orthogonal to the z-axis, and v is the direction parallel to the z-axis.

【0021】重付け処理13では、数式1に示すよう
に、u及びv方向の重み関数w(u,v)を乗算する。
In the weighting process 13, the weighting functions w (u, v) in the u and v directions are multiplied as shown in Equation 1.

【0022】[0022]

【数1】 p′(u,v,θ,φ)=P(u,v,θ,φ)・w(u,v) 重み関数w(u,v)は、数式2で表される。[Mathematical formula-see original document] p '(u, v, [theta], [phi]) = P (u, v, [theta], [phi]) * w (u, v) The weighting function w (u, v) is expressed by Equation 2.

【0023】[0023]

【数2】 [Equation 2]

【0024】ここで、CsはX線管1から原点Oまでの
距離、Cdは原点Oから2次元検出器3までの距離、μ
は被検査体周りの物質(例えば水、空気)の吸収係数を
表す。この重み関数は、円錐ビームの立体的な拡がり角
方向に吸収係数を補正するものである。また、u,vは
それぞれ、
Here, Cs is the distance from the X-ray tube 1 to the origin O, Cd is the distance from the origin O to the two-dimensional detector 3, and μ
Represents an absorption coefficient of a substance (for example, water or air) around the object to be inspected. This weighting function corrects the absorption coefficient in the three-dimensional divergence direction of the cone beam. Also, u and v are respectively

【0025】[0025]

【数3】u=D(xcos θ+ysin θ)[Equation 3] u = D (xcos θ + ysin θ)

【0026】[0026]

【数4】 v=D{zcos φ−(ycos θ−xsin θ)sin φ}## EQU00004 ## v = D {zcos .phi .- (ycos .theta.-xsin .theta.) Sin .phi.}

【0027】[0027]

【数5】 次に、フィルタリング処理14は、以下の三つの演算か
らなる。
[Equation 5] Next, the filtering process 14 consists of the following three operations.

【0028】[0028]

【数6】 P′(ωu ,v,θ,φ)= F{p′(u,v,θ,φ)} [Equation 6] P ′ (ω u , v, θ, φ) = F {p ′ (u, v, θ, φ)}

【0029】[0029]

【数7】 Q(ωu ,v,θ,φ)=P′(ωu ,v,θ,φ)・F(ωu [Equation 7] Q (ω u, v, θ , φ) = P '(ω u, v, θ, φ) · F (ω u)

【0030】[0030]

【数8】 q(u,v,θ,φ)=F -1{Q(ωu ,v,θ,φ)} 数式6は重付け後の投影像のフーリエ変換を表し、数式
7はフーリエ空間でフィルタ関数F(ωu )を乗算する
演算、数式8はフーリエ逆変換を表す。ここで、ωu
空間周波数を、F(ωu )は数式9で表される。
[Mathematical formula-see original document] q (u, v, [theta], [phi]) = F < -1 > {Q ([omega] u , v, [theta], [phi])} Equation 6 represents the Fourier transform of the projected image after weighting, and Equation 7 represents the Fourier transform. An operation for multiplying the filter function F (ω u ) in space, Expression 8 represents an inverse Fourier transform. Here, ω u is a spatial frequency, and F (ω u ) is a mathematical expression 9.

【0031】[0031]

【数9】 [Equation 9]

【0032】ただし、sは画素数である。本実施例のフ
ィルタ関数F(ωu )は、空間周波数に比例して単調増
加する特性にCs,Cdによる補正を加えている。逆投
影処理15は、数式10の演算を行うもので、画像信号
q(u,v,θ,φ)をz軸周りに積分して、再構成像
fを得る。
However, s is the number of pixels. The filter function F (ω u ) of the present embodiment has a characteristic that monotonically increases in proportion to the spatial frequency and is corrected by Cs and Cd. The back-projection processing 15 performs the operation of Expression 10, and integrates the image signal q (u, v, θ, φ) around the z axis to obtain a reconstructed image f.

【0033】[0033]

【数10】 ここで、係数項cosα′/L2 は補正項であり、α′
は円錐ビームの拡がり角αと傾角φを合計した角度で、
z軸方向の再構成領域に対応した角度を表す。Lは原点
OからX線管1までの距離を表す。角度α′は、傾角φ
と円錐ビームの拡がり角αを合計したものであるが、従
来の1回転だけの円錐ビームの拡がり角βと比較する
と、二つの円錐ビームが重なる領域のz軸方向角度をβ
とすることにより、α′<βとすることができ、図9の
点線にて示すように、再構成誤差は、平均で従来の略半
分に低減することができる。
[Equation 10] Here, the coefficient term cos α ′ / L 2 is a correction term, and α ′
Is the sum of the divergence angle α and the tilt angle φ of the cone beam,
It represents an angle corresponding to the reconstruction area in the z-axis direction. L represents the distance from the origin O to the X-ray tube 1. The angle α'is the tilt angle φ
And the divergence angle α of the cone beam are summed. Compared with the divergence angle β of the conventional cone beam for one rotation only, the z-axis direction angle of the region where the two cone beams overlap is β
As a result, α ′ <β can be satisfied, and as shown by the dotted line in FIG. 9, the reconstruction error can be reduced to about half that of the conventional one on average.

【0034】以上の再構成法は一例であり、重み関数、
関数F(ωu )若しくは係数項cos β/L2 は、被検査
体等の条件により任意に選定することができる。特に、
本実施例では、フィルタリング処理14の前に、重み付
け処理13によって、円錐ビームの中心軸を基準に該円
錐ビームの立体的な拡がり角方向への距離の相違による
吸収係数の補正を行って被検査体の正確な吸収量算出を
行っているので、より再構成像の正確さが得られる。
The above reconstruction method is an example, and the weighting function,
The function F (ω u ) or the coefficient term cos β / L 2 can be arbitrarily selected according to the condition of the object to be inspected or the like. In particular,
In the present embodiment, before the filtering process 14, the weighting process 13 corrects the absorption coefficient due to the difference in the distance of the cone beam in the direction of the three-dimensional divergence angle of the cone beam as a reference, and the inspection target is inspected. Since the accurate absorption amount of the body is calculated, more accurate reconstructed image can be obtained.

【0035】なお、図5に示すように、本実施例の各円
錐ビームは、円筒物の体軸と直交する透過経路aをそれ
ぞれもつため、この透過経路で完全再構成面が二つ形成
される。これら完全再構成面の両近傍の不完全再構成領
域は、比較的正確な再構成像が得られるが、本実施例で
は、完全再構成面を二つもつことで四つの近傍の不完全
再構成領域がある。これに対し従来の1回転式では、一
つの完全構成面しかもたないので、近傍の不完全再構成
領域は二つである。従って、比較的正確な再構成像が得
られる近傍の不完全再構成領域の数によっても、本実施
例の再構成像は極めて正確なものということができる。
As shown in FIG. 5, since each cone beam of this embodiment has a transmission path a which is orthogonal to the body axis of the cylinder, two perfect reconstruction surfaces are formed in this transmission path. It Although relatively accurate reconstruction images can be obtained in the incomplete reconstruction areas near both of these perfect reconstruction surfaces, in the present embodiment, by having two perfect reconstruction surfaces, the incomplete reconstruction areas in four neighborhoods can be obtained. There is a configuration area. On the other hand, in the conventional one-rotation type, since there is only one perfect construction surface, there are two incomplete reconstruction areas in the vicinity. Therefore, it can be said that the reconstructed image of the present embodiment is extremely accurate even by the number of incomplete reconstructed regions in the vicinity where a relatively accurate reconstructed image is obtained.

【0036】尚、本発明では、再構成像のデータが重複
するが、完全再構成面に近い方のデータを選択してい
る。また、本発明は、完全再構成面をもたないような傾
角を設定する場合を排除するものではない。
In the present invention, although the data of the reconstructed images are duplicated, the data closer to the perfect reconstruction plane is selected. Further, the present invention does not exclude the case where the tilt angle is set so as not to have a perfect reconstruction plane.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の再構成方を概略的に示した説明図。FIG. 1 is an explanatory view schematically showing a reconstruction method of the present invention.

【図2】本発明に採用した装置の一例を示すブロック
図。
FIG. 2 is a block diagram showing an example of an apparatus adopted in the present invention.

【図3】本発明の2次元投影像を得る過程を示すフロー
チャート。
FIG. 3 is a flowchart showing a process of obtaining a two-dimensional projection image of the present invention.

【図4】本発明の2次元投影像を得る過程を示すフロー
チャート。
FIG. 4 is a flowchart showing a process of obtaining a two-dimensional projection image of the present invention.

【図5】図2に示す装置での傾角変位の様子を示す説明
図。
5 is an explanatory diagram showing a state of tilt displacement in the device shown in FIG.

【図6】本発明の再構成過程を示すブロック図。FIG. 6 is a block diagram showing a reconstruction process of the present invention.

【図7】本発明の再構成過程を説明する説明図。FIG. 7 is an explanatory diagram illustrating a reconstruction process of the present invention.

【図8】従来の再構成法を示す説明図。FIG. 8 is an explanatory diagram showing a conventional reconstruction method.

【図9】本発明と従来とで比較した再構成誤差の特性
図。
FIG. 9 is a characteristic diagram of a reconstruction error compared between the present invention and the related art.

【符号の説明】[Explanation of symbols]

W…被検査体、1…X線源、3…2次元検出器、5,6
…ステッピングモータ、9…主コンピュータ、11…X
線制御コンピュータ、φ…傾角。
W ... Inspected object, 1 ... X-ray source, 3 ... Two-dimensional detector, 5, 6
… Stepping motor, 9… Main computer, 11… X
Line control computer, φ ... inclination.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被検査体を挟んでX線源と2次元検出器と
を対向配置し、 前記被検査体の体軸直交軸を基準とする前記X線源から
の円錐ビームの傾角を前記体軸を含む平面上で複数の値
にそれぞれ変位し、 前記各傾角ごとに前記円錐ビームを前記体軸を中心とす
る被検査体回りに360°相対回転し、 該相対回転により前記2次元検出器から得られる各2次
元投影像に基づいて前記被検査体の3次元画像を再構成
することを特徴とする3次元画像再構成法。
1. An X-ray source and a two-dimensional detector are arranged to face each other with an object to be inspected interposed therebetween, and an inclination angle of a cone beam from the X-ray source with respect to an axis orthogonal to the body axis of the object to be inspected The cone beam is displaced to a plurality of values on a plane including the body axis, and the cone beam is relatively rotated about the body to be inspected about the body axis by 360 ° for each tilt angle, and the two-dimensional detection is performed by the relative rotation. A three-dimensional image reconstructing method, which reconstructs a three-dimensional image of the object to be inspected based on each two-dimensional projection image obtained from the instrument.
【請求項2】前記各2次元投影像に基づいて前記被検査
体の3次元画像を再構成する方法は、前記各2次元投影
像を円錐ビームの中心軸を基準に該円錐ビームの立体的
な拡がり角方向に重付けする処理と、該重付けした各像
をフーリエ変換後に予め定めたフィルタ関数で乗算し結
果をフーリエ逆変換して出力するフィルタリング処理
と、該フィルタリング処理を経た出力を体軸周りに積分
して再構成像を得る逆投影処理とからなることを特徴と
する請求項1記載の3次元画像再構成法。
2. A method for reconstructing a three-dimensional image of the object to be inspected based on each of the two-dimensional projection images is a three-dimensional image of the cone beam with respect to the central axis of the cone beam. Processing for weighting in the divergent angle direction, filtering processing for multiplying each of the weighted images by a predetermined filter function after Fourier transform, and performing inverse Fourier transform of the result, and outputting the result. The three-dimensional image reconstruction method according to claim 1, further comprising backprojection processing for obtaining a reconstructed image by integrating about an axis.
【請求項3】前記円錐ビームの傾角は、該円錐ビームが
前記被検査体の体軸と直交する透過経路をもつ範囲に設
定されることを特徴とする請求項1記載の3次元画像再
構成法。
3. The three-dimensional image reconstruction according to claim 1, wherein the inclination angle of the cone beam is set in a range in which the cone beam has a transmission path orthogonal to the body axis of the object to be inspected. Law.
JP5216216A 1993-08-31 1993-08-31 Three-dimensional image reconstituting method Pending JPH0767867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5216216A JPH0767867A (en) 1993-08-31 1993-08-31 Three-dimensional image reconstituting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5216216A JPH0767867A (en) 1993-08-31 1993-08-31 Three-dimensional image reconstituting method

Publications (1)

Publication Number Publication Date
JPH0767867A true JPH0767867A (en) 1995-03-14

Family

ID=16685099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5216216A Pending JPH0767867A (en) 1993-08-31 1993-08-31 Three-dimensional image reconstituting method

Country Status (1)

Country Link
JP (1) JPH0767867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191072A (en) * 2018-04-27 2019-10-31 東芝Itコントロールシステム株式会社 Ct imaging device and imaging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191072A (en) * 2018-04-27 2019-10-31 東芝Itコントロールシステム株式会社 Ct imaging device and imaging method

Similar Documents

Publication Publication Date Title
US6442288B1 (en) Method for reconstructing a three-dimensional image of an object scanned in the context of a tomosynthesis, and apparatus for tomosynthesis
CA1309514C (en) Method of using a priori information in computerized tomography
JP4460088B2 (en) Computed tomography method using a conical radiation beam
US6285733B1 (en) Computed tomography method utilizing a conical radiation beam
JP4993163B2 (en) Method and apparatus for reconstruction of tilted cone beam data
JP2000081318A (en) Scanning and data collecting method for three- dimensional computer tomography imaging and imaging system
US6574297B2 (en) System and method for image reconstruction in a cone beam imaging system
JP4360817B2 (en) Radiation tomography equipment
US6269141B1 (en) Computer tomography apparatus with a conical radiation beam and a helical scanning trajectory
JPH0661326B2 (en) Method and apparatus for creating a tomographic image by spiral scanning
JP2000081318A5 (en)
JPH03188832A (en) Extrapolative reconstitution method for herical scanning
JPH03186250A (en) Sector beam spiral scanning using re-entry means
JP4813681B2 (en) Computed tomography method
JP4777520B2 (en) Computed tomography method for forming a scanogram
JPH0793924B2 (en) Reconstruction method of tomographic image using radiation crossing plane
JPH07194590A (en) Computer type fault photographing device and method to develop image of object to be photographed
JP2002336238A (en) Method and device for reconstructing three-dimensional image from cone beam projection data
JPH03188833A (en) Reducing method for artifact by keeping abreast of patient at tomographic imaging
JP3980696B2 (en) Image reconstruction processing device
JP2006505337A (en) Method and apparatus for accurate cone beam computed tomography
JPH0767867A (en) Three-dimensional image reconstituting method
US6542572B2 (en) Computed tomography method involving a helical relative motion
JP3020925B2 (en) 2-step 3D radon inverse conversion processing method
JP3825492B2 (en) Image reconstruction processing apparatus and X-ray CT apparatus